Skip to main content

Neonatal Experimental White Matter Injury

  • Chapter
  • First Online:
White Matter Injury in Stroke and CNS Disease

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 4))

  • 1440 Accesses

Abstract

Periventricular white matter injury (PWMI) is a major clinical problem in newborn infants. Cerebral white matter injury associated with hypoxic–ischemic encephalopathy is mostly found in full-term infants, whereas periventricular leukomalacia (PVL) mostly occurs in preterm infants. Clinical data suggest that both ischemia–reperfusion and infection–inflammation are important contributing factors. In order to better understand the pathophysiological mechanisms of PWMI and to explore potential therapeutic treatments of PWMI, numerous animal models of PWMI have been developed to mimic scenarios of a variety of insults during the past three decades. In recent years, incidence of focal necrotic type of PVL is declining, whereas diffuse cerebral WMI is emerging as the predominant lesion. Thus, development of animal models of PWMI also reflects this trend. This review is to summarize the existing animal models of neonatal WMI, emphasizing the recent developments and adaptations of these models. For obtaining new insights into the pathobiology of WMI, future more sophisticated and faithful animal models should more closely reproduce the spectrum of insults that appear to contribute to cerebral injury in human infants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashdown H, Dumont Y, Ng M et al (2006) The role of cytokine in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry 11:47–55

    PubMed  CAS  Google Scholar 

  • Back SA (2006) Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment Retard Dev Disabil Res Rev 12:129–140

    PubMed  Google Scholar 

  • Back SA, Rivkees SA (2004) Emerging concepts in periventricular white matter injury. Semin Perinatol 28:405–414

    PubMed  Google Scholar 

  • Back SA, Gan X, Li Y et al (1998) Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18:6241–6253

    PubMed  CAS  Google Scholar 

  • Back SA, Luo NL, Borenstein NS et al (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312

    PubMed  CAS  Google Scholar 

  • Back SA, Han BH, Luo NL et al (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 455–463

    Google Scholar 

  • Back SA, Luo NL, Mallinson RA et al (2005) Selective vulnerability of preterm white matter to oxidative damage defined by F(2)-isoprostane. Ann Neurol 58:108–120

    PubMed  CAS  Google Scholar 

  • Back SA, Craig A, Luo NL et al (2006a) Protective effects of caffeine on chronic hypoxia-induced perinatal white matter injury. Ann Neurol 60:696–705

    PubMed  CAS  Google Scholar 

  • Back SA, Riddle A, Hohimer AR (2006b) Role of instrumented fetal sheep preparations in defining the pathogenesis of human periventricular white matter injury. J Child Neurol 21:582–589

    PubMed  Google Scholar 

  • Back SA, Riddle A, McClure MM (2007) Maturation-dependent vulnerability of perinatal white matter in premature birth. Stroke 38:724–730

    PubMed  Google Scholar 

  • Back SA, Riddle A, Dean J et al (2012) The instrumented fetal sheep as a model of cerebral white matter injury in the premature infant. Neurotherapeutics 9:359–370

    PubMed  Google Scholar 

  • Balduini W, De Angelis V, Mazzoni E et al (2000) Long-lasting behavioral alterations following a hypoxic/ischemic brain injury in neonatal rats. Brain Res 859:318–325

    PubMed  CAS  Google Scholar 

  • Banker BQ, Larroche JV (1962) Periventricular leukomalacia of infancy. A form of neonatal anoxic encephalopathy. Arch Neurol 7:386–410

    PubMed  CAS  Google Scholar 

  • Barlow R (1969) The foetal sheep: morphogenesis of the nervous system and histochemical aspects of myelination. J Comp Neurol 135:249–262

    PubMed  CAS  Google Scholar 

  • Baud O, Daire JL, Dalmaz Y et al (2004) Gestational hypoxia induces white matter damage in neonatal rats: a new model of periventricular leukomalacia. Brain Pathol 14:1–10

    PubMed  Google Scholar 

  • Bell MJ, Hallenbeck JM (2002) Effects of intrauterine inflammation on developing rat brain. J Neurosci Res 70:570–579

    PubMed  CAS  Google Scholar 

  • Bennet L, Cowie RV, Stone PR et al (2010) The neural and vascular effects of killed Su-Streptococcus pyogenes (OK-432) in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 299: R662–R672

    Google Scholar 

  • Bi B, Salmaso N, Komitova MV et al (2011) Cortical glial fibrillary acidic protein-positive cells generate neurons after perinatal hypoxic injury. J Neurosci 31:9205–9211

    PubMed  CAS  Google Scholar 

  • Bilbo SD, Biedenkapp JC, Der-Avakain A et al (2005) Neonatal infection-induced memory impairment after lipopolysaccharide in adult is prevented viacaspase-1 inhibition. J Neurosci 25:8000–8009

    PubMed  CAS  Google Scholar 

  • Billiards SS, Haynes RL, Folkerth RD et al (2006) Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 497:199–208

    PubMed  Google Scholar 

  • Billiards SS, Haynes RL, Folkerth RD et al (2008) Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol 18:153–163

    PubMed  Google Scholar 

  • Boksa P (2010) Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain Behav Immun 24:881–897

    PubMed  Google Scholar 

  • Bona E, Johansson BB, Hagberg H (1997) Sensorimotor function and neurophathology five to six weeks after hypoxia-ischemia in seven-day-old rats. Pediatr Res 42:678–683

    PubMed  CAS  Google Scholar 

  • Burd I, Brown A, Gonzalez JM et al (2011) A mouse model of term chorioamnionitis: unrevealing causes of adverse neurological outcomes. Reprod Sci 18:900–907

    PubMed  Google Scholar 

  • Burd I, Balakrishnan B, Kannan S (2012) Models of fetal brain injury, intrauterine inflammation, and preterm birth. Am J Reprod Immunol 67:287–294

    PubMed  CAS  Google Scholar 

  • Buser JR, Segovia KN, Dean JM et al (2010) Timing of appearance of late oligodendrocyte progenitors coincides with enhanced susceptibility of preterm rabbit cerebral white matter to hypoxia-ischemia. J Cereb Blood Flow Metab 30:1053–1065

    PubMed  Google Scholar 

  • Buser JR, Maire J, Riddel A et al (2012) Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 71:93–109

    PubMed  Google Scholar 

  • Cai Z, Sigrest T, Hersey K et al (1995) Intrauterine hypoxia-ischemia increases N-methyl-d-aspartate-induced cGMP formation and glutamate accumulation in cultured rat cerebral granule cells. Pediatr Res 38:107–112

    PubMed  CAS  Google Scholar 

  • Cai Z, Fratkin JD, Rhodes PG (1997) Prenatal ischemia reduces neuronal injury caused by neonatal hypoxia-ischemia in rats. Neuroreport 8:1393–1398

    PubMed  CAS  Google Scholar 

  • Cai Z, Hutchins JB, Rhodes PG (1998) Intrauterine hypoxia-ischemia alters nitric oxide synthase expression and activity in fetal and neonatal rat brains. Brain Res Dev Brain Res 109:265–269

    PubMed  CAS  Google Scholar 

  • Cai Z, Feng X, Lee B et al (1999) Prenatal hypoxia-ischemia alters expression and activity of nitric oxide synthase in the young rat brain and causes learning deficits. Brain Res Bull 49:359–365

    PubMed  CAS  Google Scholar 

  • Cai Z, Pan ZL, Pang Y et al (2000) Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr Res 47:64–72

    PubMed  CAS  Google Scholar 

  • Cai Z, Pang Y, Xiao F et al (2001) Chronic ischemia preferentially causes white matter injury in the neonatal rat brain. Brain Res 898:126–135

    PubMed  CAS  Google Scholar 

  • Cai Z, Pang Y, Lin S et al (2003) Differential roles of tumor necrosis factor-alpha and interleukin-1 beta in lipopolysaccharide-induced brain injury in the neonatal rat. Brain Res 975:37–47

    PubMed  CAS  Google Scholar 

  • Cai Z, Lin S, Fan L-W et al (2006) Minocycline alleviates hypoxic-ischemic injury to developing oligodendrocytes in the neonatal rat brain. Neuroscience 137:425–435

    PubMed  CAS  Google Scholar 

  • Cai Z, Fan L-W, Lin S et al (2011) Intranasal administration of insulin-like growth factor-1 protects against lipopolysaccharide-induced injury in the developing rat brain. Neuroscience 194:195–207

    PubMed  CAS  Google Scholar 

  • Carlsson Y, Schwendimann L, Vontell R et al (2011) Genetic inhibition of caspase-2 reduces hypoxic-ischemic and excitotoxic neonatal brain injury. Ann Neurol 70:781–789

    PubMed  CAS  Google Scholar 

  • Carlsson Y, Wang X, Schwendimann L et al (2012) Combined effect of hypothermia and caspae-2 gene deficiency on neonatal hypoxic-ischemic brain injury. Pediatr Res 71:566–572

    PubMed  CAS  Google Scholar 

  • Chau V, Positt KJ, McFadden DE et al (2009) Effect of chorioamnionitis on brain development and injury in premature newborns. Ann Neurol 66:155–164

    PubMed  Google Scholar 

  • Chen A, Dimambro N, Clowey GJ (2008) A comparison of behavioral and histological outcomes of periventricular injection of ibotenic acid in neonatal rats at postnatal days 5 and 7. Brain Res 1201:187–195

    PubMed  CAS  Google Scholar 

  • Chen A, Siow B, Blamirc AM et al (2010) Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury. Stem Cell Res 5:255–266

    PubMed  Google Scholar 

  • Coumans AB, Middelanis JS, Garnier Y et al (2003) Intracisternal application of endotoxin enhances the subsequent hypoxic-ischemic brain damage in neonatal rats. Pediatr Res 53:257–263

    Google Scholar 

  • Dammann O, Leviton A (1997) Maternal intrauterine infection, cytokines and brain damage in the preterm newborn. Pediatr Res 42:1–8

    PubMed  CAS  Google Scholar 

  • Dean JM, Van de Looij Y, Sizonenko SV et al (2011) Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep. Ann Neurol 70:846–856

    PubMed  CAS  Google Scholar 

  • Debillon T, Gras-Leguen C, Verielle V et al (2000) Intrauterine infection induces programmed cell death in rabbit periventricular white matter. Pediatr Res 47:736–742

    PubMed  CAS  Google Scholar 

  • Debillon T, Gras-Leguen C, Verielle V et al (2003) Effect of maternal antibiotic treatment on fetal periventricular white matter cell death in a rabbit intrauterine infection model. Acta Paediatr 92:81–86

    PubMed  CAS  Google Scholar 

  • Derrick M, Luo NL, Bregman JC et al (2004) Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model of human cerebral palsy? J Neurosci 24:24–34

    PubMed  CAS  Google Scholar 

  • Derrick M, Drobyshevsky A, Ji X et al (2007) A model of cerebral palsy from fetal hypoxia-ischemia. Stroke 38:731–735

    PubMed  Google Scholar 

  • Derrick M, Drobyshevsky A, Ji X et al (2009) Hypoxia-ischemia causes persistent movement deficits in a perinatal rabbit model of cerebral palsy: assessed by a new swim test. Int J Dev Neurosci 27:549–557

    PubMed  Google Scholar 

  • Dieni S, Inde T, Yoder B et al (2004) The pattern of cerebral injury in a primate model of preterm birth and neonatal intensive care. J Neuropathol Exp Neurol 63:1297–1309

    PubMed  Google Scholar 

  • Ditelberg JS, Sheldon RA, Epstein CJ et al (1996) Brain injury after perinatal hypoxia-ischemia is exacerbated in cipper/zinc superoxide dismutase transgenic mice. Pediatr Res 39:204–208

    PubMed  CAS  Google Scholar 

  • Dizon ML, Maa T, Kessler JA (2011) The bone morphogenetic protein antagonist noggin protects white matter after perinatal hypoxia-ischemia. Neurobiol Dis 42:318–326

    PubMed  CAS  Google Scholar 

  • Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3: 79–83

    PubMed  CAS  Google Scholar 

  • Drobyshevsky A, Derrick M, Wyrwicz AM et al (2007) White matter injury correlated with hypertonia in an animal model of cerebral palsy. J Cereb Blood Flow Metab 27:270–281

    PubMed  CAS  Google Scholar 

  • Du X, Fleiss B, Dangelo B et al (2011) Systemic stimulation of TLR2 impairs neonatal mouse brain development. PLoS One 6:e19583

    PubMed  CAS  Google Scholar 

  • Duncan JR, Cock ML, Scherlinck JP et al (2002) White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatr Res 52:941–949

    PubMed  CAS  Google Scholar 

  • Duncan JR, Cock ML, Suzuki K et al (2006) Chronic endotoxin exposure causes brain injury in the ovine fetus in the absence of hypoxemia. J Soc Gynecol Investig 13:87–96

    PubMed  CAS  Google Scholar 

  • Eklind S, Mallard C, Leverin A-L et al (2001) Bacterial endotoxin sensitizes the immature brain to hypoxic-ischemic injury. Eur J Neurosci 13:1101–1106

    PubMed  CAS  Google Scholar 

  • Eklind S, Mallard C, Arvidsson P et al (2005) Lipopolysaccharide induces both a primary and a secondary phase of sensitization in the developing rat brain. Pediatr Res 58:112–116

    PubMed  CAS  Google Scholar 

  • Eklind S, Hagberg H, Wang X et al (2006) Effect of lipopolysaccharide on global gene expression in the immature rat brain. Pediatr Res 60:161–168

    PubMed  CAS  Google Scholar 

  • Fagel DM, Ganat Y, Silbereis J et al (2006) Cortical neurogenesis enhanced by chronic perinatal hypoxia. Exp Neurol 199:77–91

    PubMed  Google Scholar 

  • Fan L-W, Lin S, Pang Y et al (2005) Hypoxia-ischemia induced neurological dysfunction and brain injury in the neonatal rat. Behav Brain Res 165:80–90

    PubMed  CAS  Google Scholar 

  • Fan L-W, Tien L-T, Mitchell HJ et al (2008) α-Pheyl-n-tert-butyl-nitrone ameliorates hippocampal injury and improves learning and memory in juvenile rats following neonatal exposure to lipopolysaccharide. Eur J Neurosci 27:1475–1484

    PubMed  Google Scholar 

  • Fan L-W, Tien L-T, Lin RC et al (2011) Neonatal exposure to lipopolysaccharide enhances vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life. Neurobiol Dis 44:304–316

    PubMed  CAS  Google Scholar 

  • Favrais G, van de Looij Y, Fleiss B et al (2011) Systemic inflammation disrupts the developmental program of white matter. Ann Neurol 70:550–565

    PubMed  CAS  Google Scholar 

  • Ferriero DM (2006) Can we define the pathogenesis of human periventricular white-matter injury using animal models? J Child Neurol 21:580–581

    PubMed  Google Scholar 

  • Ferriero DM, Holtzman DM, Black SM et al (1996) Neonatal mice lacking neuronal nitric oxide synthase are less vulnerable to hypoxic-ischemic injury. Neurobiol Dis 3:64–71

    PubMed  CAS  Google Scholar 

  • Follett P, Rosenberg PA, Volpe JJ et al (2000) NBQX attenuates excitotoxic injury in developing white matter. J Neurosci 20:9235–9241

    PubMed  CAS  Google Scholar 

  • Follett PL, Deng W, Dau W et al (2004) Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 24:4412–4420

    PubMed  CAS  Google Scholar 

  • Ghiani CA, Mattan NS, Nobuta H et al (2011) Early effects of lipopolysaccharide-induced inflammation on fetal brain development in rat. ASN Neuro 3(4):pii: e00068. doi:10.1042/AN20110027

    Google Scholar 

  • Gilles FH, Averill DR Jr, Ker CS (1977) Neonatal endotoxin encephalopathy. Ann Neurol 2:49–56

    PubMed  CAS  Google Scholar 

  • Girard S, Kadhim H, Beaudet N et al (2009) Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants. Neuroscience 158:673–682

    PubMed  CAS  Google Scholar 

  • Golan HM, Lev V, Hallak M et al (2005) Specific neurodevelopment damage in mice offspring following maternal inflammation during pregnancy. Neuropharmacology 48:903–917

    PubMed  CAS  Google Scholar 

  • Goto M, Yoshioka T, Ravindranath T et al (1994) LPS injected into the pregnant rat late in gestation does not induce fetal endotoxemia. Res Commun Mol Pathol Pharmacol 85:109–112

    PubMed  CAS  Google Scholar 

  • Griffith JL, Shimony JS, Cousins SA et al (2012) MR imaging correlates of white-matter pathology in a preterm baboon model. Pediatr Res 71:185–191

    PubMed  Google Scholar 

  • Groenendaal F, Termote JU, van der Heide-Jalving M et al (2010) Complications affecting preterm neonates from 1991 to 2006: what have we gained? Acta Paediatr 99:354–358

    PubMed  CAS  Google Scholar 

  • Hagberg H, Peebles D, Mallard C (2002) Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev 8:30–38

    PubMed  Google Scholar 

  • Hagberg H, Gressens P, Mallard C (2012) Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 71:444–457

    PubMed  Google Scholar 

  • Hao LY, Hao XQ, Li SH et al (2010) Prenatal exposure to lipopolysaccharide results in cognitive deficits in age-increasing offspring rats. Neuroscience 166:763–770

    PubMed  CAS  Google Scholar 

  • Haynes RL, Folkerth RD, Keefe RJ et al (2003) Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 62:441–450

    PubMed  Google Scholar 

  • Haynes RL, Billiards SS, Borenstein NS et al (2008) Diffuse axonal injury in periventricular leukoomalacia as determined by apoptotic marker fraction. Pediatr Res 63:656–661

    PubMed  CAS  Google Scholar 

  • He LF, Chen HI, Qian LH et al (2010) Curcumin protects pre-oligodendrocytes from activated microglia in vitro and in vivo. Brain Res 1339:60–69

    PubMed  CAS  Google Scholar 

  • Hedtjarn M, Mallard C, Arvidsson P et al (2005) White matter injury in the immature brain: role of interleukin-18. Neurosci Lett 373:16–20

    PubMed  Google Scholar 

  • Ikeda T, Murata Y, Quilligan EJ et al (1998) Physiologic and histologic changes in near-term fetal lambs exposed to asphyxia by partial umbilical cord occlusion. Am J Obstet Gynecol 178:24–32

    PubMed  CAS  Google Scholar 

  • Ikeda T, Mishima K, Yoshikawa T et al (2001) Selective and long-term learning impairment following neonatal hypoxic-ischemic brain injury in rats. Behav Brain Res 118:17–25

    PubMed  CAS  Google Scholar 

  • Ikeda T, Yang L, Ikenoue T et al (2006) Endotoxin-induced hypoxic-ischemic tolerance is mediated by up-regulation of corticosterone in neonatal rat. Pediatr Res 59:56–60

    PubMed  CAS  Google Scholar 

  • Inder TE, Huppi PS, Warfield S et al (1999) Periventriculare white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann Neurol 46:755–760

    PubMed  CAS  Google Scholar 

  • Inder TE, Anderson NJ, Spenser C et al (2003) White matter injury in the premature infant: a comparison between serial cranial ultrasonographic and MR findings at term. Am J Neuroradiol 24:805–809

    PubMed  Google Scholar 

  • Inder T, Neil J, Yoder B et al (2004) Non-human primate model of neonatal brain injury. Semin Perinatol 28:396–404

    PubMed  Google Scholar 

  • Inder T, Neil J, Yoder B et al (2005) Patterns of cerebral injury in a primate model of preterm birth and neonatal intensive care. J Child Neurol 20:965–967

    PubMed  Google Scholar 

  • Jelinski SE, Yager JY, Juurlink BHJ (1999) Preferential injury to oilgodendroblasts by a short hypoxic-ischemic insult. Brain Res 815:150–153

    PubMed  CAS  Google Scholar 

  • Johnston MV, Ferriero DM, Vannucci SJ et al (2005) Models of cerebral palsy: which ones are best? J Child Neurol 20:984–987

    PubMed  Google Scholar 

  • Kadhim HJ, Tabarki B, Verellen G et al (2001) Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 56:1278–1284

    PubMed  CAS  Google Scholar 

  • Kannan S, Saadani-Makki F, Muzik O et al (2007) Microglial activation in perinatal rabbit brain induced by intrauterine inflammation: detection with 11C-(R)-PK11195 and small-animal PET. J Nucl Med 48:946–954

    PubMed  CAS  Google Scholar 

  • Kannan S, Saadani-Makki F, Balakrishna B et al (2011) Magnitude of [(11)C]PK11195 binding is related to severity of motor deficits in a rabbit model of cerebral palsy induced by intrauterine endotoxin exposure. Dev Neurosci 33:231–240

    PubMed  CAS  Google Scholar 

  • Karadottir R, Attwell D (2007) Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145:1426–1438

    PubMed  CAS  Google Scholar 

  • Keller M, Enot DP, Hodson MP et al (2011) Inflammatory-induced hibernation in the fetus: priming of fetal sheep metabolism correlates with developmental brain injury. PLoS One 6(12):e29503

    PubMed  CAS  Google Scholar 

  • Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93:F153–F161

    PubMed  CAS  Google Scholar 

  • Kinney HC (2009) The encephalopathy of prematurity: one pediatric neuropathalogist’s perspective. Semin Pediatr Neurol 16:179–190

    PubMed  Google Scholar 

  • Kohmura Y, Kirikae T, Kirikae F et al (2000) Lipopolysaccharide (LPS)-induced intra-uterinefetal death in mice is principally due to maternal cause but not fetal sensitivity to LPS. Microbiol Immunol 44:897–904

    PubMed  CAS  Google Scholar 

  • Kumral A, Baskin H, Yesilirmak DC et al (2007) Erythropoietin attenuates lipopolysaccharide-induced white matter injury in the neonatal rat brain. Neonatology 92:269–278

    PubMed  CAS  Google Scholar 

  • Larouche A, Roy M, Kadhim H et al (2005) Neuronal injuries induced by perinatal hypoxic-ischemic insults are potentiated by prenatal exposure to lipopolysaccharide: animal model for perinatally acquired encephalopathy. Dev Neurosci 27:134–142

    PubMed  CAS  Google Scholar 

  • Lehnardt S, Lachance C, Patrizi S et al (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22:2478–2486

    PubMed  CAS  Google Scholar 

  • Lehnardt S, Massillon L, Pollet P et al (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor4-dependent pathway. Proc Natl Acad Sci 100:8514–8519

    PubMed  CAS  Google Scholar 

  • Leviton A, Gressens P (2007) Neuronal damage accompanies perinatal white-matter damage. Trends Neurosci 30:473–478

    PubMed  CAS  Google Scholar 

  • Leviton A, Allred EN, Kuban KC et al (2010) Microbiologic and histologic characteristics of the extremely preterm infant’s placenta predict white matter damage and later cerebral palsy. The ELGAN study. Pediatr Res 67:95–101

    PubMed  Google Scholar 

  • Lin S, Rhodes PG, Lei M et al (2004) α-Phenyl-n-tert-butyl-nitrone attenuates hypoxic-ischemic white matter injury in the neonatal rat brain. Brain Res 1007:132–141

    PubMed  CAS  Google Scholar 

  • Lin HY, Huang CC, Chang KF (2009) Lipopolysaccharide preconditioning reduces neuroinflammation against hypoxic ischemia and provides long-term outcome of neuroprotection in neonatal rat. Pediatr Res 66:254–259

    PubMed  CAS  Google Scholar 

  • Liu Y, Silverstein FS, Skoff R et al (2002) Hypoxic-ischemic oligodendroglial injury in neonatal rat brain. Pediatr Res 51:25–33

    PubMed  Google Scholar 

  • Loeliger M, Waston CS, Reynolds JD et al (2003) Extracellular glutamate levels and neuropathology in cerebral white matter following repeated umbilical cord occlusion in the near term fetal sheep. Neuroscience 116:705–714

    PubMed  CAS  Google Scholar 

  • Loeliger M, Inder T, Cain S et al (2006) Cerebral outcomes in a preterm baboon model of early versus delayed nasal continuous positive airway pressure. Pediatrics 118:1640–1653

    PubMed  Google Scholar 

  • Lubics A, Reglodi D, Tamas A et al (2005) Neurological reflexs and early behavior in rats subjected to neonatal hypoxic-ischemic injury. Behav Brain Res 157:157–165

    PubMed  Google Scholar 

  • Mallard C, Welin AK, Peebles D et al (2003) White matter injury following systemic endotoxemia or asphyxia in the fetal sheep. Neurochem Res 28:215–223

    PubMed  CAS  Google Scholar 

  • Marret S, Mukendi R, Gadisseux JF et al (1995) Effect of ibotenate on brain development: an excitotoxic mouse model of microgyria and posthypoxic-like lesions. J Neuropathol Exp Neurol 54:358–370

    PubMed  CAS  Google Scholar 

  • Matsuda T, Okuyama K, Cho K et al (1999) Induction of antenatal periventricular leukomalacia by hemorrhagic hypotension in the chronically instrumented fetal sheep. Am J Obstet Gynecol 181:725–730

    PubMed  CAS  Google Scholar 

  • McDonald JW, Silverstein FS, Johnston MV (1988) Neurotoxicity of N-methyl-d-aspartate is markedly enhanced in developing rat central nervous system. Brain Res 459:200–203

    PubMed  CAS  Google Scholar 

  • Ment LR, Schwartz M, Makuch RW et al (1998) Association of chronic sublethal hypoxia with ventriculomegaly in the developing rat brain. Dev Brain Res 111:197–203

    CAS  Google Scholar 

  • Nitsos I, Rees SM, Duncan J et al (2006) Chronic exposure to intra-amniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Investig 13:239–247

    PubMed  CAS  Google Scholar 

  • Normann E, Lacaze-Masmonteil T, Eaton F et al (2009) A novel mouse model of Ureaplasma-induced perinatal inflammation: effects on lung and brain injury. Pediatr Res 65:430–436

    PubMed  Google Scholar 

  • Oka A, Belliveau MJ, Rosenberg PA et al (1993) Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms and prevention. J Neurosci 13:1441–1453

    PubMed  CAS  Google Scholar 

  • Olivier P, Baud O, Evrard P et al (2005) Prenatal ischemia and white matter damage in rats. J Neuropathol Exp Neurol 64:998–1006

    PubMed  Google Scholar 

  • Olivier P, Fontaine RH, Loron G et al (2009) Melatonin promotes oligodendroglial maturation of injued white matter in neonatal rats. PLoS One 4(9):e7128. doi:10.1371/jounal.pone.0007128

    PubMed  Google Scholar 

  • Paintlia MK, Paintlia AS, Barbosa E et al (2004) N-acetyl-cysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J Neurosci Res 78:347–361

    PubMed  CAS  Google Scholar 

  • Pang Y, Cai Z, Rhodes PG (2003) Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide. Brain Res Dev Brain Res 140:205–214

    PubMed  CAS  Google Scholar 

  • Pang Y, Rodts-Palenik S, Cai Z et al (2005) Suppression of glial activation is involved in the protection of IL-10 on maternal E. coli induced neonatal white matter injury. Brain Res Dev Brain Res 157:141–149

    PubMed  CAS  Google Scholar 

  • Pansiot J, Loron G, Olivier P et al (2010) Neuroprotective effect of inhaled nitric oxide on excitotoxic-induced brain damage in neonatal rat. PLoS One 5:e10916. doi:10.1371/journal.pone.0010916

    PubMed  Google Scholar 

  • Petersson KH, Pinar H, Stopa EG et al (2002) White matter injury after cerebral ischemia in ovine fetuses. Pediatr Res 51:768–776

    PubMed  Google Scholar 

  • Pierson CR, Folkerth RD, Billiards SS, Trachtenberg FL, Drinkwater ME, Volpe JJ, Kinney HC (2007) Gray matter injury associated with periventriculare leukomalacia in the premature infant. Acta Neuropathol 114:619–631

    PubMed  Google Scholar 

  • Poggi SH, Park L, Toso L et al (2005) No phenotype associated with established lipopolysaccharide model for cerebral palsy. Am J Obstet Gynecol 192:727–733

    PubMed  CAS  Google Scholar 

  • Probyn ME, Cock ML, Duncan JR et al (2010) The anti-inflammatory agent N-acetyl cysteine exacerbates endotoxin-induced hypoxemia and hypotension and induces polycythemia in the ovine fetus. Neonatology 98:118–127

    PubMed  CAS  Google Scholar 

  • Rao S, Lin Z, Drobyshevsky A et al (2011) Involvement of neuronal nitric oxide synthase in ongoing fetal brain injury following near-term rabbit hypoxia-ischemia. Dev Neurosci 33:288–298

    PubMed  CAS  Google Scholar 

  • Rathnasamy G, Ling E-A, Kaur C (2011) Iron and iron regulatory protein in amoeboid microglial cells are linked to oligodendrocyte death in hypoxic neonatal rat periventricular white matter through production of proinflammatory cytokines and reactive oxygen/nitrogen species. J Neurosci 31:17982–17995

    PubMed  CAS  Google Scholar 

  • Raymond M, Li P, Mangin J-M et al (2011) Chronic perinatal hypoxia reduces glutamate-aspartate transporter function in astrocytes through the Janus Kinase/signal transducer and activator of transcription pathway. J Neurosci 31:17864–17871

    PubMed  CAS  Google Scholar 

  • Reddy K, Mallard C, Guan J et al (1998) Maturation change in the cortical responses to hypoperfusion injury in the fetal sheep. Pediatr Res 43:674–682

    PubMed  CAS  Google Scholar 

  • Rees S, Hale N, De Matteo R et al (2010) Erythropoietin is neuroprotective in a preterm ovine model of endotoxin-induced brain injury. J Neuropathol Exp Neurol 69:306–319

    PubMed  CAS  Google Scholar 

  • Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141

    PubMed  Google Scholar 

  • Riddle A, Luo NL, Manese M et al (2006) Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury. J Neurosci 26:3045–3055

    PubMed  CAS  Google Scholar 

  • Roberson R, Woodard JE, Toso L et al (2006) Postnatal inflammatory rat model for cerebral palsy: too different from humans. Am J Obstet Gynecol 195:1038–1044

    PubMed  CAS  Google Scholar 

  • Romijn HJ, Hofman MA, Gramsbergen A (1991) At what age is the developing cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 26:61–67

    PubMed  CAS  Google Scholar 

  • Rousset CI, Chalon S, Cantagrel S et al (2006) Maternal exposure to LPS induces hypomyelination in the internal capsule and programmed cell death in the deep gray matter in newborn rats. Pediatr Res 59:428–433

    PubMed  CAS  Google Scholar 

  • Rousset CI, Kassem J, Olivier P et al (2008) Antenatal bacterial endotoxin sensitizes the immature rat brain to postnatal excitotoxic injury. J Neuropathol Exp Neurol 67:994–1000

    PubMed  Google Scholar 

  • Saadani-Makki F, Kannan S, Lu X et al (2008) Intrauterine administration of endotoxin leads to motor deficits in a rabbit model: a link between prenatal infection and cerebral palsy. Am J Obstet Gynecol 199:651.e1–651.e7

    Google Scholar 

  • Saadani-Makki F, Kannan S, Makki M et al (2009) Intrauterine endotoxin administration leads to white matter diffusivity changes in newborn rabbits. J Child Neurol 24:1179–1189

    PubMed  Google Scholar 

  • Salter MG, Fern R (2005) NMDA receptors are expressed in developing oilgodendrocyte processed and mediate injury. Nature 438:1167–1171

    PubMed  CAS  Google Scholar 

  • Scafidi J, Fagel DM, Ment LR et al (2009) Modeling premature brain injury and recovery. Int J Dev Neurosci 27:863–871

    PubMed  CAS  Google Scholar 

  • Segovia KN, McClure M, Moravec M et al (2008) Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury. Ann Neurol 63:520–530

    PubMed  Google Scholar 

  • Sfaello I, Daire J-L, Husson I et al (2005) Patterns of excitotoxins-induced brain lesions in the newborn rabbit: a neuropathological and MRI correlation. Dev Neurosci 27:160–168

    PubMed  CAS  Google Scholar 

  • Shah DK, Doyle LW, Anderson PJ et al (2008) Adverse neurodevelopment in preterm infants with postnatal sepsis or necrotizing enterocolitis is mediated by white matter abnormalities on magnetic resonance imaging at term. J Pediatr 153:170–175, 175, e171

    PubMed  Google Scholar 

  • Shankaran S, Langer JC, Kazzi SN et al (2006) Cumulative index of exposure to hypocarbia and hyperoxia as risk factors for periventricular leukomalacia in low birth weight infants. Pediatrics 118:1654–1659

    PubMed  Google Scholar 

  • Sheldon RA, Chuai J, Ferriero DM (1996) A rat model for hypoxi-ischemic brain damage in very premature infants. Biol Neonate 69:327–341

    PubMed  CAS  Google Scholar 

  • Sheldon RA, Sedik C, Ferriero DM (1998) Strain-related brain injury in neonatal mice subjected to hypoxia-ischemia. Brain Res 810:114–122

    PubMed  CAS  Google Scholar 

  • Shen Y, Yu HM, Yuan TM et al (2007) Intrauterine infection induced oligodendrocyte injury and inducible nitric oxide synthase expression in the developing rat brain. J Perinat Med 35:203–209

    PubMed  CAS  Google Scholar 

  • Shen Y, Plane JM, Deng W (2010) Mouse model of periventricular leukomalacia. J Visualized Exp 39. http://www.jove.com/index/details.stp?ID=1951, doi: 10.3791/1951

  • Silbereis JC, Huang EJ, Back SA et al (2010) Towards improved animal models of neonatal white matter injury associated with cerebral palsy. Dis Model Mech 3:678–688

    PubMed  Google Scholar 

  • Skoff RP, Bessert DA, Barks JD et al (2001) Hypoxic-ischemic injury in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice. Int J Dev Neurosci 19:197–208

    PubMed  CAS  Google Scholar 

  • Skoff RP, Bessert D, Barks JDE et al (2007) Plasticity of neurons and glia following neonatal hypoxic-ischemic brain injury in rats. Neurochem Res 32:331–342

    PubMed  CAS  Google Scholar 

  • Stolp HB, Dziegielewska KM, Ek CT et al (2005) Long-term changes in blood–brain barrier permeability and white matter following prolonged systemic inflammation in early development in the rat. Eur J Neurosci 22:2805–2816

    PubMed  CAS  Google Scholar 

  • Svedin P, Kjellmer I, Welin AK et al (2005) Maturational effects of lipopolysaccharide on white-matter injury in fetal sheep. J Child Neurol 20:960–964

    PubMed  Google Scholar 

  • Talos DM, Follett PL, Folkerth RD et al (2006) Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex. J Comp Neurol 497:61–77

    PubMed  CAS  Google Scholar 

  • Tan S, Drobyshevsky A, Jilling T et al (2005) Model of cerebral palsy in the perinatal rabbit. J Child Neurol 20:972–979

    PubMed  Google Scholar 

  • Ting P, Yamaguchi S, Bacher JD et al (1983) Hypoxic-ischemic cerebral necrosis in mid-gestational sheep fetuses: physio-pathologic correlations. Exp Neurol 80:227–245

    PubMed  CAS  Google Scholar 

  • Towfighi J, Mauger D, Vannucci RC et al (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia-ischemia: a light microscopic study. Dev Brain Res 100:149–160

    CAS  Google Scholar 

  • Turner CP, Seli M, Ment L et al (2003) A1 adenosine receptors mediate hypoxia-induced ventriculomegaly. Proc Natl Acad Sci 100:11718–11722

    PubMed  CAS  Google Scholar 

  • Uehara H, Yoshioka H, Kawase S et al (1999) A new model of white matter injury in neonatal rats with bilateral carotid artery occlusion. Brain Res 837:213–220

    PubMed  CAS  Google Scholar 

  • Van de Looij Y, Lodygensky GA, Dean J et al (2012) High-field diffusion tensor imaging characterization of cerebral white matter injury in LPS-exposed fetal sheep. Pediatr Res. doi:10.1038/pr.2012.72

    PubMed  Google Scholar 

  • Vannucci RC, Vannucci SJ (2005) Perinatal hypoxic-ischemic brain damage: evolution of an animal model. Dev Neurosci 27:81–86

    PubMed  CAS  Google Scholar 

  • Volpe JJ (2008) Neurology of the newborn, 5th edn. Elsevier, Philadelphia

    Google Scholar 

  • Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110–124

    PubMed  Google Scholar 

  • Volpe JJ, Kenny HC, Jensen FE et al (2011) The developing oligodendrocyte: key cellular target in brain injury in the premature infant. Int J Dev Neurosci 29:423–440

    PubMed  CAS  Google Scholar 

  • Wang X, Rousset CI, Hagberg H et al (2006) Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med 11:343–353

    PubMed  Google Scholar 

  • Wang X, Hagberg H, Nie C et al (2007a) Dual role of intrauterine immune challenge on neonatal and adult brain vulnerability to hypoxia-ischemia. J Neuropathol Exp Neurol 66:552–561

    PubMed  CAS  Google Scholar 

  • Wang X, Hagberg H, Zhu C et al (2007b) Effects of intrauterine inflammation on the developing mouse brain. Brain Res 1144:180–185

    PubMed  CAS  Google Scholar 

  • Wang X, Hellgren G, Lofqvist C et al (2009a) White matter damage after chronic subclinical inflammation in newborn mice. J Child Neurol 24:1171–1178

    PubMed  Google Scholar 

  • Wang X, Stridh L, Li W et al (2009b) Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 183:7471–7477

    PubMed  CAS  Google Scholar 

  • Webber DJ, Van Blitterswijk M, Chandran S (2009) Neurprotective effect of oligodendrocyte precursor cell transplantation in a long-term model of periventricular leukomalacia. Am J Pathol 175:2332–2342

    PubMed  CAS  Google Scholar 

  • Weiss J, Takizawa B, McGee A et al (2004) Neonatal hypoxia suppresses oligodendrocyte Nogo-A and increases axonal sprouting in a rodent model for human prematurity. Exp Neurol 189: 141–149

    PubMed  CAS  Google Scholar 

  • Welin AK, Svedin P, Lapatto R et al (2007) Melatonin reduces inflammation and cell death in white mater in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res 61:153–158

    PubMed  CAS  Google Scholar 

  • Wu YW, Colford JM (2000) Chorioamnionitis as a risk factor for cerebral palsy. A meta-analysis. JAMA 284:1417–1424

    PubMed  CAS  Google Scholar 

  • Xu G, Ong J, Liu Y-Q et al (2005) Subventricular zone proliferation after a-amino-3-hydroxy-5-methyl-4-sioxazolepropionic acid receptor-mediated neonatal brain injury. Dev Neurosci 27:228–234

    PubMed  CAS  Google Scholar 

  • Yang D, Sun Y-Y, Nemkul N et al (2012) Plasminogen activator inhibitor-1 mitigates brain injury in a rat model of infection-sensitized neonatal hypoxia-ischemia. Cereb Cortex 23:1218–1229. doi:10.1093/cercor/bhs115

    PubMed  Google Scholar 

  • Yoon BH, Kim CJ, Romero R et al (1997) Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am J Obstet Gynecol 177:797–802

    PubMed  CAS  Google Scholar 

  • Yoshioka H, Goma H, Nioka S et al (1994) Bilateral carotid artery occlusion causes periventricular leukomalcia in neonatal dogs. Brain Res 78:273–278

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a NIH grant (NS54278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwei Cai Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cai, Z. (2014). Neonatal Experimental White Matter Injury. In: Baltan, S., Carmichael, S., Matute, C., Xi, G., Zhang, J. (eds) White Matter Injury in Stroke and CNS Disease. Springer Series in Translational Stroke Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9123-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9123-1_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9122-4

  • Online ISBN: 978-1-4614-9123-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics