Skip to main content

Production of Biosonar Signals: Structure and Form

  • Chapter
  • First Online:
Biosonar

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 51))

Abstract

Even though they live in quite different habitats, many bats, a few birds, and a number of marine mammals, including dolphins, rely on biosonar for navigation and foraging for food. Despite the fact that bats are aerial echolocators, whereas dolphins use underwater sonar, both groups depend on their sonar signals to detect, discriminate, locate, track, and catch small moving prey. The large differences in the physical characteristics of air and water guarantee that vastly different processes are required in the type of biosonar signals that are used and in the means by which they are generated. Water is approximately 850 times denser than air and the speed of sound is approximately 4.5 times faster in water. Absorption of sound in water is considerably less than in air. The relative impedance between objects in air and in water has caused both the echoic process and the mechanism by which biosonar pulses are produced to differ between these media. The sonar signals of most bats are produced in their larynx. Exceptions include a few bats and echolocating birds that produce sonar clicks with their tongue or syrinx, respectively. This is quite different than dolphins, which produce biosonar signals exclusively through their nasal system. The large size and marine environment of dolphins has favored research on the site of sound production and the propagation of sonar signals through the head and into the water. Research on echolocating bats and birds, on the other hand, has tended to focus on the neuromuscular physiology and biomechanics of sonar pulse production. In this chapter we review the current understanding of how each of these vertebrate groups produce and control their biosonar signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amundin, M., & Andersen, S. H. (1983). Bony nares air pressure and nasal plug muscle activity during click production in the harbour porpoise, Phocoena phocoena, and the bottlenosed dolphin, Tursiops truncates. Journal of Experimental Biology, 105, 275–282.

    Google Scholar 

  • Aroyan, J. L. (2001). Three-dimensional modeling of hearing in Delphinus delphis. Journal of the Acoustical Society of America, 110, 3305–3318.

    CAS  PubMed  Google Scholar 

  • Aroyan, J. L., Cranford, T. W., Kent, J., & Norris, K. S. (1992). Computer modeling of acoustic beam formation in Delphinus delphis. Journal of the Acoustical Society of America, 95, 2539–2545.

    Google Scholar 

  • Au, W. W. L. (1993). The sonar of dolphins. New York: Springer Verlag.

    Google Scholar 

  • Au, W. W. L. (2004). A comparison of the sonar capabilities of bats and dolphins. In J. Thomas, C. Moss, & M. Vater (Eds.), Echolocation in bats and dolphins (pp. xiii–xxvii). Chicago: University of Chicago Press.

    Google Scholar 

  • Au, W. W. L., & Hastings, M. C. (2008). Principles of marine bioacoustics. New York: Springer.

    Google Scholar 

  • Au, W. W. L., Floyd, R. W., Penner, R. H., & Murchison, A. E. (1974). Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open waters. Journal of the Acoustical Society of America, 56, 1280–1290.

    CAS  PubMed  Google Scholar 

  • Au, W. W. L., Carder, D. A, Penner, R. H., & Scronce, B. L. (1985). Demonstration of adaptation in beluga whale echolocation signals. Journal of the Acoustical Society of America, 77, 726–730.

    CAS  PubMed  Google Scholar 

  • Au, W. W. L., Pawloski, J. L., Nachtigall, P. E., Blonze, M., & Gisiner, R. C. (1995). Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens). Journal of the Acoustical Society of America, 98, 51–59.

    Google Scholar 

  • Au, W. W. L., Houser, D. S., Finneran, J., Lee, W-J, Talmadge, L. A., & Moore, P. W. (2010). The acoustic field on the forehead of echolocating Atlantic bottlenose dolphins (Tursiops truncatus). Journal of the Acoustical Society of America, 128, 1426–1434.

    PubMed  Google Scholar 

  • Au, W. W. L., Branstetter, B., Moore, P. W., & Finneran, J. J. (2012). Dolphin biosonar signals measured at extreme off-axis angles: Insights to sound propagation in the head. Journal of the Acoustical Society of America, 132, 1119–1206.

    Google Scholar 

  • Aubauer, R., Au, W. W. L., Nachtigall, P. E., Pawloski, J. A., Pawloski, D. A., & DeLong, C. (2000). Classification of electronically generated phantom targets by an Atlantic bottle nose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 107, 2750–2754.

    Google Scholar 

  • Bass, A. H., Gilland, E. H., & Baker, R. (2008). Evolutionary origins for social vocalization in a vertebrate hindbrain-spinal compartment. Science, 321, 417–421.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brinkløv, S., Jakobsen, L., Ratcliffe, J. M., Kalko, E. K. V., & Surlykke, A. (2011). Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae). Journal of the Acoustical Society of America, 129, 427–435.

    PubMed  Google Scholar 

  • Clement, M. J., Gupta, P., Dietz, N., & Kanwal, J. S. (2006). Audiovocal communication and social behavior in mustached bats. In J. S. Kanwal & G. Ehret (Ed.), Behavior and neurodynamics for auditory communication (pp. 57–84). New York: Cambridge University Press.

    Google Scholar 

  • Coles, R. B., Konish, M., & Pettigrew, J. D. (1987). Hearing and echolocation in the Australian Grey Swiftlet, Collocalia Spodiopygia. Journal Experimental Biology, 129, 365–371.

    Google Scholar 

  • Cranford, T. W. (1988). The anatomy of acoustic structures in the spinner dolphin forehead as shown by X-ray computed tomography and computer graphics. In P. E. Nachtigall, & P. W. B. Moore (Eds.), Animal sonar: Processes and performance (pp. 67–77). New York: Plenum Press.

    Google Scholar 

  • Cranford, T. W. (2000). In search of impulse sound sources in Odontocetes. In W. W. L. Au, A. N. Popper, & Fay, R. R. (Eds.) Hearing by whales and dolphins (pp. 109–156). New York: Springer-Verlag.

    Google Scholar 

  • Cranford, T. W., Amundin, M., & Norris, K. S. (1996). Functional morphology and homology in the odontocete nasal complex: Implications for sound generation. Journal of Morphology, 228, 223–285.

    CAS  PubMed  Google Scholar 

  • Cranford, T. W., Van Bonn, W. G., Chaplin, M. S., Carr, J. A., & Kamolnick, T. A. (1997). Visualizing dolphin sonar signal generation using high-speed video endoscopy (A). Journal of the Acoustical. Society of America 102, 3123–3123.

    Google Scholar 

  • Cranford, T. W., Elsberry, W. R., Van Bonn, W. G., Jeffress, J. A., Chaplin, M. S., Blackwood, D. J., Carder, D. A., Kamolnick, T., Todd, M. A., & Ridgway, S. H. (2011). Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncates): Evidence of two sonar sources. Journal of Experimental Marine Biology and Ecology, 407, 81–96.

    Google Scholar 

  • Denny, S. (1976). Comparative morphology of the larynx. In R. Hinchcliffe & D. Harrison (Eds.), Scientific foundations of otolaryngology (pp. 536–545). Chicago: Year Book.

    Google Scholar 

  • Diercks, K. J., Trochta, R. T., Greenlaw, C. F., & Evans, W. E. (1971). Recording and analysis of dolphin echolocation signals. Journal of the Acoustical Society of America, 49, 1729–1733.

    Google Scholar 

  • Dormer, K. J. (1979). Mechanism of sound production and air recycling in delphinids: Cineradiographic evidence. Journal of the Acoustical Society of America, 65, 229–239.

    Google Scholar 

  • Durrant, G. E. (1988). Laryngeal control of the duration and frequency of emitted sonar pulses in the echolocating bat, Eptesicus fuscus. Ph.D. dissertation, Indiana University, Bloomington. Available at http://proquest.umi.com/pqdweb?did=745547241&sid=1&Fmt=6&clientId=12010&RQT=309&VName=PQD

  • Elemans, C. P. H., Mead, A. F., Rome, L. C., & Goller, F. (2008). Superfast vocal muscles control song production in songbirds. PLoS ONE 3, e2581, 2581–2586.

    Google Scholar 

  • Elemans, C. P. H., Mead, A. F., Jakobsen, L., & Ratcliffe, J. M. (2011). Superfast muscles set maximum call rate in echolocating bats. Science, 333, 1885–1888.

    CAS  PubMed  Google Scholar 

  • Elias, H. (1907). Zur Anatomie des kehlkopfes der Mikrochiropteren. Morphologischen Jahrbuch, 37, 70–119.

    Google Scholar 

  • Elsberry, W. R. (2003). Interrelationships between interanarial pressure and biosonar clicks in bottlenose dolphins (Tursiops truncatus). Ph.D. dissertation, Texas A&M University, Galveston.

    Google Scholar 

  • Evans, W E. (1973). Echolocation by marine delphinids and one species of fresh-water dolphin. Journal of the Acoustical Society of America, 54, 191–199.

    Google Scholar 

  • Fant, G. (1960). Acoustic theory of speech production. The Hague: Mouton.

    Google Scholar 

  • Fattu, J. M., & Suthers, R. A. (1981). Subglottic pressure and the control of phonation by the echolocating bat, Eptesicus. Journal of Comparative Physiology, 143, 465–475.

    Google Scholar 

  • Fenton, M. B. (1984). Echolocation: Implications for ecology and evolution of bats. Quarterly Review of Biology, 59, 33–52.

    Google Scholar 

  • Fenzl, T., & Schuller, G. (2005). Echolocation calls and communication calls are controlled differentially in the brainstem of the bat Phyllostomus discolor. BMC Biology, 3, 1–12.

    Google Scholar 

  • Fenzl, T., & Schuller, G. (2007). Dissimilarities in the vocal control over communication and echolocation calls in bats. Behavioural Brain Research, 182,173–179.

    PubMed  Google Scholar 

  • Fischer, H., & Gerken, H. (1961). Le larynx de la chauve-souris (Myotis myotis) et le larynx humain. Annales d’Oto-Laryngologie, 78, 577–585.

    CAS  PubMed  Google Scholar 

  • Fischer, H., & Vomel, H. J. (1961). Der Ultraschallapparat des Larynx von Myotis myotis. Eine morphologische Studie über einen primitiven Saugerkehlkopf. Morphologische Jahrbuch, 102, 201–226.

    Google Scholar 

  • Fullard, J. H., Barclay, R. M. R., & Thomas, D.W. (1993). Echolocation in free-flying Atiu swiftlets (Aerodramus sawtrelli). Biotropica, 25, 334–339.

    Google Scholar 

  • Griffin, D. R. (1946). The mechanism by which bats produce supersonic sounds. Anatomical Record, 96, 519.

    CAS  PubMed  Google Scholar 

  • Griffin, D. R. (1953). Acoustic orientation in the oilbird, Steatornis. Proceedings of the National Academy of Sciences of the USA, 39, 884–893.

    Google Scholar 

  • Griffin, D. R. (1958). Listening in the dark. New Haven, CT: Yale University Press.

    Google Scholar 

  • Griffin, D. R., & Galambos, R. (1941). The sensory basis of obstacle avoidance by flying bats. Journal of Experimental Zoology, 86, 481–506.

    Google Scholar 

  • Griffin, D. R., Novick, A., & Kornfield, M. (1958). The sensitivity of echolocation in the fruit bat Rousettus. Biological Bulletin, 155, 107–113.

    Google Scholar 

  • Griffiths, T. A. (1978). Modification of m. cricothyroideus and the larynx in the Mormoopidae, with reference to amplification of high-frequency pulses. Journal of Mammalogy, 59, 724–730.

    Google Scholar 

  • Griffiths, T. A. (1983). Comparative laryngeal anatomy of the big brown bat, Eptesicus fuscus, and the mustached bat, Pteronotus parnellii. Mammalia, 47, 377–394.

    Google Scholar 

  • Habersetzer, J., Schuller, G., & Neuweiler, G. (1984). Foraging behavior and Doppler shift compensation in echolocating hipposiderid bats, H. bicolor and H. speoris. Journal of Comparative Physiology A, 155, 559–567.

    Google Scholar 

  • Hartley, D. J., & Suthers, R. A. (1987). The sound emission pattern and the acoustical role of the noseleaf in the echolocating bat, Carollia perspicillata. Journal of the Acoustical Society of America, 82, 1892–1900.

    CAS  PubMed  Google Scholar 

  • Hartley, D. J., & Suthers, R. A. (1988). The acoustics of the vocal tract in the horseshoe bat, Rhinolophus hildebrandti. Journal of the Acoustical Society of America, 84, 1201–1213.

    Google Scholar 

  • Hartley, D. J., & Suthers, R. A. (1989). The sound emission pattern of the echolocating bat, Eptesicus fuscus. Journal of the Acoustical Society of America, 85, 1348–1351.

    Google Scholar 

  • Hartley, D. J., & Suthers, R. A. (1990). Sonar pulse radiation and filtering in the mustached bat, Pteronotus parnellii rubiginosus. Journal of the Acoustical Society of America, 87, 2756–2772.

    Google Scholar 

  • Hartley, D. J., Campbell, K. A., & Suthers, R. A. (1989). The acoustic behavior of the fish-catching bat, Noctilio leporinus, during prey capture. Journal of the Acoustical Society of America, 86, 8–27.

    Google Scholar 

  • Herbert, H. (1985). Echolocation behavior in the megachiropteran bat, Rousettus aegyptiacus. Zeitschrift für Saugetierkunde—International Journal of Mammalian Biology, 50,141–152.

    Google Scholar 

  • Holland, R. A., & Waters, D. A. (2005). Echolocation signals and pinnae movement in the fruitbat Rousettus aegyptiacus. Acta Chiropterologica, 7, 83–90.

    Google Scholar 

  • Holland, R. A., Waters, D. A., & Rayner, J. M. V. (2004). Echolocation signal structure in the Megachiropteran bat Rousettus aegyptiacus Geoffroy 1810. Journal of Experimental Biology, 207, 4361–4369.

    PubMed  Google Scholar 

  • Hollien, H., Hollien, P., Caldwell, D. K., & Caldwell, M. C. (1976). Sound production by the Atlantic bottlenose dolphin, Tursiops truncates. Cetology, 26, 1–7.

    Google Scholar 

  • Ibsen, S. D., Au, W. W. L., Nachtigall, P. E., Delong C. M., & Breese, M. (2007). Changes in signal parameters over time for an echolocating Atlantic bottlenose dolphin performing the same target discrimination task. Journal of the Acoustical Society of America, 112, 2446–2450.

    Google Scholar 

  • Isshiki, N. (1964). Regulatory mechanism of voice intensity variation. Journal of Speech and Hearing Research, 7, 17–29.

    CAS  PubMed  Google Scholar 

  • Jones, G., & Teeling, E. C. (2006). The evolution of echolocation in bats. Trends in Ecology and Evolution, 21, 149–156.

    PubMed  Google Scholar 

  • King, A. S. (1989). Functional anatomy of the syrinx. In A. S. King & J. McLelland (Eds.), Form and function in birds, Vol. 4 (pp. 105–220). New York: Academic Press.

    Google Scholar 

  • Kingston, T., & Rossiter, S. J. (2004). Harmonic-hopping in Wallacea’s bats. Nature, 429, 654–657.

    CAS  PubMed  Google Scholar 

  • Kloepper, L. N., Nachtigall, P. E., & Breese, M. (2010). Change in echolocation signals with hearing loss in a false killer whale (Pseudorca crassidens). Journal of the Acoustical Society of America, 129, 2233–2237.

    Google Scholar 

  • Kobler, J. B., Wilson, B. S., Henson, O. W., Jr., & Bishop, A. L. (1985). Echo intensity compensation by echolocating bats. Hearing Research, 20, 99–108.

    CAS  PubMed  Google Scholar 

  • Koblitz, J. C., Stilz, P., & Schnitzler, H-U. (2010). Source levels of echolocation signals vary in correlation with wingbeat cycle in landing big brown bats (Eptesicus fuscus). Journal of Experimental Biology, 213, 3263–3268.

    PubMed  Google Scholar 

  • Krysl, P., Cranford, T. W., Wiggins, S. M., & Hildebrand, J. (2005). Three-dimensional modeling of hearing in Delphinus delphis. Journal of the Acoustical Society of America, 120, 2328–2339.

    Google Scholar 

  • Kulzer, E. (1956). Flughunde erzeugen Orientierungslaute durch Zungenschlag. Naturwissenschaften, 43, 117–118.

    Google Scholar 

  • Kulzer, E. (1960). Physiologische und morphologische Untersuchungen über die Erzeugung der Orientierungslaute von Flughunden der Gattung Rousettus. Zeitschrift für vergleichende Physiologie, 43, 231–268.

    Google Scholar 

  • Ladefoged, P. (1968). Linguistic aspects of respiratory phenomena. Annals of the New York Academy of Sciences, 155, 141–151.

    Google Scholar 

  • Lammers, M. O., & Castellote, M. (2009). The beluga whale produces two pulses to form its sonar signal. Biological Letters, 5, 297–301.

    Google Scholar 

  • Lancaster, W. C., & Speakman, J. R. (2001). Variations in respiratory muscle activity during echolocation when stationary in three species of bat (Microchiroptera: Vespertilionidae). Journal of Experimental Biology, 204, 4185–4197.

    CAS  PubMed  Google Scholar 

  • Lancaster, W. C., Henson, O. W., & Keating, A. W. (1995). Respiratory muscle activity in relation to vocalization in flying bats. Journal of Experimental Biology, 198, 175–191.

    CAS  PubMed  Google Scholar 

  • Litchfield, C., Karol, R., & Greenberg, A. J. (1973). Compositional topography of melon lipids in the Atlantic bottlenose dolphin (Tursiops truncatus): Implications for echolocation. Marine Biology, 52, 285–290.

    Google Scholar 

  • Ma, J., Kobayasi, K., Zhang, S. Y., & Metzner, W. (2006). Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum. Journal of Comparative Physiology A, 192, 535–550.

    Google Scholar 

  • Madsen, P. T., Johnson, M., Aguilar de Soto, N., Ximmer, W. M., &Tyack, P. (2005). Biosonar performance of foraging beaked whales (Mesoplodon densirostris). Journal of Experimental Biology, 208, 181–194.

    CAS  PubMed  Google Scholar 

  • Madsen, P. T., Wisniewska, D., & Breedholm, K. (2010). Single source sound production and dynamic beam formation in echolocating harbour porpoises (Phocoena phocoena). The Journal of Experimental Biology, 213, 3105–3110.

    CAS  PubMed  Google Scholar 

  • Madsen, P. T., Lammers, M., Wisniewska, D., Beedholm, K. (2013). “Nasal sound production in echolocating delphinids (Tursiops truncatus and Pseudorca crassidens) is dynamic, but unilateral: clicking on the right side and whistling on the left side,” The Journal Experimental Biology, 216, 4091–4102.

    Google Scholar 

  • Matsumura, S. (1979). Mother-infant communication in a horseshoe bat (Rhinolophus ferrumequinum nippon): Development of vocalizations. Journal of Mammalogy, 60, 76–84.

    Google Scholar 

  • Medway, L., & Pye, D. (1977). Echolocation and the systematics of swiftlets, In B. Stonehouse & C. Perrins (Eds.), Evolutionary biology (pp. 225–238). London: Macmillan.

    Google Scholar 

  • Mergell, P., Fitch, W. T., & Herzel, H. (1999). Modeling the role of nonhuman vocal membranes in phonation. Journal of the Acoustical Society of America, 105, 2020–2028.

    CAS  PubMed  Google Scholar 

  • Metzner, W., & Schuller, G. (2010). Vocal control in echolocating bats. In S. M. Brudzynski (Ed.), Handbook of mammalian vocalization (pp. 403–415). New York: Elsevier.

    Google Scholar 

  • Metzner, W., Zhang, S. Y., & Smotherman, M. (2002). Doppler-shift compensation behavior in horseshoe bats revisited: Auditory feedback controls both a decrease and an increase in call frequency. Journal of Experimental Biology, 205, 1607–1616.

    PubMed  Google Scholar 

  • Möhres, F. P. (1953). Über die Ultraschallorientierung der Hufeisen-nasen (Chiroptera-Rhinolophinae). Zeitschrift für vergleichende Physiologie, 34,547–588.

    Google Scholar 

  • Möhres, F. P., & Kulzer, E. (1956). Über die Orientierung der Flughunde (Chiroptera-Pteropodidae). Zeitschrift für vergleichende Physiologie, 38, 1–29.

    Google Scholar 

  • Moss, C., & Surlykke, A. (2010). Probing the natural scene by echolocation in bats. Frontiers in Behavioral Neuroscience, 4, Article 33.

    Google Scholar 

  • Müller, R. (2010). Numerical analysis of biosonar beamforming mechanisms and strategies in bats. Journal of the Acoustical Society of America, 128, 1414–1425.

    PubMed  Google Scholar 

  • Nakamura, K., Yamada, T. K., & Shimazaki, K. (1998). Measurements of the nasal sacs of individual common dolphin, Delphinus delphis, and Dall’s porpoise, Phocoenoides dalli, by means of silicon reconstruction. Mammal Study, 23, 119–122.

    Google Scholar 

  • Neuweiler, G. (2003). Evolutionary aspects of bat echolocation. Journal of Comparative Physiology A, 189, 245–256.

    CAS  Google Scholar 

  • Norris, K. S. (1968). The evolution of acoustic mechanisms in odontocete cetaceans. In E. T. Drake (Ed.), Evolution and environment (pp. 297–324). New Haven, CT: Yale University Press.

    Google Scholar 

  • Norris, K. S., & Harvey, G. W. (1972). A theory of the function of the spermaceti organ of the sperm whale (Physeter catodon L.), NASA SP-26.

    Google Scholar 

  • Norris, K. S., Dormer K. J., Pegg, J., & Liese, G. T. (1971). The mechanism of sound production and air recycling in porpoises: A preliminary report. In Proceeding of the VIIIth Conference on Biology of Sonar Diving Mammals, Menlo Park, CA.

    Google Scholar 

  • Novick, A., & Griffin, D. R. (1961). Laryngeal mechanisms in bats for the production of orientation sounds. Journal of Experimental Zoology, 148, 125–145.

    CAS  PubMed  Google Scholar 

  • Novick, A., & Vaisnys, J. R. (1964). Echolocation of flying insects by the bat, Chilonycteris parnellii. Biological Bulletin, 127, 478–488.

    Google Scholar 

  • Pierce, G. W. (1938). Experimental determination of supersonic notes emitted by bats. Journal of Mammalogy, 19, 454–455.

    Google Scholar 

  • Purves, P. E. (1967). Anatomical and experimental observations on the Cetacean sonar system. In R. G. Busnel (Ed.), Animal sonar systems: Biology and bionics (pp. 197–270). Jouy-en-Jouy, France : Laboratoire de Physiologie Acoustique.),

    Google Scholar 

  • Purves, P. E., & Pilleri, G. (1983). Echolocation in whales and dolphins. London: Academic Press.

    Google Scholar 

  • Pye, J. D. (1968). Animal sonar in air. Ultrasonics, 6, 32–38.

    CAS  PubMed  Google Scholar 

  • Quay, W. B. (1970). Peripheral nervous system. In W. A. Wimsatt. (Ed.), Biology of bats, Vol. 3 (pp. 153–179). New York: Academic Press.

    Google Scholar 

  • Revel, J. P. (1962). The sarcoplasmic reticulum of the bat cricothyroid muscle. Journal of Cell Biology, 12, 571–588.

    Google Scholar 

  • Ridgway, S. H., & Carder, D. A. (1988). Nasal pressure and sound production in an echolocating white whale, Delphinapterus leucas. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar: Processes and performances (pp. 53–60). New York: Plenum Press.

    Google Scholar 

  • Ridgway, S. H., Carder, D. A., Green, R. F., Gaunt, A. S., Gaunt, S. L. L., & Evans, W. E. (1980). Electromyographic and pressure events in the nasolaryngeal system of dolphins during sound production. In R. G. Busnel, & J. F. Fish (Eds.), Animal sonar systems (pp. 239–249). New York: Plenum Press.

    Google Scholar 

  • Roberts, L. H. (1972). Correlation of respiration and ultrasound production in rodents and bats. Journal of Zoology (London), 168, 439–449.

    Google Scholar 

  • Roberts, L. H. (1973). Cavity resonances in the production of orientation cries, Periodicum Biologorum, 75, 27–32.

    Google Scholar 

  • Roberts, L. H. (1975a). The functional anatomy of the rodent larynx in relation to audible and ultrasonic cry production. Zoological Journal of the Linnean Society, 56, 255–264.

    Google Scholar 

  • Roberts, L. H. (1975b). Confirmation of the echolocation pulse production mechanism of Rousettus. Journal of Mammalogy, 56, 218–220.

    CAS  PubMed  Google Scholar 

  • Robin, M. H. A. (1881). Recherches anatomiques sur les mammiferes de l’ordre des Chiropteres. Ann Sci Nat (Zool), 12, 1–180.

    Google Scholar 

  • Rome, L. C. (2006). Design and function of superfast muscles: New insights into the physiology of skeletal muscle. Annual Review of Physiology, 68, 193–221.

    CAS  PubMed  Google Scholar 

  • Rome, L. C., Syme, D. A., Hollingworth, S., Lindstedt, S. L., & Baylor, S. M. (1996). The whistle and the rattle: The design of sound producing muscles. Proceedings of the National Academy of Sciences of the U SA , 93, 8095–8100.

    Google Scholar 

  • Rübsamen, R., & Schuller, G. (1981). Laryngeal nerve activity during pulse emission in the CF-FM bat, Rhinolophus ferrumequinum. I. The recurrent laryngeal nerve. Journal of Comparative Physiology, 143, 323–327.

    Google Scholar 

  • Schenkkan, E. J. (1973). On the comparative anatomy and function of the nasal tract in odontocetes (Mammalia, Cetaea). Bijdragen tot de Dierkunde, 43, 127–159.

    Google Scholar 

  • Schnitzler, H. U. (1968). Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen. Zeitschrift für vergleichende Physiologie, 57, 376–408.

    Google Scholar 

  • Schnitzler, H. U. (1970). Echoortung bei der fledermäus Chilonycteris rubiginosa. Zeitschrift für vergleichende Physiologie, 68, 25–38.

    Google Scholar 

  • Schnitzler, H. U. (1971). Fledermäuse im Windkanal. Journal of Comparative Physiology A, 73, 209–221.

    Google Scholar 

  • Schnitzler, H. U. (1972). Control of Doppler shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A, 82, 79–92.

    Google Scholar 

  • Schnitzler, H. U. (1973). Die echoortung der fledermäuse und ihre horphysiologischen grundlagen. Fortschritte der Zoologie, 21, 136–189.

    Google Scholar 

  • Schuller, G., & Suga, N. (1976). Laryngeal mechanisms for the emission of CF-FM sounds in the Doppler-shift compensating bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology, 107, 253–262.

    Google Scholar 

  • Schuller, G., & Rübsamen, R. (1981). Laryngeal nerve activity during pulse emission in the CF-FM bat, Rhinolophus ferrumequinam I. Superior laryngeal nerve (external motor branch). Journal of Comparative Physiology, 143, 317–321.

    Google Scholar 

  • Schuller, G., & Moss, C. (2004). Vocal control and acoustically guided behavior in bats. In J. A. Thomas, C. F. Moss, & M. Vater (Eds.), Echolocation in bats and dolphins (pp. 3–16). Chicago: University of Chicago Press.

    Google Scholar 

  • Smotherman, M. (2007). Sensory feedback control of mammalian vocalizations. Behavioural Brain Research, 182(2), 315–326.

    PubMed Central  PubMed  Google Scholar 

  • Smotherman, M., & Guillen-Servent, A. (2008). Doppler-shift compensation behavior by Wagner’s mustached bat, Pteronotus personatus. Journal of the Acoustical Society of America, 123, 4331–4339.

    PubMed Central  PubMed  Google Scholar 

  • Smyth, D. M. (1979). Studies on echolocation by the grey swiftlet Aerodramus spodiopygius. PhD thesis. Department of Zoology, James Cook University of North Queensland. Townsville, Queensland.

    Google Scholar 

  • Sprague, J. M. (1943). The hyoid region of placental mammals with special reference to the bats. American Journal of Anatomy, 72, 385–472.

    Google Scholar 

  • Strother, G. K., & Mogus, M. (1970). Acoustical beam patterns for bats: Some theoretical considerations. Journal of the Acoustical Society of America, 48, 1430–1432.

    PubMed  Google Scholar 

  • Suga, N., Schlegel, P., Shimozawa, T., & Simmons, J. A. (1973). Orientation sounds evoked from echolocating bats by electrical stimulation of the brain. Journal of the Acoustical Society of America, 54, 793–797.

    CAS  PubMed  Google Scholar 

  • Surlykke, A., & Moss, C. F. (2000). Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. Journal of the Acoustical Society of America, 108, 2419–2429.

    CAS  PubMed  Google Scholar 

  • Surlykke, A., Miller, L., Møhl, B., Andersen, B., Christensen-Dalsgaard, J., & Jørgensen, M. (1993). Echolocation in two very small bats from Thailand: Craseonycteris thonglongyai and Myotis siligorensis. Behavioral Ecology and Sociobiology, 33, 1–12.

    Google Scholar 

  • Surlykke, A., Pedersen, S. B., & Jakobsen, L. (2009). Echolocating bats emit a highly directional sonar sound beam in the field. Proceedings of the Royal Society B: Biological Sciences, 276, 853–860.

    Google Scholar 

  • Suthers, R. A. (1988). The production of echolocation signals by bats and birds. In P. E. Nachtigall & P. W. B. Moore (Eds.), Animal sonar processes and performance (pp. 23–45). New York: Plenum Press.

    Google Scholar 

  • Suthers, R. A. (1994). Variable asymmetry and resonance in the avian vocal tract: A structural basis for individually distinct vocalizations. Journal of Comparative Physiology A, 175, 457–466.

    CAS  Google Scholar 

  • Suthers, R. A., & Fattu, J. M. (1973). Mechanisms of sound production by echolocating bats. American Zoology, 13, 1215–1226.

    Google Scholar 

  • Suthers, R. A., & Fattu, J. M. (1982). Selective laryngeal neurotomy and the control of phonation by the echolocating bat, Eptesicus. Journal of Comparative Physiology A, 145, 529–537.

    Google Scholar 

  • Suthers, R. A., & Hector, D. H. (1982). Mechanism for the production of echolocating clicks by the grey swiftlet, Collocalia spodiopygia. Journal of Comparative Physiology A, 148, 457–470.

    Google Scholar 

  • Suthers, R. A., & Hector, D. H. (1985). The physiology of vocalization by the echolocating oilbird, Steatornis caripensis. Journal of Comparative Physiology A, 156, 243–266.

    Google Scholar 

  • Suthers, R. A., & Hector, D. H. (1988). Individual variation in vocal tract resonance may assist oilbirds in recognizing echoes of their own sonar clicks. In P. E. Nachtigall & P. W. B. Moore (eds.), Animal sonar: Processes and performance (pp. 87–91). New York: Plenum Press.

    Google Scholar 

  • Suthers, R. A., Thomas, S. P., & Suthers, B. J. (1972). Respiration, wing-beat and ultrasonic pulse emission in an echolocating bat. Journal of Experimental Biology, 56, 37–48.

    Google Scholar 

  • Suthers, R. A., & Hartley, D. J., & Wenstrup, J. J. (1988). The acoustic role of tracheal chambers and nasal cavities in the production of sonar pulses by the horseshoe bat, Rhinolophus hildebrandti. Journal of Comparative Physiology A, 162, 799–813.

    Google Scholar 

  • Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O’Brian, J., & Murphy, W. J. (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307, 580–584.

    Google Scholar 

  • Thomas, J., Stoermer, M., Bowers, C., Anderson, L., & Garver, A. (1988). Detection abilities and signal characteristics of echolocating false killer whales (Pseudorca crassidens). In P. E. Nachtigall & P. W. B. Moore (Eeds.), Animal sonar processing and performance (pp. 323–328). New York: Plenum Press.

    Google Scholar 

  • Thomas, J., Pawloski, J., & Au, W. W. L. (1990). Masked hearing abilities of a false killer whale (Pseudorca crassidens). In J. Thomas & R. Kastelien, (Eds.) Sensory abilities of ceta-ceans (pp. 395–404). New York: Plenum Press.

    Google Scholar 

  • Thomas, J. A., & Turl, C. W. (1990). Echolocation characteristics and range detection by a false killer whale (Pseudorca crassidens). In J. A. Thomas & R. A. Kastelein (Eds.), Sensory abilities of cetaceans (pp. 321–334). New York: Plenum Press.

    Google Scholar 

  • Thomassen, H. A., Djasim, U. M., & Povel, D. E. (2004). Echoclick design in swiftlets: Single as well as double clicks. Ibis, 146, 173–174.

    Google Scholar 

  • Tian, B., & Schnitzler, H. U. (1997). Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing. Journal of the Acoustical Society of America, 101, 2347–2364.

    CAS  PubMed  Google Scholar 

  • Titze, I. R. (1994). Principles of voice production. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Urick, R. J. (1983). Principles of underwater sound. New York: McGraw–Hill.

    Google Scholar 

  • Vanderelst, D., De May, F., Peremans, H., Geipel, I., Kalko, E., & Firzlaff, U. (2010). What noseleaves do for FM bats depends on their degree of sensorial specialization. PLoS ONE, 5(8), e11893.

    PubMed Central  PubMed  Google Scholar 

  • Vanderelst, D., Reijniers, J., Steckel, J., & Peremans, H. (2011). Information generated by the moving pinnae of Rhinolophus rouxi: Tuning of the morphology at different harmonics. PLoS ONE, 6(6), e20627.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Varanasi, U., & Malin, D. C. (1971). Unique lipids of the porpoise (Tursiops gilli): Differences in triacylglycerols and wax esters of acoustic (mandibular canal and melon) and bubble tissues. Biochemica Biophysica Acta, 231, 415–418.

    Google Scholar 

  • Wadsworth, J., & Moss, C. F. (2000). Vocal control of acoustic information for sonar discriminations by the echolocating bat, Eptesicus fuscus. Journal of the Acoustical Society of America, 107, 2265–2271.

    CAS  PubMed  Google Scholar 

  • Waters, D. A., & Vollrath, C. (2003). Echolocation performance and call structure in the megachiropteran fruit-bat Rousettus aegyptiacus. Acta Chiropterologica, 5, 209–219.

    Google Scholar 

  • Wood, F. G. (1964). Discussion In W. Tavolga (Ed.), Marine Bio-Acoustics Vol II (pp. 321–334). Oxford: Pergamon Press.

    Google Scholar 

  • Wyke, B. D., & Kirchner, J. A. (1976). Neurology of the larynx. In R. Hinchcliffe & D. Harrison (Eds.), Scientific foundations of otolaryngology (pp. 546–574). London: W. Heinemann.

    Google Scholar 

  • Yovel, Y., Melcon, M. L., Franz, M. O., Denzinger, A., & Schnitzler, H-U. (2009). The voice of bats: How greater mouse-eared bats recognize individuals based on their echolocation calls. PLoS Computational Biology, 5, e1000400.

    PubMed Central  PubMed  Google Scholar 

  • Yovel, Y., Falk, B., Moss, C. F., & Ulanovsky, N. (2010). Optimal localization by pointing off axis. Science, 327, 701–704.

    CAS  PubMed  Google Scholar 

  • Yuen, M. M. L., Nachtigall, P. E., Breese, M., & Supin, A. Y. (2005). Behavioral and auditory evoked potential audiograms of a false killer whale Pseudorca crassidens. Journal of the Acoustical Society of America, 118, 2688–2695.

    Google Scholar 

  • Zhuang, Q., & Müller, R. (2006). Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam. Physical Review Letters, 97, 218701.

    Google Scholar 

  • Zhuang, Q., & Müller, R. (2007). Numerical study of the effect of the noseleaf on biosonar beamforming in a horseshoe bat. Physical Review E, 76, 051902.

    Google Scholar 

  • Zimmer, W. M. X., Johnson, M. P., Madsen, P. T., & Tyack, P. L. (2005). Echolocation clicks of free-ranging Cuvier’s beaked whales Ziphius cavirostris. Journal of the Acoustical Society of America, 117, 3919–3927.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Whitlow W. L. Au .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag New York

About this chapter

Cite this chapter

Au, W.W.L., Suthers, R.A. (2014). Production of Biosonar Signals: Structure and Form. In: Surlykke, A., Nachtigall, P., Fay, R., Popper, A. (eds) Biosonar. Springer Handbook of Auditory Research, vol 51. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9146-0_3

Download citation

Publish with us

Policies and ethics