Skip to main content

Oxidative Stress in White Matter Injury

  • Chapter
  • First Online:
White Matter Injury in Stroke and CNS Disease

Abstract

White matter is the region of the brain underlying gray matter and comprises over half the human brain. Its elements, axons, oligodendrocytes (myelin-producing cells), and oligodendroglia progenitor cells, are exceedingly vulnerable to oxidative stress, since axons contain abundant mitochondria (organelles that are a main source of reactive oxygen species), and the myelin sheath contains numerous lipids, which can be peroxidized after oxidative stress. In addition, low levels of reduced glutathione and high levels of iron content in oligodendrocytes and oligodendrocyte progenitors contribute to this vulnerability. White matter is at risk for oxidative ischemic injury throughout life, from periventricular white matter injury in neonates to stroke and vascular dementia in later life. Prevention of oxidative stress could be a clinical strategy for ischemic white matter injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-HNE:

4-Hydroxynonenal

APP:

Amyloid precursor protein

eNOS:

Endothelium nitric oxide synthase

H2O2 :

Hydrogen peroxide

iNOS:

Inducible nitric oxide synthase

MBP:

Myelin basic protein

MCA:

Middle cerebral artery

MDA:

Malondialdehyde

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NOS:

Nitric oxide synthase

NOX:

Nicotinamide adenine dinucleotide phosphate oxidase

O2 •− :

Superoxide anions

•OH:

Hydroxyl radicals

ONOO− :

Peroxynitrite

PWMI:

Periventricular white matter injury

RIP:

Receptor-interacting protein

ROS:

Reactive oxygen species

SMI-32:

An antibody against a non-phosphorylated neurofilament epitope

SOD:

Superoxide dismutase

SOD1:

Copper/zinc superoxide dismutase

SOD2:

Manganese superoxide dismutase

References

  • Arvin KL, Han BH, Du Y, S-Z L, Paul SM, Holtzman DM (2002) Minocycline markedly protects the neonatal brain against hypoxic-ischemic injury. Ann Neurol 52:54–61

    Article  CAS  PubMed  Google Scholar 

  • Back SA, Rivkees SA (2004) Emerging concepts in periventricular white matter injury. Semin Perinatol 28:405–414

    Article  PubMed  Google Scholar 

  • Back SA, Volpe JJ (1997) Cellular and molecular pathogenesis of periventricular white matter injury. Ment Retard Dev Disabil Res Rev 3:96–107

    Article  Google Scholar 

  • Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, Arvin KL, Holtzman DM (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia–ischemia. J Neurosci 22:455–463

    CAS  PubMed  Google Scholar 

  • Baud O, Haynes RF, Wang H, Folkerth RD, Li J, Volpe JJ, Rosenberg PA (2004) Developmental up-regulation of MnSOD in rat oligodendrocytes confers protection against oxidative injury. Eur J Neurosci 20:29–40

    Article  PubMed  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624

    Article  CAS  PubMed  Google Scholar 

  • Bedard K, Krause K-H (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • Bernardo A, Greco A, Levi G, Minghetti L (2003) Differential lipid peroxidation, Mn superoxide, and bcl-2 expression contribute to the maturation-dependent vulnerability of oligodendrocytes to oxidative stress. J Neuropathol Exp Neurol 62:509–519

    CAS  PubMed  Google Scholar 

  • Bogousslavsky J, Regli F (1992) Centrum ovale infarcts: subcortical infarction in the superficial territory of the middle cerebral artery. Neurology 42:1992–1998

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. general properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    CAS  PubMed  Google Scholar 

  • Cai Z, Lin S, Fan L-W, Pang Y, Rhodes PG (2006) Minocycline alleviates hypoxic–ischemic injury to developing oligodendrocytes in the neonatal rat brain. Neuroscience 137:425–435

    Article  CAS  PubMed  Google Scholar 

  • Chan PH (1996) Role of oxidants in ischemic brain damage. Stroke 27:1124–1129

    Article  CAS  PubMed  Google Scholar 

  • Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Article  CAS  PubMed  Google Scholar 

  • Cheepsunthorn P, Palmer C, Connor JR (1998) Cellular distribution of ferritin subunits in postnatal rat brain. J Comp Neurol 400:73–86

    Article  CAS  PubMed  Google Scholar 

  • Cheepsunthorn P, Palmer C, Menzies S, Roberts RL, Connor JR (2001) Hypoxic/ischemic insult alters ferritin expression and myelination in neonatal rat brains. J Comp Neurol 431:382–396

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Song YS, Chan PH (2009) Inhibition of NADPH oxidase is neuroprotective after ischemia–reperfusion. J Cereb Blood Flow Metab 29:1262–1272

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14:1505–1517

    Article  CAS  PubMed  Google Scholar 

  • Connor JR, Menzies SL (1996) Relationship of iron to oligodendrocytes and myelination. Glia 17:83–93

    Article  CAS  PubMed  Google Scholar 

  • Craig A, Luo NL, Beardsley DJ, Wingate-Pearse N, Walker DW, Hohimer AR, Back SA (2003) Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp Neurol 181:231–240

    Article  PubMed  Google Scholar 

  • Deguchi K, Mizuguchi M, Takashima S (1996) Immunohistochemical expression of tumor necrosis factor α in neonatal leukomalacia. Pediatr Neurol 14:13–16

    Article  CAS  PubMed  Google Scholar 

  • Dewar D, Dawson D (1995) Tau protein is altered by focal cerebral ischaemia in the rat: an immunohistochemical and immunoblotting study. Brain Res 684:70–78

    Article  CAS  PubMed  Google Scholar 

  • Dewar D, Yam P, McCulloch J (1999) Drug development for stroke: importance of protecting cerebral white matter. Eur J Pharmacol 375:41–50

    Article  CAS  PubMed  Google Scholar 

  • Dewar D, Underhill SM, Goldberg MP (2003) Oligodendrocytes and ischemic brain injury. J Cereb Blood Flow Metab 23:263–274

    Article  PubMed  Google Scholar 

  • Dietrich WD, Kraydieh S, Prado R, Stagliano NE (1998) White matter alterations following thromboembolic stroke: a β-amyloid precursor protein immunocytochemical study in rats. Acta Neuropathol 95:524–531

    Article  CAS  PubMed  Google Scholar 

  • Dong Y-F, Kataoka K, Toyama K, Sueta D, Koibuchi N, Yamamoto E, Yata K, Tomimoto H, Ogawa H, Kim-Mitsuyama S (2011) Attenuation of brain damage and cognitive impairment by direct renin inhibition in mice with chronic cerebral hypoperfusion. Hypertension 58: 635–642

    Article  CAS  PubMed  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  • Farkas E, Donka G, de Vos RAI, Mihály A, Bari F, Luiten PGM (2004) Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol 108:57–64

    Article  PubMed  Google Scholar 

  • Fern R, Möller T (2000) Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J Neurosci 20:34–42

    CAS  PubMed  Google Scholar 

  • Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31:361–370

    Article  CAS  PubMed  Google Scholar 

  • Folkerth RD, Haynes RL, Borenstein NS, Belliveau RA, Trachtenberg F, Rosenberg PA, Volpe JJ, Kinney HC (2004a) Developmental lag in superoxide dismutases relative to other antioxidant enzymes in premyelinated human telencephalic white matter. J Neuropathol Exp Neurol 63:990–999

    CAS  PubMed  Google Scholar 

  • Folkerth RD, Keefe RJ, Haynes RL, Trachtenberg FL, Volpe JJ, Kinney HC (2004b) Interferon-γ expression in periventricular leukomalacia in the human brain. Brain Pathol 14:265–274

    Article  CAS  PubMed  Google Scholar 

  • Gerstner B, Lee J, DeSilva TM, Jensen FE, Volpe JJ, Rosenberg PA (2009) 17β-Estradiol protects against hypoxic/ischemic white matter damage in the neonatal rat brain. J Neurosci Res 87: 2078–2086

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg MD, Busto R (1989) Rodent models of cerebral ischemia. Stroke 20:1627–1642

    Article  CAS  PubMed  Google Scholar 

  • Gresle MM, Jarrott B, Jones NM, Callaway JK (2006) Injury to axons and oligodendrocytes following endothelin-1-induced middle cerebral artery occlusion in conscious rats. Brain Res 1110:13–22

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1989) Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson’s disease, Alzheimer’s disease, traumatic injury or stroke? Acta Neurol Scand Suppl 126:23–33

    Article  CAS  PubMed  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  • Hattori H, Takeda M, Kudo T, Nishimura T, Hashimoto S (1992) Cumulative white matter changes in the gerbil brain under chronic cerebral hypoperfusion. Acta Neuropathol 84:437–442

    Article  CAS  PubMed  Google Scholar 

  • Haynes RL, Folkerth RD, Keefe RJ, Sung I, Swzeda LI, Rosenberg PA, Volpe JJ, Kinney HC (2003) Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 62:441–450

    PubMed  Google Scholar 

  • Haynes RL, Baud O, Li J, Kinney HC, Volpe JJ, Folkerth RD (2005) Oxidative and nitrative injury in periventricular leukomalacia: a review. Brain Pathol 15:225–233

    Article  CAS  PubMed  Google Scholar 

  • Husain J, Juurlink BHJ (1995) Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species. Brain Res 698:86–94

    Article  CAS  PubMed  Google Scholar 

  • Ihara M, Tomimoto H, Kinoshita M, Oh J, Noda M, Wakita H, Akiguchi I, Shibasaki H (2001) Chronic cerebral hypoperfusion induces MMP-2 but not MMP-9 expression in the microglia and vascular endothelium of white matter. J Cereb Blood Flow Metab 21:828–834

    Article  CAS  PubMed  Google Scholar 

  • Imai H, Masayasu H, Dewar D, Graham DI, Macrae IM (2001) Ebselen protects both gray and white matter in a rodent model of focal cerebral ischemia. Stroke 32:2149–2154

    Article  CAS  PubMed  Google Scholar 

  • Infanger DW, Sharma RV, Davisson RL (2006) NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 8:1583–1596

    Article  CAS  PubMed  Google Scholar 

  • Irving EA, Yatsushiro K, McCulloch J, Dewar D (1997) Rapid alteration of tau in oligodendrocytes after focal ischemic injury in the rat: involvement of free radicals. J Cereb Blood Flow Metab 17:612–622

    Article  CAS  PubMed  Google Scholar 

  • Irving EA, Bentley DL, Parsons AA (2001) Assessment of white matter injury following prolonged focal cerebral ischaemia in the rat. Acta Neuropathol 102:627–635

    CAS  PubMed  Google Scholar 

  • Iwai M, Liu H-W, Chen R, Ide A, Okamoto S, Hata R, Sakanaka M, Shiuchi T, Horiuchi M (2004) Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation 110:843–848

    Article  CAS  PubMed  Google Scholar 

  • Juurlink BHJ, Thorburne SK, Hertz L (1998) Peroxide-scavenging deficit underlies oligodendrocyte susceptibility to oxidative stress. Glia 22:371–378

    Article  CAS  PubMed  Google Scholar 

  • Kadhim H, Tabarki B, Verellen G, De Prez C, Rona A-M, Sébire G (2001) Inflammatory cytokines in the pathogenesis of periventricular leukomalacia. Neurology 56:1278–1284

    Article  CAS  PubMed  Google Scholar 

  • Kadhim H, Tabarki B, De Prez C, Rona A-M, Sébire G (2002) Interleukin-2 in the pathogenesis of perinatal white matter damage. Neurology 58:1125–1128

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kim SU (1991) Oligodendroglial cell death induced by oxygen radicals and its protection by catalase. J Neurosci Res 29:100–106

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Shin K-S, Chung Y-B, Jung KW, Cha CI, Shin DH (2005) Immunohistochemical study of p47Phox and gp91Phox distributions in rat brain. Brain Res 1040:178–186

    Article  CAS  PubMed  Google Scholar 

  • Kim J-S, Yun I, Choi YB, Lee K-S, Kim Y-I (2008) Ramipril protects from free radical induced white matter damage in chronic hypoperfusion in the rat. J Clin Neurosci 15:174–178

    Article  CAS  PubMed  Google Scholar 

  • Kim GS, Jung JE, Niizuma K, Chan PH (2009) CK2 is a novel negative regulator of NADPH oxidase and a neuroprotectant in mice after cerebral ischemia. J Neurosci 29:14779–14789

    Article  CAS  PubMed  Google Scholar 

  • Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, Chan PH (1991) Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci U S A 88:11158–11162

    Article  CAS  PubMed  Google Scholar 

  • Kubo K, Nakao S, Jomura S, Sakamoto S, Miyamoto E, Xu Y, Tomimoto H, Inada T, Shingu K (2009) Edaravone, a free radical scavenger, mitigates both gray and white matter damages after global cerebral ischemia in rats. Brain Res 1279:139–146

    Article  CAS  PubMed  Google Scholar 

  • Kudo T, Takeda M, Tanimukai S, Nishimura T (1993) Neuropathologic changes in the gerbil brain after chronic hypoperfusion. Stroke 24:259–264

    Article  CAS  PubMed  Google Scholar 

  • Kurumatani T, Kudo T, Ikura Y, Takeda M (1998) White matter changes in the gerbil brain under chronic cerebral hypoperfusion. Stroke 29:1058–1062

    Article  CAS  PubMed  Google Scholar 

  • Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA (2005) Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 102:9936–9941

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Rhodes PG, Lei M, Zhang F, Cai Z (2004) α-Phenyl-n-tert-butyl-nitrone attenuates hypoxic–ischemic white matter injury in the neonatal rat brain. Brain Res 1007:132–141

    Article  CAS  PubMed  Google Scholar 

  • Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    Article  CAS  PubMed  Google Scholar 

  • Lyons SA, Kettenmann H (1998) Oligodendrocytes and microglia are selectively vulnerable to combined hypoxia and hypoglycemia injury in vitro. J Cereb Blood Flow Metab 18:521–530

    Article  CAS  PubMed  Google Scholar 

  • McTigue DM, Tripathi RB (2008) The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem 107:1–19

    Article  CAS  PubMed  Google Scholar 

  • Mitrovic B, Ignarro LJ, Vinters HV, Akers M-A, Schmid I, Uittenbogaart C, Merrill JE (1995) Nitric oxide induces necrotic but not apoptotic cell death in oligodendrocytes. Neuroscience 65:531–539

    Article  CAS  PubMed  Google Scholar 

  • Mitrovic B, Parkinson J, Merrill JE (1996) An in vitro model of oligodendrocyte destruction by nitric oxide and its relevance to multiple sclerosis. Methods 10:501–513

    Article  CAS  PubMed  Google Scholar 

  • Moxon-Emre I, Schlichter LC (2010) Evolution of inflammation and white matter injury in a model of transient focal ischemia. J Neuropathol Exp Neurol 69:1–15

    Article  CAS  PubMed  Google Scholar 

  • Niizuma K, Yoshioka H, Chen H, Kim GS, Jung JE, Katsu M, Okami N, Chan PH (2010) Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 1802:92–99

    Article  CAS  PubMed  Google Scholar 

  • Noble PG, Antel JP, Yong VW (1994) Astrocytes and catalase prevent the toxicity of catecholamines to oligodendrocytes. Brain Res 633:83–90

    Article  CAS  PubMed  Google Scholar 

  • Pantoni L, Garcia JH (1997) Pathogenesis of leukoaraiosis. Stroke 28:652–659

    Article  CAS  PubMed  Google Scholar 

  • Pantoni L, Garcia JH, Gutierrez JA (1996) Cerebral white matter is highly vulnerable to ischemia. Stroke 27:1641–1646

    Article  CAS  PubMed  Google Scholar 

  • Petito CK, Olarte J-P, Roberts B, Nowak TS Jr, Pulsinelli WA (1998) Selective glial vulnerability following transient global ischemia in rat brain. J Neuropathol Exp Neurol 57:231–238

    Article  CAS  PubMed  Google Scholar 

  • Pluta R, UÅ‚amek M, Januszewski S (2006) Micro-blood-brain barrier openings and cytotoxic fragments of amyloid precursor protein accumulation in white matter after ischemic brain injury in long-lived rats. Acta Neurochir Suppl 96:267–271

    Article  CAS  PubMed  Google Scholar 

  • Ravati A, Junker V, Kouklei M, Ahlemeyer B, Culmsee C, Krieglstein J (1999) Enalapril and moexipril protect from free radical-induced neuronal damage in vitro and reduce ischemic brain injury in mice and rats. Eur J Pharmacol 373:21–33

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Liu X-B, Pleasure DE, Deng W (2012) Axon–glia synapses are highly vulnerable to white matter injury in the developing brain. J Neurosci Res 90:105–121

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Ohtani R, Ihara M, Tomimoto H (2004) White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke 35:2598–2603

    Article  PubMed  Google Scholar 

  • Shigematsu K, McGeer PL (1992) Accumulation of amyloid precursor protein in neurons after intraventricular injection of colchicine. Am J Pathol 140:787–794

    CAS  PubMed  Google Scholar 

  • Souza-Rodrigues RD, Costa AMR, Lima RR, Dos Santos CD, Picanço-Diniz CW, Gomes-Leal W (2008) Inflammatory response and white matter damage after microinjections of endothelin-1 into the rat striatum. Brain Res 1200:78–88

    Article  CAS  PubMed  Google Scholar 

  • Sozmen EG, Kolekar A, Havton LA, Carmichael ST (2009) A white matter stroke model in the mouse: axonal damage, progenitor responses and MRI correlates. J Neurosci Methods 180: 261–272

    Article  PubMed  Google Scholar 

  • Stephenson DT, Rash K, Clemens JA (1992) Amyloid precursor protein accumulates in regions of neurodegeneration following focal cerebral ischemia in the rat. Brain Res 593:128–135

    Article  CAS  PubMed  Google Scholar 

  • Sugawara T, Kinouchi H, Oda M, Shoji H, Omae T, Mizoi K (2005) Candesartan reduces superoxide production after global cerebral ischemia. Neuroreport 16:325–328

    Article  CAS  PubMed  Google Scholar 

  • Takizawa S, Fukuyama N, Hirabayashi H, Kohara S, Kazahari S, Shinohara Y, Nakazawa H (2003) Quercetin, a natural flavonoid, attenuates vacuolar formation in the optic tract in rat chronic cerebral hypoperfusion model. Brain Res 980:156–160

    Article  CAS  PubMed  Google Scholar 

  • Tejada-Simon MV, Serrano F, Villasana LE, Kanterewicz BI, Wu G-Y, Quinn MT, Klann E (2005) Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci 29:97–106

    Article  CAS  PubMed  Google Scholar 

  • Thorburne SK, Juurlink BHJ (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67:1014–1022

    Article  CAS  PubMed  Google Scholar 

  • Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8:280–291

    Article  CAS  PubMed  Google Scholar 

  • Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  CAS  PubMed  Google Scholar 

  • Ueno M, Tomimoto H, Akiguchi I, Wakita H, Sakamoto H (2002) Blood–brain barrier disruption in white matter lesions in a rat model of chronic cerebral hypoperfusion. J Cereb Blood Flow Metab 22:97–104

    Article  PubMed  Google Scholar 

  • Ueno Y, Zhang N, Miyamoto N, Tanaka R, Hattori N, Urabe T (2009) Edaravone attenuates white matter lesions through endothelial protection in a rat chronic hypoperfusion model. Neuroscience 162:317–327

    Article  CAS  PubMed  Google Scholar 

  • Wakai T, Yoshioka H, Yagi T, Kato T, Kinouchi H (2011) Effects of valsartan on neuroprotection and neurogenesis after ischemia. Neuroreport 22:385–390

    Article  CAS  PubMed  Google Scholar 

  • Wakita H, Tomimoto H, Akiguchi I, Kimura J (1994) Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunohistochemical study. Acta Neuropathol 87:484–492

    Article  CAS  PubMed  Google Scholar 

  • Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258

    Article  CAS  PubMed  Google Scholar 

  • Walker EJ, Rosenberg GA (2010) Divergent role for MMP-2 in myelin breakdown and oligodendrocyte death following transient global ischemia. J Neurosci Res 88:764–773

    CAS  PubMed  Google Scholar 

  • Washida K, Ihara M, Nishio K, Fujita Y, Maki T, Yamada M, Takahashi J, Wu X, Kihara T, Ito H, Tomimoto H, Takahashi R (2010) Nonhypotensive dose of telmisartan attenuates cognitive impairment partially due to peroxisome proliferator-activated receptor-γ activation in mice with chronic cerebral hypoperfusion. Stroke 41:1798–1806

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Zhang N, Liu M, Tanaka R, Mizuno Y, Urabe T (2006) Cilostazol protects against brain white matter damage and cognitive impairment in a rat model of chronic cerebral hypoperfusion. Stroke 37:1539–1545

    Article  CAS  PubMed  Google Scholar 

  • Xing C, Arai K, Lo EH, Hommel M (2012) Pathophysiologic cascades in ischemic stroke. Int J Stroke 7:378–385

    Article  PubMed  Google Scholar 

  • Xu J, He L, Ahmed SH, Chen S-W, Goldberg MP, Beckman JS, Hsu CY (2000) Oxygen-glucose deprivation induces inducible nitric oxide synthase and nitrotyrosine expression in cerebral endothelial cells. Stroke 31:1744–1751

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Fagan SC, Waller JL, Edwards D, Borlongan CV, Zheng J, Hill WD, Feuerstein G, Hess DC (2004) Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats. BMC Neurol 4:7

    Article  PubMed  Google Scholar 

  • Yam PS, Takasago T, Dewar D, Graham DI, McCulloch J (1997) Amyloid precursor protein accumulates in white matter at the margin of a focal ischaemic lesion. Brain Res 760:150–157

    Article  CAS  PubMed  Google Scholar 

  • Yoon BH, Romero R, Kim CJ, Koo JN, Choe G, Syn HC, Chi JG (1997) High expression of tumor necrosis factor-α and interleukin-6 in periventricular leukomalacia. Am J Obstet Gynecol 177:406–411

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka H, Niizuma K, Katsu M, Okami N, Sakata H, Kim GS, Narasimhan P, Chan PH (2011a) NADPH oxidase mediates striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab 31:868–880

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka H, Niizuma K, Katsu M, Sakata H, Okami N, Chan PH (2011b) Consistent injury to medium spiny neurons and white matter in the mouse striatum after prolonged transient global cerebral ischemia. J Neurotrauma 28:649–660

    Article  PubMed  Google Scholar 

  • Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 95:15769–15774

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

  We thank Liza Reola and Bernard Calagui for technical assistance.

This work was supported by grants PO1 NS014543, RO1 NS025372, and RO1 NS038653, from the National Institutes of Health, and by the James R. Doty Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pak H. Chan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yoshioka, H., Wakai, T., Kinouchi, H., Chan, P.H. (2014). Oxidative Stress in White Matter Injury. In: Baltan, S., Carmichael, S., Matute, C., Xi, G., Zhang, J. (eds) White Matter Injury in Stroke and CNS Disease. Springer Series in Translational Stroke Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9123-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9123-1_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9122-4

  • Online ISBN: 978-1-4614-9123-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics