Skip to main content

Sonar Signals of Bats and Toothed Whales

  • Chapter
  • First Online:
Biosonar

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 51))

Abstract

This chapter reviews echolocation signals of bats and toothed whales. It addresses mechanisms of sound production and reception, signal structure, patterns of call production, and the role of echolocation in the diversification of these animals. Echolocating toothed whales and bats operate in a range of situations ranging from open to cluttered habitats. Toothed whales use four general echolocation signal types while bats demonstrate much higher diversity of signals. All toothed whales and most bats prevent outgoing pulses from interfering with echo detection by separating pulse and echo in time (low duty cycle) whereas some bat species avoid this problem by separating pulse and echo in frequency (high duty cycle). While phylogeny plays an important role in shaping elements of signal design, signal type variability within some families suggests that phylogeny does not necessarily constrain signal structure. Convergence of sonar signals across phylogenetic borders for taxa in similar habitats suggests that signal form may have been selected by ecological function. However, convergence across taxa in very different habitats and the high variability in call structure within species suggest much more unexplored complexity in the evolution of biosonar signals. Toothed whales and bats show a continuum of function between echolocation and social signals. Echolocation signals may simultaneously convey information to other animals, or may be specifically adapted to certain communication functions, especially during short-range interactions such as aggressive encounters. Comparative data from laboratory and field studies have demonstrated the flexibility of both bat and toothed whale biosonar.

Elisabeth K.V. Kalko (Author was deceased at the time of publication).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar de Soto N., Johnson, M. P., Madsen, P. T., Díaz, F., Domínguez, I., Tyack, P., & Brito, A. (2008). Deep foraging sprints in short finned pilot whales off Tenerife (Canary Islands). Journal of Animal Ecology, 77, 936–947.

    Google Scholar 

  • Aguilar de Soto, N., Madsen, P. T., Tyack, P., Arranz, P., Marrero, J., Fais, A., Revelli, E., & Johnson, M. (2011). No shallow talk: Cryptic strategy in the vocal communication of Blainville’s beaked whales. Marine Mammal Science, 28 (2), E75–E92.

    Google Scholar 

  • Ahlen, L. (1981). Identification of Scandinavian bats by their sounds. Sveriges Lantbruksuniversitet, Institutionen för Viltekologi, 6, Uppsala.

    Google Scholar 

  • Akre, K. L., Farris, H. E., Lea, A. M., Page, R. A., & Ryan, M. J. (2011). Signal perception in frogs and bats and the evolution of mating signals. Science, 333, 751–752.

    CAS  PubMed  Google Scholar 

  • Aldridge, H. D. N. J., & Rautenbach, I. L. (1987). Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56, 763–778.

    Google Scholar 

  • Aldridge, H. D. J. N., Obrist, M., Merriam, H. G., & Fenton, M. B. (1990). Roosting, vocalizations, and foraging by the African bat, Nycteris thebaica. Journal of Mammalogy, 71, 242–246.

    Google Scholar 

  • Amundin, M. (1991). Sound production in odontocetes with emphasis on the harbor porpoise, (Phocoena phocoena). PhD dissertation, University of Stockholm.

    Google Scholar 

  • Aroyan J. L. (2001). Three-dimensional modeling of hearing in Delphinus delphis. Journal of the Acoustical Society of America, 110, 3305–3318.

    CAS  PubMed  Google Scholar 

  • Aroyan, J. L., McDonald, M. A., Webb, S. C., Hildebrand, J. A., Clark, D., Laitman, J. T., & Reidenberg, J. S. (2000). Acoustic models of sound production and propagation. In R. R. Fay & A. N. Popper (Eds.), Hearing by whales and dolphins (pp. 409–469). New York: Springer-Verlag.

    Google Scholar 

  • Arranz, P., Aguilar de Soto, N., Madsen, P. T., Brito, A., Bordes, F., & Johnson, M. P. (2011). Following a foraging fish-finder: Diel habitat use of Blainville’s beaked whales revealed by echolocation. PLoS ONE 6(12): e28353.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atem, A. C. G., Rasmussen, M. H., Wahlberg, M., Petersen, H. C., & Miller, L. A. (2009). Changes in click Source Levels with distance to targets: Studies of free-ranging white-beaked dolphins Lagenorhynchus albirostris and captive harbour porpoises Phocoena phocoena. Bioacoustics, 19, 49–65.

    Google Scholar 

  • Au, W. W. L. (1992). Application of the reverberation-limited form of the sonar equation to dolphin echolocation. Journal of the Acoustical Society of America 92, 1822–1826.

    CAS  PubMed  Google Scholar 

  • Au, W. W. L. (1993). The sonar of dolphins. New York: Springer-Verlag.

    Google Scholar 

  • Au, W. W. L. (2004). Echolocation signals of wild dolphins. Acoustical Physics, 50, 454–462.

    Google Scholar 

  • Au, W. W. L., & Turl, C. W. (1983). Target detection in reverberation by an echolocating Atlantic bottlenose dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 73, 1676–1681.

    CAS  PubMed  Google Scholar 

  • Au, W. W. L., & Moore, P. W. B. (1984). Receiving beam patterns and directivity indices of the Atlantic bottlenose dolphin. Journal of the Acoustical Society of America, 75, 255–262.

    CAS  PubMed  Google Scholar 

  • Au, W. W. L., & Benoit-Bird, K. J. (2003). Automatic gain control in the echolocation system of dolphins. Nature, 423, 861–863.

    CAS  PubMed  Google Scholar 

  • Au, W. W. L., Floyd, R. W., Penner, R. H., & Murchison, A. E. (1974). Measurement of echolocation signals of the Atlantic bottlenose dolphin, Tursiops truncatus Montagu, in open waters. Journal of the Acoustical Society of America, 56, 1280–1290.

    CAS  PubMed  Google Scholar 

  • Au, W. W. L., Moore, P. W. B., & Pawloski, D. (1986). Echolocation transmitting beam of the Atlantic bottlenose dolphin. Journal of the Acoustical Society of America, 80, 688–694.

    CAS  PubMed  Google Scholar 

  • Au, W. W. L., Pawloski, D., Nachtigall, P. E., Blonz, M., & Gisner, R. G. (1995). Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens). Journal of the Acoustical Society of America, 98, 51–59.

    CAS  PubMed  Google Scholar 

  • Au, W. W. L., Kastelein, R. A., Ripper, T., & Schooneman, N. M. (1999). Transmission beam pattern and echolocation signals of a harbor porpoise (Phocoena phocoena). Journal of the Acoustical Society of America, 106, 3699–3705.

    CAS  PubMed  Google Scholar 

  • Au, W. W. L., Ford, J. K. B., Horne, J. K., & Allman, K. A. N. (2004). Echolocation signals of free-ranging killer whales (Orcinus orca) and modeling of foraging Chinook salmon (Oncorhynchus tshawytscha). Journal of the Acoustical Society of America, 115, 901–909.

    PubMed  Google Scholar 

  • Aytekin, M., Mao, B., & Moss, C. F. (2011). Spatial perception and adaptive sonar behavior. Journal of the Acoustical Society of America, 128, 3788–3798.

    Google Scholar 

  • Barber, J. R., & Conner, W. E. (2007). Acoustic mimicry in a predator-prey interaction. Proceedings of the National Academy of Sciences of the USA, 104, 9331–9334.

    Google Scholar 

  • Barclay, R. M. R. (1982). Interindividual use of echolocation calls: Eavesdropping by bats. Behavioral Ecology and Sociobiology, 10, 271–275.

    Google Scholar 

  • Barrett-Lennard, L. G., Ford, J. K. B., & Heise, K. A. (1996). The mixed blessing of echolocation: Differences in sonar use by fish-eating and mammal-eating killer whales. Animal Behaviour, 51, 553–565.

    Google Scholar 

  • Bates, M. E., & Simmons, J. A. (2011). Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar. Journal of Experimental Biology, 214, 394–401.

    PubMed Central  PubMed  Google Scholar 

  • Bates, M. E., Simmons, J. A., & Zorikov, T. V. (2011). Bats use harmonic structure to distinguish their targets from background clutter. Science, 333, 627–630.

    CAS  PubMed  Google Scholar 

  • Bayefsky-Anand, S., Skowronski, M. D., Fenton, M. B., Korine, C., & Holderied, M. W. (2008). Variations in the echolocation calls of the European-free-tailed bat (Tadarida teniotis, Molossidae). Journal of Zoology, 275, 115–123.

    Google Scholar 

  • Beedholm, K., Miller, L.A., & Blanchet M.A. (2006). Auditory brainstem response in a harbor porpoise show lack of automatic gaine control for simulated Echoes. Journal of the Acoustical Society of America, 119(3):EL41–EL46.

    Google Scholar 

  • Beedholm, K., & Miller, L. (2007). Automatic gain control in harbor porpoises (Phocoena phocoena)? Central versus peripheral mechanisms. Aquatic Mammals, 33, 69–75.

    Google Scholar 

  • Brill, L. R., & Harder, P. J. (1991). The effects of attenuating returning echolocation signals at the lower jaw of a dolphin (Tursiops truncatus). Journal of the Acoustical Society of America, 89, 2851–2857.

    Google Scholar 

  • Brinkløv, S., Kalko, E. K. V., & Surlykke, A. (2009). Intense echolocation calls from two ‘whispering’ bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae). Journal of Experimental Biology, 212, 11–20.

    Google Scholar 

  • Brinkløv, S., Kalko, E. K. V., & Surlykke, A. (2010). Dynamic adjustment of biosonar intensity to habitat clutter in the bat Macrophyllum macrophyllum (Phyllostomidae). Behavioral Ecology and Sociobiology, 64, 1867–1871.

    Google Scholar 

  • Brinkløv, S., Jakobsen, L., Ratcliffe, J. M., Kalko, E. K. V., & Surlykke, A. (2011). Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae). Journal of the Acoustical Society of America, 129, 427–435.

    PubMed  Google Scholar 

  • Buchler, E. R., & Mitz, A. R. (1980). Similarities in design features of orientation sounds used by simpler, nonaquatic echolocators. In R-G. Busnel & J. F. Fish (Eds.), Animal sonar systems (pp. 871–874). New York: Plenum Press.

    Google Scholar 

  • Bullock, T. H., Grinnell, A. D., Ikezono, E., Kameda, K., Katsuki, Y., Nomoto, M., Sato, O., Suga, N., & Yanagisawa, K. (1968). Electrophysiological studies of central auditory mechanisms in cetaceans. Zeitschrift für vergleichende Physiologie, 59, 117–156.

    Google Scholar 

  • Carrier, D. R., Debahn, S. M., & Otterstrom, J. (2002). The face that sunk the Essex: Potential function of the spermaceti organ in aggression. Journal of Experimental Biology, 205, 1755–1763.

    PubMed  Google Scholar 

  • Carter, G. G., Ratcliffe, J. M., & Galef, B. G. (2010). Flower bats (Glossphaga soricina) and fruit bats (Carollia perspicillata) rely on spatial cues over shapes and scents when relocating food. PLoS ONE, 5(5), e10808.

    PubMed Central  PubMed  Google Scholar 

  • Chiu, C., Reddy, P. V., Xian, W., Krishnaprasad, P. S., & Moss, C. F. (2010). Effects of competitive prey capture on flight behaviour and sonar beam pattern in paired big brown bats, Eptesicus fuscus. Journal of Experimental Biology, 213, 3348–3356.

    PubMed Central  PubMed  Google Scholar 

  • Clarke, M. R. (1978). Buoyancy control as a function of the spermaceti organ in the sperm whale. Journal of the Marine Biological Association, UK, 58, 27–71.

    Google Scholar 

  • Clausen K. T., Wahlberg M., Beedholm K., Deruiter S., & Madsen P. T. (2010). Click communication in harbor porpoises Phocoena phocoena. Bioacoustics, 20, 1–28.

    Google Scholar 

  • Corcoran, A. J., Barber, J. R., & Connor, W. E. (2009). Tiger moth jams bat sonar. Science, 325, 325–327.

    CAS  PubMed  Google Scholar 

  • Cranford, T. W. (2000). In search of impulse sound sources in odontocetes. In W. W. L. Au, A. N. Popper, & R. R. Fay (Eds.), Hearing by whales and dolphins (pp. 109–155). New York: Springer-Verlag.

    Google Scholar 

  • Cranford, T. W., Amundin, M., & Norris, K. S. (1996). Functional morphology and homology in the odontocete nasal complex: Implications for sound generation. Journal of Morphology, 228, 223–285.

    CAS  PubMed  Google Scholar 

  • Cranford, T. W., Elsberry, W. R., Van Bonn, W. G., Jeffress, J. A., Chaplin, M. S., Blackwood, D. J., Carder, D. A., Kamolnick T., Todd, M. A., & Ridgway, S. H. (2011). Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncatus): Evidence for two sonar sources. Journal of Experimental Marine Biology and Ecology, 407, 81–96.

    Google Scholar 

  • Dawson, S. M. (1991). Clicks and communication—the behavioural and social contexts of Hector’s dolphin vocalisations. Ethology, 88, 265–276.

    Google Scholar 

  • Dawson S., Barlow J., & Ljungblad D. (1998). Sounds recorded from Baird’s beaked whale, Berardius bairdii. Marine Mammal Science, 14, 335–344.

    Google Scholar 

  • Dechmann, D. K. N., Heucke, S. L., Giuggioli, L., Safi, K., Voight, C. C., & Wikelski, M. (2009). Experimental evidence for group hunting via eavesdropping in echolocating bats. Proceedings of the Royal Society of London B: Biological Sciences, 276, 2721–2728.

    Google Scholar 

  • Dechmann, D. K. N., Kranstauber, B., Gibbs, D., & Wikelski M. (2010). Group hunting – a reason for sociality in molossid bats? PloS ONE, 5(2), e9012.

    PubMed Central  PubMed  Google Scholar 

  • Deecke, V. B., Slater, P. J. B., & Ford, J. K. B. (2002). Selective habituation shapes acoustic-predator recognition in harbour seals. Nature, 420, 171–173.

    CAS  PubMed  Google Scholar 

  • Deecke, V. B., Ford, J. K. B., & Slater, P. J. B. (2005). The vocal behavior of mammal-eating killer whales: Communicating with costly calls. Animal Behaviour, 69, 395–405.

    Google Scholar 

  • Denny, M. (2007). Blip, ping and buzz: Making sense of radar and sonar. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Denzinger, A., Siemers, B. M., Schaub, A., & Schnitzler, H-U. (2001). Echolocation by the barbastelle bat Barbastella barbastellus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 187, 521–528.

    Google Scholar 

  • DeRuiter, S. L., Bahr, A., Blanchet, M.–A., Hansen, S. F., Kristensen, J. H., Madsen, P. T., Tyack, P. L., & Wahlberg, M. (2009). Acoustic behaviour of echolocating porpoises during prey capture. Journal of Experimental Biology, 212, 3100–3107.

    Google Scholar 

  • Elemans, C. P. H., Mead, A. F., Jakobsen, L., & Ratcliffe, J. M. (2011). Superfast muscles set maximum call rate in echolocating bats. Science, 333, 1885–1888.

    CAS  PubMed  Google Scholar 

  • Fahlke, J. M., Gingerich, P. D., Welsh, R. C., & Wood A. R. (2011). Cranial asymmetry in Eocene archaeocete whales and the evolution of directional hearing in water. Proceedings of the National Academy of Sciences of the USA, 108, 14545–14548.

    Google Scholar 

  • Fenton, M. B. (2010). Convergences in the diversification of bats. Current Zoology, 56, 454–468.

    Google Scholar 

  • Fenton, M. B., & Bell, G. P. (1981). Recognition of species of insectivorous bats by their echolocation calls. Journal of Mammalogy, 62, 233–243.

    Google Scholar 

  • Fenton, M. B., Skowronski, M. D., McGuire, L. P., & Faure, P. A. (2011). Variation in the use of harmonics in the calls of laryngeally echolocating bats. Acta Chiropterologica., 13, 169–178.

    Google Scholar 

  • Fenton, M. B., Faure, P. A., & Ratcliffe, J. M. (2012). Evolution of high duty cycle echolocation in bats. Journal of Experimental Biology, 215, 2935–2944.

    PubMed  Google Scholar 

  • Fiedler, J. (1979). Prey catching with and without echolocation in the Indian vampire (Megaderma lyra). Behavioral Ecology and Sociobiology, 6, 155–160.

    Google Scholar 

  • Fullard, J. H. (1987). Sensory ecology and neuroethology of moths and bats: Interactions in a global perspective. In M. B. Fenton, P. A. Racey, & J. M. V. Rayner (Eds.), Recent advances in the study of bats (pp. 244–273). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Gannon, D. P., Barros, N. B., Nowacek, D. P., Read, A. J., Waples, D. M., & Wells, R. S. (2005). Prey detection by bottlenose dolphins, Tursiops truncatus: An experimental test of the passive listening hypothesis. Animal Behaviour, 69, 709–720.

    Google Scholar 

  • Gaudet, C. L., & Fenton, M. B. (1984). Observational learning in three species of insectivorous bats (Chiroptera). Animal Behaviour, 32, 385–388.

    Google Scholar 

  • Gillam, E. H., & McCracken, G. F. (2007). Variability in the echolocation of Tadarida brasiliensis: Effects of geography and local acoustic environment. Animal Behaviour, 74, 277–286.

    Google Scholar 

  • Gillam, E. H., Ulanovsky, N., & McCracken, G. F. (2007). Rapid jamming avoidance in biosonar. Proceedings of the Royal Society of London B: Biological Sciences, 274, 651–660.

    Google Scholar 

  • Gillam, E. H., Hristov, N. I., Kunz, T. H., & McCracken, G. F. (2010). Echolocation behavior of Brazilian free-tailed bats during dense emergence flights. Journal of Mammalogy, 91, 967–975.

    Google Scholar 

  • Goertlitz, H. R., ter Hofstede, H. M., Zeale, M. R. K., Jones, G., & Holderied, M. W. (2010). An aerial hawking bat uses stealth echolocation to counter moth hearing. Current Biology, 20, 1568–1572.

    Google Scholar 

  • Gordon, J. C. D. (1991). Evaluation of a method for determining the length of sperm whales Physeter catodon from their vocalizations. Journal of Zoology, London, 224, 301–314.

    Google Scholar 

  • Gracheva, E. O., Cordero-Morales, J. F., Gonzalez-Carcacia, J. A., Ingolia, N. T., Manno, C., Arangueren, C. I., Weissman, J. S., & Julius, D. (2011). Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature, 476, 88–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grief, S., & Siemers, B. M. (2010). Innate recognition of water bodies in echolocating bats. Nature Communications, 1, 107.

    Google Scholar 

  • Griffin, D. R. (1958). Listening in the dark. New Haven, CT: Yale University Press.

    Google Scholar 

  • Griffin, D. R., & Thompson, D. (1982). Echolocation by cave swiftlets. Behavioral Ecology and Sociobiology, 10, 119–123.

    Google Scholar 

  • Griffin, D. R., Webster, F. A., & Michael, C. R. (1960). The echolocation of flying insects by bats. Animal Behaviour, 8, 141–154.

    Google Scholar 

  • Groger, U., & Wiegrebe, L. (2006). Classification of human breathing sounds by the common vampire bat, Desmodus rotundus. BMC Biology, 4,18.

    Google Scholar 

  • Hartley, D. J. (1992). Stabilization of perceived echo amplitudes in echolocating bats. I. Echo detection and automatic gain-control in the big brown bat, Eptesicus fuscus, and the fishing bat, Noctilio leporinus. Journal of the Acoustical Society of America, 91, 1120–1132.

    Google Scholar 

  • Hartley, D. J., & Suthers, R. A. (1987). The sound emission pattern and the acoustical role of the noseleaf in the echolocating bat, Carollia perspicillata. Journal of the Acoustical Society of America, 82, 1987–1900.

    Google Scholar 

  • Hemilä, S., Nummela, S., & Reuter, T. (2010). Anatomy and physics of the exceptional sensitivity of dolphin hearing (Odontoceti: Cetacea). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 196, 165–179.

    PubMed  Google Scholar 

  • Henson, O. W. (1965). Activity and function of middle-ear muscles in echolocating bats. Journal of Physiology, London, 180, 871–887.

    Google Scholar 

  • Hiryu, S., Hagino, T., Riquimaroux, H., & Watanabe, Y. (2007). Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone. Journal of the Acoustical Society of America, 121, 1749–1757.

    PubMed  Google Scholar 

  • Hiryu, S., Bates, M. E., Simmons, J. A., & Riquimaroux, H. (2010). FM broadcasting bats shift frequencies to avoid broadcast-echo ambiguity in clutter. Proceedings of the National Academy of Sciences of the USA, 107 (15), 7048–7053.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoelzel, A. R., & Osborne, R. W. (1986). Killer whale call characteristics: Implications for cooperative foraging strategies. In B. C. Kirkevold & J. S. Lockard (Eds.), Behavioral biology of killer whales (pp. 373–403). New York: Alan R. Liss.

    Google Scholar 

  • Holderied, M. W., Korin, C., Fenton, M. B., Parsons, S., Robinson, S., & Jones, G. (2005). Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry. Journal of Experimental Biology, 208, 1321–1327.

    PubMed  Google Scholar 

  • Holderied, M., Korin, C., & Moritz, T. (2011). Hemprich’s long-eared bat (Otonycteris hemprichii) as a predator of scorpions: whispering echolocation, passive gleaning and prey selection. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 425–433.

    PubMed  Google Scholar 

  • Holland, R. A., Waters, D. A., & Rayner, J. M. V. (2004). Echolocation signal structure in the megachiropteran bat Rousettus aegypticaus Geoffroy 1810. Journal of Experimental Biology, 207, 4261–4369.

    Google Scholar 

  • Hooker, S. K., & Whitehead, H. (2002). Click characteristics of northern bottlenose whales (Hyperoodon ampullatus). Marine Mammal Science, 18, 69–80.

    Google Scholar 

  • Hooper, J. D. H. (1964). Bats and the amateur naturalist. Studies in Speleology, 1, 9–15.

    Google Scholar 

  • Huggenberger, S., Rauschmann, M. A., Vogl, T. J., & Oelschläger H. H.A. (2009). Functional morphology of the nasal complex in the harbor porpoise (Phocoena phocoena L.). Anatomical Record, 292, 902–920.

    Google Scholar 

  • Jakobsen L., & Surlykke A. (2010). Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit. Proceedings of the National Academy of Sciences of the USA, 107, 13930–13935.

    Google Scholar 

  • Janik, V. M., & Slater, P. J. B. (1997). Vocal learning in mammals. Advances in the Study of Behaviour, 26, 59–99.

    Google Scholar 

  • Jaquet, N., Dawson, S., & Douglas, L. (2001). Vocal behavior of male sperm whales: Why do they click? Journal of the Acoustical Society of America, 109, 2254–2259.

    CAS  PubMed  Google Scholar 

  • Jensen, F. H., Bejder, L., Wahlberg, M., & Madsen, P. T. (2009). Biosonar adjustments to target range of echolocating bottlenose dolphins (Tursiops sp.) in the wild. Journal of Experimental Biology, 212, 1078–1086.

    Google Scholar 

  • Jensen, F. H., Rocco, A., Mansur, R.M., Smith, B.D., Janik, V.M., & Madsen, P.T. (2013). Clicking in shallow rivers: Short-range echolocation of Irrawaddy and Ganges river dolphins in a shallow, acoustically complex habitat. PLoS ONE, 8(4):e59284.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson, M., & Tyack, P. L. (2003). A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE Journal of Oceanic Engineering, 28, 3–12.

    Google Scholar 

  • Johnson, M., Madsen, P. T., Zimmer, W. M. X., Aguilar de Soto, N., & Tyack, P. L. (2004). Beaked whales echolocate on prey. Proceedings of the Royal Society of London B: Biological Sciences, 271, S383–S386.

    Google Scholar 

  • Johnson, M., Madsen, P. T., Zimmer, W. M. X., Aguilar de Soto, N., & Tyack, P. L. (2006). Foraging Blainville’s beaked whales (Mesoplodon densirostris) produce distinct click types matched to different phases of echolocation. Journal of Experimental Biology, 209, 5038–5050.

    CAS  PubMed  Google Scholar 

  • Johnson, M. P., Aguilar de Soto, N., & Madsen, P. T. (2009). Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: A review. Marine Ecology Progress Series, 395, 55–73.

    Google Scholar 

  • Jones, B. A., Stanton, T. K., Lavery, A. C., Johnson, M. P., Madsen, P. T., & Tyack, P. L. (2008). Classification of broadband echoes from prey of a foraging Blainville’s beaked whale. Journal of the Acoustical Society of America, 123, 1753–1762.

    PubMed  Google Scholar 

  • Jones, G., & Siemers, B. (2011). The communication potential of bat echolocation pulses. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 447–457.

    PubMed  Google Scholar 

  • Jung, K., Kalko, E. K. V., & von Helversen, O. (2007). Echolocation calls in Central American emballonurid bats: Signal design and call frequency alternation. Journal of Zoology, 272(2), 125–137.

    Google Scholar 

  • Kalko, E. K. V. (1995). Insect pursuit, prey capture and echolocation in Pipistrelle bats (Microchiroptera). Animal Behaviour, 50, 861–880.

    Google Scholar 

  • Kalko, E. K. V., & Schnitzler, H.-U. (1993). Plasticity in echolocation signals of European pipistrelle bats in search flight: Implications for habitat use and prey detection. Behavioral Ecology and Sociobiology, 33, 415–428.

    Google Scholar 

  • Kalko, E. K. V., & Condon, M. (1998). Echolocation, olfaction, and fruit display: How bats find fruit of flagellichorous cucurbits. Functional Ecology, 12, 364–372.

    Google Scholar 

  • Kalko, E. K. V., Schnitzler, H.-U., Kaipf, I., & Grinnell, A. D. (1998). Echolocation and foraging behavior of the lesser bulldog bat, Noctilio albiventris: Preadaptations for piscivory? Behavioral Ecology and Sociobiology, 42, 305–319.

    Google Scholar 

  • Ketten, D. R. (2000). Cetacean ears. In W. W. L. Au, A. N. Popper, & R. R. Fay (Eds.), Hearing by whales and dolphins (pp. 43–108), New York: Springer-Verlag.

    Google Scholar 

  • Kick, S. A. (1982). Target-detection by the echolocating bat, Eptesicus fuscus. Journal of comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 145, 431–435.

    Google Scholar 

  • Kick, S. A., & Simmons, J. A. (1984). Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. Journal of Neuroscience, 4, 2725–2737.

    Google Scholar 

  • Kingston, T., & Rossiter, S. J. (2004). Harmonic hopping in Wallacea’s bats. Nature, 429, 654–657.

    CAS  PubMed  Google Scholar 

  • Kingston, T., Jones, G., Akbar, Z., & Kunz, T. H. (2003). Alternation of echolocation calls in five species of aerial-feeding insectivorous bats from Malaysia. Journal of Mammalogy, 84, 205–215.

    Google Scholar 

  • Kobler, J. B., Wilson, B. S., Henson, O. W., & Bishop, A. L. (1985). Echo intensity compensation by echolocating bats. Hearing Research, 20, 99–108.

    CAS  PubMed  Google Scholar 

  • Konishi, M., & Knudsen, E. I. (1979). The oilbird: hearing and echolocation. Science, 204, 425–427.

    CAS  PubMed  Google Scholar 

  • Krützen, M., Mann, J., Heithaus, M. R., Connor, R. C., Bejder, L., & Sherwin, W. B. (2005). Cultural transmission of tool use in bottlenose dolphins. Proceedings of the National Academy of Sciences of the USA, 102, 8939–8943.

    Google Scholar 

  • Kyhn, L. A., Tougaard, J., Jensen, F., Wahlberg, M., Stone, G., Yoshinaga, A., Beedholm, K., & Madsen, P. T. (2009). Feeding at a high pitch: Source parameters of narrow band, high frequency clicks from echolocating off-shore hourglass dolphins and coastal Hector’s dolphins. Journal of the Acoustical Society of America, 125, 1783–1791.

    PubMed  Google Scholar 

  • Kyhn, L. A., Jensen, F. H., Beedholm, K., Tougaard, J., Hansen M., & Madsen, P. T. (2010). Echolocation in sympatric Peale’s dolphins (Lagenorhynchus australis) and Commerson’s dolphins (Cephalorhynchus commersonii) producing narrow-band high-frequency clicks. Journal of Experimental Biology, 213, 1940–1949.

    CAS  PubMed  Google Scholar 

  • Lawrence, B. D., & Simmons, J. A. (1982). Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. Journal of the Acoustical Society of America, 71, 585–590.

    CAS  PubMed  Google Scholar 

  • Lazure, L., & Fenton, M. B. (2011). High duty cycle echolocation and prey detection by bats. Journal of Experimental Biology, 214, 1131–1137.

    PubMed  Google Scholar 

  • Lemonds, D. W., Kloepper, L. N., Nachtigall, P. E., Au, W. W. L, Vlachos, S. A., & Branstetter, B. K. (2011). A re-evaluation of auditory filter shape in delphinid odontocetes: Evidence of constant-bandwidth filters. Journal of the Acoustical Society of America, 130, 3107–3114

    CAS  PubMed  Google Scholar 

  • Linnenschmidt, M., Beedholm, K., Wahlberg, M., Højer-Kristensen, J., & Nachtigall, P. E. (2012). Keeping returns optimal: Gain control exerted through sensitivity adjustments in the harbour porpoise auditory system. Proceedings of the Royal Society of London B: Biological Sciences, 279, 2237–2245.

    Google Scholar 

  • Liu, Y., Rossiter, S. J., Han, X., Cotton, J. A., & Zhang, S. (2010). Cetaceans on a molecular fast track to ultrasonic hearing. Current Biology, 20, 1834–1839.

    CAS  PubMed  Google Scholar 

  • Ma, J., & Műller, R. (2011). A method for characterizing the biodiversity in bat pinnae as a basis for engineering analysis. Bioinspiration and Biomimetics, 6, 1–12.

    Google Scholar 

  • Madsen, P. T., Payne, R., Kristiansen, N. U., Wahlberg, M., Kerr, I., & Møhl, B. (2002). Sperm whale sound production studied with ultrasound time/depth-recording tags. Journal of Experimental Biology, 205, 1899–1906.

    CAS  PubMed  Google Scholar 

  • Madsen, P. T., Carder, D. A., Au, W. W. L., Nachtigall, P. E., Møhl, B., & Ridgway, S. H. (2003). Sound production in neonate sperm whales. Journal of the Acoustical Society of America, 113, 2988–2991.

    CAS  PubMed  Google Scholar 

  • Madsen, P. T., Kerr, I., & Payne, R. (2004). Echolocation clicks of two free-ranging, oceanic delphinids with different food preferences: False killer whales Pseudorca crassidens and Risso’s dolphins Grampus griseus. Journal of Experimental Biology, 207, 1811–1823.

    CAS  PubMed  Google Scholar 

  • Madsen, P. T., Johnson, M., Aguilar de Soto, N., Zimmer, W. M. X., & Tyack, P. (2005a). Biosonar performance of foraging beaked whales (Mesoplodon densirostris). Journal of Experimental Biology, 280, 181–194.

    Google Scholar 

  • Madsen, P. T., Carder, D. A., Beedholm, K., & Ridgway, S. (2005b). Porpoise clicks from a sperm whale nose: Convergent evolution of toothed whale echolocation clicks? Bioacoustics, 15, 195–206.

    Google Scholar 

  • Madsen, P. T., Wilson, M., Johnson, M., Hanlon, R. T., Bocconcelli, A., Aguilar de Soto, N., & Tyack, P. L. (2007). Clicking for calamari: Toothed whales can echolocate squid Loligo pealeii. Aquatic Biology, 1, 141–150.

    Google Scholar 

  • Madsen, P. T., Wisniewska, D. M., & Beedholm, K. (2010). Single source sound production and dynamic beam formation in echolocating harbour porpoises (Phocoena phocoena). Journal of Experimental Biology, 213, 3105–3110.

    CAS  PubMed  Google Scholar 

  • Madsen, P. T., Jensen, F. H., Carder, D., & Ridgway, S. (2011). Dolphin whistles: A functional misnomer revealed by heliox breathing. Biology Letters, 8 (2), 211–213.

    PubMed Central  PubMed  Google Scholar 

  • Marques, T. A., Thomas, L., Ward, J., DiMarzio, N., & Tyack, P. L. (2009). Estimating cetacean population density using fixed passive acoustic sensors: An example with Blainville’s beaked whales. Journal of the Acoustical Society of America, 125, 1982–1994.

    PubMed  Google Scholar 

  • McGowen, M. R., Spaulding, M., & Gatesy, J. (2009). Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Molecular Phylogenetics and Evolution, 53, 891–906.

    CAS  PubMed  Google Scholar 

  • Melcon, M. L., Failla, M., & Iniguez, M. A. (2012). Echolocation behavior of franciscana dolphins (Pontoporia blainvillei) in the wild. Journal of the Acoustical Society of America, 131, EL448–EL453.

    PubMed  Google Scholar 

  • Meredith, R. W., Janecka, J. E., Gatesy, J., Ryder, O. A., Fisher, C. A., Teeling, E. C., Goodbla, A., Eizirik, E., Siamo, T. L. L., Stadler, T., Rabosky, D. L., Honeycutt, R. L., Flynn, J. J., Ingram, C. M., Steiner, C., Williams, T. L., Robinson, T. J., Burk-Herrick, A., Westerman, M., Ayoub, N. A., Springer, M. S., & Murphy, W. J. (2011). Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science, 334, 521–524.

    CAS  PubMed  Google Scholar 

  • Miller, P. J. O., Johnson, M. P., & Tyack, P. L. (2004). Sperm whale behaviour indicates the use of rapid echolocation click buzzes ‘creaks’ in prey capture. Proceedings of the Royal Society of London B: Biological Sciences, 271, 2239–2247.

    Google Scholar 

  • Møhl, B., Wahlberg, M., Madsen, P. T., Heerfordt, A., & Lund, A. (2000). Sperm whale clicks: Directionality and source level revisited. Journal of the Acoustical Society of America, 107, 638–648.

    PubMed  Google Scholar 

  • Møhl, B., Wahlberg, M., & Heerfordt, A. (2001). A large-aperture array of nonlinked receivers for acoustic positioning of biological sound sources. Journal of the Acoustical Society of America, 109, 434–437.

    PubMed  Google Scholar 

  • Møhl, B., Wahlberg, M, Madsen, P. T., Heerfordt, A., & Lund, A. (2003). The monopulsed nature of sperm whale clicks. Journal of the Acoustical Society of America, 114, 1143–1154.

    PubMed  Google Scholar 

  • Möhres, F. P. (1966). Communicative characters of sonar signals in bats. In R.-G. Busnel (Ed.), Animal sonar systems: Biology and bionics, Vol. 2. Jouy-en-Josas, France: Laboratoire de Physiologie Acoustique.

    Google Scholar 

  • Mora, E. C., & Macias, S. (2007). Echolocation calls of Poey’s flower bat (Phyllonycteris poeyi) unlike those of other phyllostomids. Naturwissenschaften, 94, 380–383.

    CAS  PubMed  Google Scholar 

  • Mora, E. C., Ibanez, C., Macias, S., Juste, J., Lopez, I., & Torres, L. (2011). Plasticity in the echolocation inventory of Mormopterus minutus (Chiroptera, Molossidae). Acta Chiropterologica., 13, 179–187.

    Google Scholar 

  • Morisaka, T., & Connor, R. C. (2007). Predation by killer whales (Orcinus orca) and the evolution of whistle loss and narrow-band high frequency clicks in odontocetes. Journal of Evolutionary Biology, 20, 1439–1458.

    CAS  PubMed  Google Scholar 

  • Moss, C. F., Bohn, K., Gilkenson, H., & Surlykke, A. (2006). Active listening for spatial orientation in a complex auditory scene. PLOS Biology, 4(4), 615–626.

    CAS  Google Scholar 

  • Moss, C. F., Chiu, C., & Surlykke, A. (2011). Adaptive vocal behavior drives perception by echolocation in bats. Current Opinion in Neurobiology, 21, 1–8.

    Google Scholar 

  • Műller, R. (2004). A numerical study of the role of the tragus in the big brown bat. Journal of the Acoustical Society of America, 116, 3701–3712.

    PubMed  Google Scholar 

  • Műller, R., Lu, H., Zhang, S., & Peremans, H. (2006). A helical biosonar scanning pattern in the Chinese noctule, Nyctalus plancyi. Journal of the Acoustical Society of America, 119, 3083–3092.

    Google Scholar 

  • Nachtigall, P. E., & Supin, A. Y. (2008). A false killer whale adjusts its hearing when it echolocates. Journal of Experimental Biology, 211, 1714–1718.

    PubMed  Google Scholar 

  • Nakamura, K., Akamatsu, T., & Shimazaki, K. (1998). Threat clicks of captive harbor porpoises, Phocoena phocoena. Bulletin of the Faculty of Fisheries Hokkaido University, 49, 91–105.

    Google Scholar 

  • Neuweiler, G., Bruns, V., & Schuller, G. (1980). Ears adapted for the detection of motion, or how echolocating bats have exploited the capacities of the mammalian auditory system. Journal of the Acoustical Society of America, 68, 741–753.

    Google Scholar 

  • Norris, K. S. (1968). The evolution of acoustic mechanisms in odontocete cetaceans. In E. T. Drake (Ed.), Evolution and environment (pp. 297–324). New Haven, CT: Yale University Press.

    Google Scholar 

  • Norris, K. S., Prescott, J. H., Asa-Dorian, P. V., & Perkins, P. (1961). An experimental demonstration of echo-location behavior in the porpoise, Tursiops truncatus (Montagu). Biological Bulletin, 120, 163–176.

    Google Scholar 

  • Nummela, S., Thewissen, J. G. M., Bajpal, S., Hussain, S. T., & Kumar, K. (2004). Eocene evolution of whale hearing. Nature, 430, 776–778.

    CAS  PubMed  Google Scholar 

  • Obrist, M. K., Fenton, M. B., Eger, J. L., & Schlegel, P. A. (1993). What ears do for bats: A comparative study of pinna sound pressure transformation in Chiroptera. Journal of Experimental Biology, 180, 119–152.

    CAS  PubMed  Google Scholar 

  • Page, R. A., & Ryan, M. J. (2006). Social transmission of novel foraging behavior in bats: Frog calls and their referents. Current Biology, 16, 1201–1205.

    CAS  PubMed  Google Scholar 

  • Pedersen, S. C. (1998). Morphometric analysis of the chiropteran skull with regard to mode of echolocation. Journal of Mammalogy, 79, 91–103.

    Google Scholar 

  • Podlutsky, A. J., Khritankov, A. M., Ovodov, N. D., & Austad, S. N. (2005). A new field record for bat longevity. Journal of Gerontology, 60, 1366–1368.

    Google Scholar 

  • Popov, V. V., Supin, & Ya, A. (1990). Localization of the acoustic window at the dolphin’s head. In J. A. Thomas & R. A. Kastelein (Eds.), Sensory abilities of cetaceans: Laboratory and field evidence (pp. 417–426). New York: Plenum Press.

    Google Scholar 

  • Popov, V. V., Supin, & Ya, A., Wang, D., & Wang, K. (2006). Nonconstant quality of auditory filters in the porpoises, Phocoena phocoena and Neophocaena phocaenoides (Cetacea, Phocoenidae). Journal of the Acoustical Society of America, 119, 3173–3180.

    Google Scholar 

  • Popper, A. N., Plachta, D. T. T., Mann, D. A., & Higgs, D. (2004). Response of clupeid fish to ultrasound: A review. Journal of Marine Science, 61, 1057–1061.

    Google Scholar 

  • Ratcliffe, J. M., & Nydam, M. L. (2008). Multimodal warning signals for a multiple predator world. Nature, 455, 96–99.

    CAS  PubMed  Google Scholar 

  • Ratcliffe, J. M., Raghuram, H., Marimuthu, G., Fullard, J. H., & Fenton, M. B. (2005). Hunting in unfamiliar space: Echolocation in the Indian false vampire bat, Megaderma lyra, when gleaning prey. Behavioral Ecology and Sociobiology, 58, 157–164.

    Google Scholar 

  • Ratcliffe, J. M., Jakobssen, L., Kalko, E. K. V., & Surlykke, A. (2011). Frequency alternation and an offbeat rhythm indicate foraging behavior in the echolocating bat, Saccopteryx bilineata. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(5), 413–423.

    Google Scholar 

  • Rhinelander, M. Q., & Dawson, S. M. (2004). Measuring sperm whales from their clicks: Stability of interpulse intervals and validation that they indicate whale length. Journal of the Acoustical Society of America, 115, 1826–1831.

    PubMed  Google Scholar 

  • Ridgway, S. H., & Carder, D. A. (1988). Nasal sound production and pressure in an echolocating white whale. In P. Nachtigall & P. Moore (Eds.), Animal sonar: Processes and performance (pp. 53–60). New York: Plenum Press.

    Google Scholar 

  • Ridgway, S. H., & Carder, D. A. (2001). Assessing hearing and sound production in cetaceans not available for behavioral audiograms: Experiences with sperm, pygmy sperm, and gray whales. Aquatic Mammals, 27, 267–276.

    Google Scholar 

  • Ridgway, S. H., Elsberry, W. R., Blackwood, D. J., Kamolnick, T., Todd, M., Carder, D. A., Chaplin, M., & Cranford, T. W. (2012). Vocal reporting of echolocation targets: Dolphins often report before click trains end. Journal of the Acoustical Society of America, 131(1), 593–598.

    CAS  PubMed  Google Scholar 

  • Roeder, K. D. (1967). Nerve cells and insect behavior, revised edition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Rossbach, K. A., & Herzing, D. L. (1997). Underwater observations of benthic-feeding bottlenose dolphins (Tursiops truncatus) near Grand Bahama Island, Bahamas. Marine Mammal Science, 13, 498–504.

    Google Scholar 

  • Roverud, R. C., & Grinnell, A. D. (1985). Frequency tracking and Doppler shift compensation in response to an artificial CF/FM echolocation sound in the CF/FM bat, Noctilio albiventris. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 156, 471–475.

    Google Scholar 

  • Ruczynski, I., Kalko, E. K. V., & Siemers, B. (2007). The sensory basis of roost finding in a bat, Nyctalus noctula. Journal of Experimental Biology, 210, 3607–3615.

    PubMed  Google Scholar 

  • Schmieder, D. A., Kingston, T., Hashim, R., & Siemers, B. (2010). Breaking the trade-off: rainforest bats maximize bandwidth and repetition rate of echolocation calls as they approach prey. Biology Letters, 23, 604–609.

    Google Scholar 

  • Schnitzler, H.-U. (1973). Control of Doppler shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 82, 79–92.

    Google Scholar 

  • Schnitzler, H.-U., & Flieger, E. (1983). Detection of oscillating target movements by echolocation in the greater horseshoe bat. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 153, 385–391.

    Google Scholar 

  • Schnitzler, H.-U., & Kalko, E. K. V. (2001). Echolocation by insect-eating bats. BioScience, 51, 557–569.

    Google Scholar 

  • Siemers, B. M., & Schnitzler, H.-U. (2000). Natterer’s bat (Myotis nattereri Kuhl 1818) hawks for prey close to vegetation using echolocation signals of very broad bandwidth. Behavioral Ecology and Sociobiology, 47, 400–412.

    Google Scholar 

  • Siemers, B. M., & Schnitzler, H.-U. (2004). Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature, 429, 657–661.

    CAS  PubMed  Google Scholar 

  • Siemers, B. M., Kalko, E. K. V., & Schnitzler, H.-U. (2001). Echolocation behavior and signal plasticity in the Neotropical bat Myotis nigricans (Schinz, 1821) (Vespertilionidae): A convergent case with European species of Pipistrellus? Behavioral Ecology and Sociobiology, 50(4), 317–328.

    Google Scholar 

  • Similä, T., & Ugarte, F. (1993). Surface and underwater observations of cooperatively feeding killer whales in northern Norway. Canadian Journal of Zoology, 71, 1494–1499.

    Google Scholar 

  • Simmons, J. A., & Stein, R. A. (1980). Acoustic imaging in bat sonar: Echolocation signals and the evolution of echolocation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 135, 61–84.

    Google Scholar 

  • Simmons, N. B., Seymour, K. L., Habersetzer, J., & Gunnell, G. F. (2008). Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature, 451, 818–821.

    CAS  PubMed  Google Scholar 

  • Simon, R., Holderied, M. W., Koch, C. U., & von Helversen, O. (2011). Floral acoustics: Conspicuous echoes of a dish-shaped leaf attract bat pollinators. Science, 333, 631–633.

    CAS  PubMed  Google Scholar 

  • Smolker, R. A., Richards, A., Connor, R., Mann, J., & Berggren, P. (1997). Sponge carrying by dolphins (Delphinidae, Tursiops sp.): A foraging specialization involving tool use? Ethology 103, 454–465.

    Google Scholar 

  • Suga, N., & Jen, P. H. S. (1975). Peripheral control of acoustic-signals in auditory system of echolocating bats. Journal of Experimental Biology, 62, 277–311.

    CAS  PubMed  Google Scholar 

  • Surlykke, A., & Moss, C. F. (2000). Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. Journal of the Acoustical Society of America, 108, 2419–2429.

    CAS  PubMed  Google Scholar 

  • Surlykke, A., & Kalko, E. K. V. (2008). Echolocating bats cry out loud to detect their prey. PLoS ONE, 3(4), e2036.

    PubMed Central  PubMed  Google Scholar 

  • Surlykke, A., Ghose, K., & Moss, C. F. (2009). Acoustic scanning of natural scenes by echolocation in the big brown bat, Eptesicus fuscus. Journal of Experimental Biology, 212, 1011–1020.

    PubMed Central  PubMed  Google Scholar 

  • Suthers, R. A. (1967). Comparative echolocation by fishing bats. Journal of Mammalogy, 48, 79–87.

    CAS  PubMed  Google Scholar 

  • Suthers, R. A. (1988). The production of echolocation signals by bats and birds. In P. E. Nachtigall, & P. W. B. Moore (Eds.), Animal sonar processes and performance (pp. 23–45). New York: Plenum Press.

    Google Scholar 

  • Suthers, R. A., Thomas, S. P., & Suthers, B. J. (1972). Respiration, wing-beat and ultrasonic pulse emission in an echo-locating bat. Journal of Experimental Biology, 56, 37–48.

    Google Scholar 

  • Swartz, C., Tressler, J., Keller, H., Vanzant, M., Ezell, S., & Smotherman, M. (2007). The tiny difference between foraging and communication buzzes uttered by the Mexican free-tailed bat, Tadarida brasiliensis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 193, 853–863.

    Google Scholar 

  • Szymanski, M. D., Bain, D. E., Kiehl, K., Pennington, S., Wong, S., & Henry, K. R. (1999). Killer whale (Orcinus orca) hearing: Auditory brainstem response and behavioral audiograms. Journal of the Acoustical Society of America, 106, 1134–1141.

    CAS  PubMed  Google Scholar 

  • Teeling, E. (2009). Hear, hear: The convergent evolution of echolocation in bats? Trends in Ecology and Evolution, 24, 251–254.

    Google Scholar 

  • Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O’Brien, S. J., & Murphy, W. (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307, 580–584.

    CAS  PubMed  Google Scholar 

  • Thies, W., Kalko, E. K. V., & Schnitzler, H.-U. (1998). The roles of echolocation and olfaction in two Neotropical fruit-eating bats, Carollia perspicillata and C. castanea, feeding on Piper. Behavioral Ecology and Sociobiology, 42, 397–409.

    Google Scholar 

  • Thomassen, H. A., & Povel, G. D. E. (2006). Comparative and phylogenetic analysis of the echolocation and social vocalizations of swiftlets (Aves: Apodidae). Biological Journal of the Linnean Society, 88, 631–643.

    Google Scholar 

  • Thorpe, C. W., Bates, R. H., & Dawson, S. M. (1991). Intrinsic echolocation capability of Hector’s dolphin, Cephalorhynchus hectorii. Journal of the Acoustical Society of America, 90, 2931–2934.

    CAS  PubMed  Google Scholar 

  • Turner, D. C. (1975). The vampire bat: A field study in behavior and ecology. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Tyack, P. L. (1997). Studying how cetaceans use sound to explore their environment. Perspectives in Ethology, 12, 251–297.

    Google Scholar 

  • Ulanovsky, N., Fenton, M. B., Tsoar, A., & Korine, C. (2004). Dynamics of jamming avoidance in echolocating bats. Proceedings of the Royal Society of London B: Biological Sciences, 271, 1467–1475.

    Google Scholar 

  • Urick, R. J. (1995). Principles of underwater sound, 3rd ed. Los Altos Hills: Peninsula Publishing.

    Google Scholar 

  • Vanderelst, D., de Mey, F., Peremans, H., Geipel, I., Kalko, E. K. V., & Firzlaf, U. (2010). What noseleaves do for FM bats depends on their degree of sensorial specialization. PLoS One 5(8), e11893.

    PubMed Central  PubMed  Google Scholar 

  • Varanasi, U., Feldman, H. R., & Malins, D. C. (1975). Molecular basis for formation of lipid sound lens in echolocating cetaceans. Nature, 255, 340–343.

    CAS  Google Scholar 

  • Verfuss, U. K., Miller, L. A., Pilz, P. K. D., & Schnitzler, H. U. (2009). Echolocation by two foraging harbor porpoises. Journal of Experimental Biology, 212, 823–834.

    PubMed  Google Scholar 

  • Veselka, N., McErlain, D. D., Holdsworth, D. W., Eger, J. L., Chhem, R. K., Mason, M. J., Brain, K. L., Faure, P. A., & Fenton, M. B. (2010). A bony connection signals laryngeal echolocation in bats. Nature, 463, 939–942.

    CAS  PubMed  Google Scholar 

  • Villadsgaard, A., Wahlberg, M., & Tougaard, J. (2007). Echolocation signals of wild harbour porpoises, Phocoena phocoena. Journal of Experimental Biology, 210, 56–64.

    PubMed  Google Scholar 

  • Voight-Heucke, S., Taborsky, M., & Dechmann, D. K. N. (2010). A dual function of echolocation: Bats use echolocation calls to identify familiar and unfamiliar individuals. Animal Behaviour, 80, 59–67.

    Google Scholar 

  • von Helversen, D., & von Helversen, O. (1999). Acoustic guide in bat-pollinated flower. Nature, 398, 759–760.

    Google Scholar 

  • Wahlberg, M., Jensen, F. H., Aguilar de Soto, N., Beedholm, K., Bejder, L., Oliveira, C., Rasmussen, M., Simon, M., Villadsgaard, A., & Madsen, P. T. (2011a). Source parameters of echolocation clicks from wild bottlenose dolphins (Tursiops aduncus and Tursiops truncatus). Journal of the Acoustical Society of America, 130(4), 2263–2274.

    PubMed  Google Scholar 

  • Wahlberg, M., Beedholm, K., Heerfordt, A., & Møhl, B. (2011b). Characteristics of biosonar signals from the northern bottlenose whale, Hyperoodon ampullatus. Journal of the Acoustical Society of America, 130, 3077–3084.

    PubMed  Google Scholar 

  • Watkins, W.A. and Schevill, W.E. (1972). Sound source location by arrival times on a non-rigid three-dimensional hydrophone array. Deep-Sea Res. 19, 691–706.

    Google Scholar 

  • Watkins, W. A., & Schevill, W. E. (1977). Sperm whale codas. Journal of the Acoustical Society of America, 62, 1486–1490.

    Google Scholar 

  • Weilgart, L., & Whitehead, H. (1997). Group-specific dialects and geographical variation in coda repertoire in South Pacific sperm whales. Behavioral Ecology and Sociobiology, 40, 277–285.

    Google Scholar 

  • Werth, A. J. (2006a). Mandibular and dental variation and the evolution of suction feeding in odontoceti. Journal of Mammalogy, 87, 579–588.

    Google Scholar 

  • Werth, A. J. (2006b). Odontocete suction feeding: Experimental analysis of water flow and head shape. Journal of Morphology, 267, 1415–1428.

    PubMed  Google Scholar 

  • Whitehead, H. (2002). Estimates of the current global population size and historical trajectory for sperm whales. Marine Ecology Progress Series, 242, 295–304.

    Google Scholar 

  • Wilson, M., Acolas, M.-L., Bégout, M.-L., Madsen, P. T., & Wahlberg, M. (2008). Allis shad (Alosa alosa) exhibit an intensity-graded behavioral response when exposed to ultrasound. Journal of the Acoustical Society of America, 124(4), EL243–EL247.

    PubMed  Google Scholar 

  • Wilson, M., Schack, H. B., Madsen, P. T., Surlykke, A., & Wahlberg, M. (2011). Directional escape behavior in allis shad (Alosa alosa) exposed to ultrasonic clicks mimicking an approaching toothed whale. Journal of Experimental Biology, 214, 22–29.

    PubMed  Google Scholar 

  • Xitco, M. J., & Roitblat, H. L. (1996). Object recognition through eavesdropping: Passive echolocation in bottlenose dolphins. Animal Learning & Behavior, 24, 355–365.

    Google Scholar 

  • Yovel, Y., Moss, C. F., & Ulanovsky, N. (2010). Optimal localization by pointing off axis. Science, 327, 701–704.

    CAS  PubMed  Google Scholar 

  • Yovel, Y., Falk, B., Moss, C. F., & Ulanovsky, N. (2011a). Active control of acoustic field-of-view in a biosonar system. PLoS ONE, 9, e1001150.

    CAS  Google Scholar 

  • Yovel, Y., Sagiv, M. G., & Ulanovsky, N. (2011b). Click-based echolocation in bats: not so primitive after all. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 515–510.

    PubMed  Google Scholar 

  • Zhuang, Q., & Mueller, R. (2006). Noseleaf furrows in a horseshoe bat act as resonance cavities shaping the biosonar beam. Physics Review Letters, 97, 218701–1to 4.

    Google Scholar 

  • Zimmer, W. M. X., Tyack, P. L., Johnson, M., & Madsen, P. (2005a). 3-Dimensional beam pattern of regular sperm whale clicks confirms bent-horn hypothesis. Journal of the Acoustical Society of America, 117, 1473–1485.

    PubMed  Google Scholar 

  • Zimmer, W. M. X., Johnson, M., Madsen, P. T., & Tyack, P. L. (2005b). Echolocation clicks of Cuvier’s beaked whales (Ziphius cavirostris). Journal of the Acoustical Society of America, 117, 3919–3927.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brock (M.B.) Fenton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag New York

About this chapter

Cite this chapter

Fenton, B.(., Jensen, F.H., Kalko, E.K.V., Tyack, P.L. (2014). Sonar Signals of Bats and Toothed Whales. In: Surlykke, A., Nachtigall, P., Fay, R., Popper, A. (eds) Biosonar. Springer Handbook of Auditory Research, vol 51. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9146-0_2

Download citation

Publish with us

Policies and ethics