Skip to main content

High-Throughput Platforms in Drug Metabolism and Transport Pharmacogenetics

  • Chapter
  • First Online:
Handbook of Anticancer Pharmacokinetics and Pharmacodynamics

Abstract

Although there are now several thousand published studies that have examined the genetic contribution to interindividual variation in drug treatment (i.e., pharmacogenetics), very few have examined the large portions of the genome; rather these have focused on candidate gene and pathway-based study designs. However, multiple large-scale genotyping technologies have recently emerged that allow the researcher to examine pharmacogenetic endpoints ~100–500,000 SNPs at a time. Each genotyping platform is slightly different and applicable to either the clinical setting, wherein the genetic information informs treatment in patients with certain variants, or the research setting, where patients that are treated with certain drugs are either prospectively or retrospectively evaluated for genetic variants that may influence treatment outcomes. The purpose of this chapter is to describe the current study designs in pharmacogenetics, the major findings of these studies that are applied clinically, to provide an overview of commercially available large-scale genotyping technologies, and to discuss how these technologies can be applied in both clinical and research settings. While oncology agents will be the primary focus of this chapter, given that individuals undergoing therapy for cancer are often treated with multiple drugs, it is important to also consider other agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stat bite: currently approved oncology drugs. J Natl Cancer Inst 2007;99:344

    Google Scholar 

  2. Schroth W, Goetz MP, Hamann U et al (2009) Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 302:1429–1436

    Article  CAS  PubMed  Google Scholar 

  3. Hochholzer W, Trenk D, Fromm MF et al (2010) Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement. J Am Coll Cardiol 55:2427–2434

    Article  CAS  PubMed  Google Scholar 

  4. Crowley JJ, Sullivan PF, McLeod HL (2009) Pharmacogenomic genome-wide association studies: lessons learned thus far. Pharmacogenomics 10:161–163

    Article  PubMed  Google Scholar 

  5. Ando Y, Saka H, Ando M et al (2000) Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 60:6921–6926

    CAS  PubMed  Google Scholar 

  6. Innocenti F, Undevia SD, Iyer L et al (2004) Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 22:1382–1388

    Article  CAS  PubMed  Google Scholar 

  7. Marcuello E, Altes A, Menoyo A, Del Rio E, Gomez-Pardo M, Baiget M (2004) UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer 91:678–682

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Rouits E, Boisdron-Celle M, Dumont A, Guerin O, Morel A, Gamelin E (2004) Relevance of different UGT1A1 polymorphisms in irinotecan-induced toxicity: a molecular and clinical study of 75 patients. Clin Cancer Res 10:5151–5159

    Article  CAS  PubMed  Google Scholar 

  9. Borges S, Desta Z, Li L et al (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80:61–74

    Article  CAS  PubMed  Google Scholar 

  10. Goetz MP, Rae JM, Suman VJ et al (2005) Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 23:9312–9318

    Article  CAS  PubMed  Google Scholar 

  11. Goetz MP, Knox SK, Suman VJ et al (2007) The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 101:113–121

    Article  CAS  PubMed  Google Scholar 

  12. Pullarkat ST, Stoehlmacher J, Ghaderi V et al (2001) Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J 1:65–70

    Article  CAS  PubMed  Google Scholar 

  13. Villafranca E, Okruzhnov Y, Dominguez MA et al (2001) Polymorphisms of the repeated sequences in the enhancer region of the thymidylate synthase gene promoter may predict downstaging after preoperative chemoradiation in rectal cancer. J Clin Oncol 19:1779–1786

    CAS  PubMed  Google Scholar 

  14. Van Kuilenburg AB, Meinsma R, Zoetekouw L, Van Gennip AH (2002) Increased risk of grade IV neutropenia after administration of 5-fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14 + 1g > a mutation. Int J Cancer 101:253–258

    Article  PubMed  Google Scholar 

  15. Wei X, McLeod HL, McMurrough J, Gonzalez FJ, Fernandez-Salguero P (1996) Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 98:610–615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Han JY, Lim HS, Shin ES et al (2008) Influence of the organic anion-transporting polypeptide 1B1 (OATP1B1) polymorphisms on irinotecan-pharmacokinetics and clinical outcome of patients with advanced non-small cell lung cancer. Lung Cancer 59:69–75

    Article  PubMed  Google Scholar 

  17. Xiang X, Jada SR, Li HH et al (2006) Pharmacogenetics of SLCO1B1 gene and the impact of *1b and *15 haplotypes on irinotecan disposition in Asian cancer patients. Pharmacogenet Genomics 16:683–691

    Article  CAS  PubMed  Google Scholar 

  18. Jorgensen AL, Williamson PR (2008) Methodological quality of pharmacogenetic studies: issues of concern. Stat Med 27:6547–6569

    Article  PubMed  Google Scholar 

  19. Wu X, Gu J, Spitz M (2008) Strategies to identify pharmacogenetic biomarkers: candidate gene, pathway-based, and genome-wide approaches. In: Innocenti F (ed) Cancer drug discovery and development: genomics and pharmacogenomics in anticancer drug development and clinical response. Humana Press, Totowa, NJ, pp 353–370

    Chapter  Google Scholar 

  20. van Schaik RH (2008) CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist Updat 11:77–98

    Article  PubMed  Google Scholar 

  21. Wojnowski L, Kamdem LK (2006) Clinical implications of CYP3A polymorphisms. Expert Opin Drug Metab Toxicol 2:171–182

    Article  CAS  PubMed  Google Scholar 

  22. Innocenti F, Kroetz DL, Schuetz E et al (2009) Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol 27:2604–2614

    Article  CAS  PubMed  Google Scholar 

  23. Baker SD, Verweij J, Cusatis GA et al (2009) Pharmacogenetic pathway analysis of docetaxel elimination. Clin Pharmacol Ther 85:155–163

    Article  CAS  PubMed  Google Scholar 

  24. van Erp NP, Eechoute K, van der Veldt AA et al (2009) Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol 27:4406–4412

    Article  PubMed  Google Scholar 

  25. Khrunin AV, Moisseev A, Gorbunova V, Limborska S (2010) Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J 10:54–61

    Article  CAS  PubMed  Google Scholar 

  26. Bray J, Sludden J, Griffin MJ et al (2010) Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br J Cancer 102:1003–1009

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cordell HJ (2002) Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468

    Article  CAS  PubMed  Google Scholar 

  28. Hartford C, Yang W, Cheng C et al (2007) Genome scan implicates adhesion biological pathways in secondary leukemia. Leukemia 21:2128–2136

    Article  CAS  PubMed  Google Scholar 

  29. Welsh M, Mangravite L, Medina MW et al (2009) Pharmacogenomic discovery using cell-based models. Pharmacol Rev 61:413–429

    Article  CAS  PubMed  Google Scholar 

  30. Sarasquete ME, Garcia-Sanz R, Marin L et al (2008) Bisphosphonate-related osteonecrosis of the jaw is associated with polymorphisms of the cytochrome P450 CYP2C8 in multiple myeloma: a genome-wide single nucleotide polymorphism analysis. Blood 112:2709–2712

    Article  CAS  PubMed  Google Scholar 

  31. English BC, Baum CE, Adelberg DE et al (2010) A SNP in CYP2C8 is not associated with the development of bisphosphonate-related osteonecrosis of the jaw in men with castrate-resistant prostate cancer. Ther Clin Risk Manag 6:579–583

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Reid IR (2009) Osteonecrosis of the jaw: who gets it, and why? Bone 44:4–10

    Article  CAS  PubMed  Google Scholar 

  33. Nelson MR, Bacanu SA, Mosteller M et al (2009) Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions. Pharmacogenomics J 9:23–33

    Article  CAS  PubMed  Google Scholar 

  34. Cuyas E, Olano-Martin E, Khymenets O et al (2010) Errors and reproducibility of DNA array-based detection of allelic variants in ADME genes: PHARMAchip. Pharmacogenomics 11:257–266

    Article  CAS  PubMed  Google Scholar 

  35. Deeken J (2009) The Affymetrix DMET platform and pharmacogenetics in drug development. Curr Opin Mol Ther 11:260–268

    CAS  PubMed  Google Scholar 

  36. 2004 device approvals. [cited 2010 16 March]. Available from: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/Recently-ApprovedDevices/ucm073321.htm

  37. AmpliChip CYP450 Test Package Insert. [cited 2010 16 March]; Available from: http://www.amplichip.us/physicians/

  38. Candiotti KA, Yang Z, Rodriguez Y et al (2009) The impact of CYP2D6 genetic polymorphisms on postoperative morphine consumption. Pain Med 10:799–805

    Article  PubMed  Google Scholar 

  39. Lynn Henry N, Rae JM, Li L et al (2009) Association between CYP2D6 genotype and tamoxifen-induced hot flashes in a prospective cohort. Breast Cancer Res Treat 117:571–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ramon y Cajal T, Altes A, Pare L et al (2010) Impact of CYP2D6 polymorphisms in tamoxifen adjuvant breast cancer treatment. Breast Cancer Res Treat 119:33–38

    Article  CAS  PubMed  Google Scholar 

  41. Dunbar L, Butler R, Wheeler A, Pulford J, Miles W, Sheridan J (2012) Clinician experiences of employing the AmpliChip(R) CYP450 test in routine psychiatric practice. J Psychopharmacol 26:390–397

    Article  PubMed  Google Scholar 

  42. de Leon J, Susce MT, Pan RM, Fairchild M, Koch WH, Wedlund PJ (2005) The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry 66:15–27

    Article  PubMed  Google Scholar 

  43. Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G (2009) Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med 361:827–828

    Article  CAS  PubMed  Google Scholar 

  44. PHARMAchip. [cited 2010 March 17]. Available from: http://www.progenika.com/eu/index.php?option=com_content&task=view&id=144&Itemid=188

  45. Sissung TM, English BC, Venzon D, Figg WD, Deeken JF (2010) Clinical pharmacology and pharmacogenetics in a genomics era: the DMET platform. Pharmacogenomics 11:89–103

    Article  CAS  PubMed  Google Scholar 

  46. Dumaual C, Miao X, Daly TM et al (2007) Comprehensive assessment of metabolic enzyme and transporter genes using the Affymetrix Targeted Genotyping System. Pharmacogenomics 8:293–305

    Article  CAS  PubMed  Google Scholar 

  47. Caldwell MD, Awad T, Johnson JA et al (2008) CYP4F2 genetic variant alters required warfarin dose. Blood 111:4106–4112

    Article  CAS  PubMed  Google Scholar 

  48. Borgiani P, Ciccacci C, Forte V et al (2009) CYP4F2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the Italian population. Pharmacogenomics 10:261–266

    Article  CAS  PubMed  Google Scholar 

  49. Pautas E, Moreau C, Gouin-Thibault I et al (2010) Genetic factors (VKORC1, CYP2C9, EPHX1, and CYP4F2) are predictor variables for warfarin response in very elderly, frail inpatients. Clin Pharmacol Ther 87:57–64

    Article  CAS  PubMed  Google Scholar 

  50. Perez-Andreu V, Roldan V, Anton AI et al (2009) Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood 113:4977–4979

    Article  CAS  PubMed  Google Scholar 

  51. Takeuchi F, McGinnis R, Bourgeois S et al (2009) A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 5:e1000433

    Article  PubMed Central  PubMed  Google Scholar 

  52. Teichert M, Eijgelsheim M, Rivadeneira F et al (2009) A genome-wide association study of acenocoumarol maintenance dosage. Hum Mol Genet 18:3758–3768

    Article  CAS  PubMed  Google Scholar 

  53. Cavallari LH, Langaee TY, Momary KM et al (2010) Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin Pharmacol Ther 87:459–464

    Article  CAS  PubMed  Google Scholar 

  54. Lee MT, Chen CH, Chou CH et al (2009) Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics 10:1905–1913

    Article  CAS  PubMed  Google Scholar 

  55. Lubitz SA, Scott SA, Rothlauf EB et al (2010) Comparative performance of gene-based warfarin dosing algorithms in a multiethnic population. J Thromb Haemost 8:1018–1026

    CAS  PubMed  Google Scholar 

  56. Perini JA, Struchiner CJ, Silva-Assuncao E, Suarez-Kurtz G (2010) Impact of CYP4F2 rs2108622 on the stable warfarin dose in an admixed patient cohort. Clin Pharmacol Ther 87:417–420

    Article  CAS  PubMed  Google Scholar 

  57. Zhang JE, Jorgensen AL, Alfirevic A et al (2009) Effects of CYP4F2 genetic polymorphisms and haplotypes on clinical outcomes in patients initiated on warfarin therapy. Pharmacogenet Genomics 19:781–789

    Article  CAS  PubMed  Google Scholar 

  58. Mega JL, Close SL, Wiviott SD et al (2009) Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 360:354–362

    Article  CAS  PubMed  Google Scholar 

  59. Ellis KJ, Stouffer GA, McLeod HL, Lee CR (2009) Clopidogrel pharmacogenomics and risk of inadequate platelet inhibition: US FDA recommendations. Pharmacogenomics 10:1799–1817

    Article  CAS  PubMed  Google Scholar 

  60. Deeken JF, Cormier T, Price DK et al (2010) A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenomics J 10:191–199

    Article  CAS  PubMed  Google Scholar 

  61. Custom and catalog genotyping with the affymetrix GeneChip Scanner 3000 targeted genotyping system. 2006 [cited 22 March 2010]. Available from: http://www.affymetrix.com/support/technical/brochures/scanner3000_tg_sys_brochure.pdf

  62. Custom panel design guide v3.0. 2006 [cited 22 March 2010]. Available from: http://www.affymetrix.com/support/technical/other/custom_panel_design_guide.zip

  63. Custom genotyping. 2009 [cited 10 March 2010]. Available from: http://www.illumina.com/Documents/products/datasheets/datasheet_custom_gt.pdf

  64. Fan JB, Gunderson KL, Bibikova M et al (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73

    CAS  PubMed  Google Scholar 

  65. Designing and ordering iSelect HD custom genotyping assays. 2009 [cited 10 March 2010]. Available from: http://www.illumina.com/Documents/products/technotes/technote_iselect_design.pdf

  66. Gunderson KL (2009) Whole-genome genotyping on bead arrays. Methods Mol Biol 529:197–213

    Article  CAS  PubMed  Google Scholar 

  67. Lubomirov R, di Iulio J, Fayet A et al (2010) ADME pharmacogenetics: investigation of the pharmacokinetics of the antiretroviral agent lopinavir coformulated with ritonavir. Pharmacogenet Genomics 20:217–230

    CAS  PubMed  Google Scholar 

  68. RainDance Technology. 2009 [cited 2010 28 July]. Available from: http://www.raindancetechnologies.com/technology/pcr-genomics-research.asp

  69. Brouzes E, Medkova M, Savenelli N et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA 106:14195–14200

    Article  CAS  PubMed  Google Scholar 

  70. RDT 1000 Product Brief. 2009 [cited 10 7/27/2010]. Available from: http://www.raindancetechnologies.com/products/rdt-1000.asp

  71. Tewhey R, Warner JB, Nakano M et al (2009) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 27:1025–1031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Baker M (2010) Clever PCR: more genotyping, smaller volumes. Nat Methods 7:351–354

    Article  CAS  Google Scholar 

  73. Fluidigm SNP Genotyping. 2009 [cited 2010 27 July]; Available from: http://www.fluidigm.com/applications/genotype-profiling.html

  74. 96.96 Dynamic Array Product Data Sheet. 2009 [cited 2010 27 July]; Available from: http://www.fluidigm.com/applications/genotype-profiling.html

  75. Giovannetti E, Zucali PA, Peters GJ et al (2010) Association of polymorphisms in AKT1 and EGFR with clinical outcome and toxicity in non-small cell lung cancer patients treated with gefitinib. Mol Cancer Ther 9:581–593

    Article  CAS  PubMed  Google Scholar 

  76. Huang CL, Yang CH, Yeh KH et al (2009) EGFR intron 1 dinucleotide repeat polymorphism is associated with the occurrence of skin rash with gefitinib treatment. Lung Cancer 64:346–351

    Article  PubMed  Google Scholar 

  77. Ichihara S, Toyooka S, Fujiwara Y et al (2007) The impact of epidermal growth factor receptor gene status on gefitinib-treated Japanese patients with non-small-cell lung cancer. Int J Cancer 120:1239–1247

    Article  CAS  PubMed  Google Scholar 

  78. Ma F, Sun T, Shi Y et al (2009) Polymorphisms of EGFR predict clinical outcome in advanced non-small-cell lung cancer patients treated with Gefitinib. Lung Cancer 66:114–119

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan M. Sissung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

English, B.C., Richardson, E.D., Sissung, T.M. (2014). High-Throughput Platforms in Drug Metabolism and Transport Pharmacogenetics. In: Rudek, M., Chau, C., Figg, W., McLeod, H. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9135-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9135-4_22

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9134-7

  • Online ISBN: 978-1-4614-9135-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics