Skip to main content

White Matter: Basic Principles of Axonal Organization and Function

  • Chapter
  • First Online:
White Matter Injury in Stroke and CNS Disease

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 4))

  • 1506 Accesses

Abstract

White matter occupies nearly half of the human brain and accommodates a variety of pathways interconnecting different areas of the CNS via predominantly myelinated axons. Being topographically segregated from gray matter, the white matter can be viewed, in a functional sense, as the “nerves within the brain”. However, unlike peripheral nerves, the white matter does not have protective layers of connective tissue around it or its constituent axonal bundles, which makes them potentially susceptible to diffusional influences from neighboring tissues. White matter receives less blood supply compared to gray matter, and its axons are well adapted to minimal energy supply while maintaining high fidelity delivery signals from one gray matter area to another. The CNS myelinated axons are well designed space-savers, having smaller diameters compared to PNS and more compact myelin sheaths. Myelin covers nearly 99 % of the length of myelinated axons, the rest being nodes of Ranvier that serve as “relay stations” for saltatory propagation of action potentials. The axonal conduction velocities in white matter are well tuned to specific physiological needs and provide timely delivery of signals to target neurons for summation with other synaptic inputs. A minor decrease in conduction velocity or in the number of conducting axons due to injury or stroke may have catastrophic consequences due to disturbed coordination of signal arrivals to target neurons and their summation with other synaptic inputs, potentially halting further transfer of signals to other neurons. The myelin-forming cells of the CNS, the oligodendrocytes, myelinate different numbers of axons depending on their calibers, ranging from one in case of large (10 μm) axons to 50–60 in case of smallest (<0.5 μm) axons. Myelinating multiple axons by single oligodendrocyte has its drawback, as an injury to one oligodendrocyte may have a “multiplication effect,” shutting down a number of axons at once. The chapter discusses in detail the organization of myelin sheaths and their relationships with axons and periaxonal glia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25:5–23

    PubMed  Google Scholar 

  • Alix JJP, de Jesus Domingues AM (2011) White matter synapses. Neurology 76:397–404

    PubMed  Google Scholar 

  • Allen L, Anderson S, Wender R, Meakin P, Ransom BR, Ray DE, Brown AM (2006) Fructose supports energy metabolism of some, but not all, axons in adult mouse optic nerve. J Neurophysiol 95:1917–1925

    PubMed  Google Scholar 

  • Altevogt BM, Paul DL (2004) Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24:4313–4323

    CAS  PubMed  Google Scholar 

  • Altevogt BM, Kleopa KA, Postma FR, Scherer SS, Paul DL (2002) Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci 22:6458–6470

    CAS  PubMed  Google Scholar 

  • Arakawa S, Wright PM, Koga M, Phan TG, Reutens DC, Lim I, Gunawan MR, Ma H, Perera N, Ly J, Zavala J, Fitt G, Donnan GA (2006) Ischemic thresholds for gray and white matter. Stroke 37:1211–1216

    PubMed  Google Scholar 

  • Arroyo EJ, Scherer SS (2000) On the molecular architecture of myelinated fibers. Histochem Cell Biol 113:1–18

    CAS  PubMed  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    CAS  PubMed  Google Scholar 

  • Avila RL, Inouye H, Baek RC, Yin X, Trapp BD, Feltri ML, Wrabetz L, Kirschner DA (2005) Structure and stability of internodal myelin in mouse models of hereditary neuropathy. J Neuropathol Exp Neurol 64:976–990

    PubMed  Google Scholar 

  • Bakiri Y, Hamilton NB, Karadottir R, Attwell D (2008) Testing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter. Glia 56:233–240

    PubMed  Google Scholar 

  • Balice-Gordon RJ, Bone LJ, Scherer SS (1998) Functional gap junctions in the Schwann cell myelin sheath. J Cell Biol 142:1095–1104

    CAS  PubMed  Google Scholar 

  • Baltan S (2009) Ischemic injury to white matter: an age-dependent process. Neuroscientist 15: 126–133

    CAS  PubMed  Google Scholar 

  • Bardin J (2012) Neuroscience: making connections. Nature 483:394–396

    CAS  PubMed  Google Scholar 

  • Barrett EF, Barrett JN (1976) Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones. J Physiol 255: 737–774

    CAS  PubMed  Google Scholar 

  • Barrett EF, Barrett JN (1982) Intracellular recording from vertebrate myelinated axons: mechanism of the depolarizing afterpotential. J Physiol 323:117–144

    CAS  PubMed  Google Scholar 

  • Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    CAS  PubMed  Google Scholar 

  • Berger T, Schnitzer J, Kettenmann H (1991) Developmental changes in the membrane current pattern, K+ buffer capacity, and morphology of glial cells in the corpus callosum slice. J Neurosci 11:3008–3024

    CAS  PubMed  Google Scholar 

  • Bever CT, Judge SI (2009) Sustained-release fampridine for multiple sclerosis. Expert Opin Investig Drugs 18:1013–1024

    CAS  PubMed  Google Scholar 

  • Black JA, Kocsis JD, Waxman SG (1990) Ion channel organization of the myelinated fiber. Trends Neurosci 13:48–54

    CAS  PubMed  Google Scholar 

  • Blaurock AE (1976) Myelin x-ray patterns reconciled. Biophys J 16:491–501

    CAS  PubMed  Google Scholar 

  • Blight AR (1989) Effect of 4-aminopyridine on axonal conduction-block in chronic spinal cord injury. Brain Res Bull 22:47–52

    CAS  PubMed  Google Scholar 

  • Bowe CM, Kocsis JD, Waxman SG (1987) The association of the supernormal period and the depolarizing afterpotential in myelinated frog and rat sciatic nerve. Neuroscience 21: 585–593

    CAS  PubMed  Google Scholar 

  • Bristow MS, Simon JE, Brown RA, Eliasziw M, Hill MD, Coutts SB, Frayne R, Demchuk AM, Mitchell JR (2005) MR perfusion and diffusion in acute ischemic stroke: human gray and white matter have different thresholds for infarction. J Cereb Blood Flow Metab 25: 1280–1287

    PubMed  Google Scholar 

  • Brown DA, Passmore GM (2009) Neural KCNQ (Kv7) channels. Br J Pharmacol 156:1185–1195

    CAS  PubMed  Google Scholar 

  • Brown AM, Westenbroek RE, Catterall WA, Ransom BR (2001) Axonal L-type Ca2+ channels and anoxic injury in rat CNS white matter. J Neurophysiol 85:900–911

    CAS  PubMed  Google Scholar 

  • Brown AM, Tekkok SB, Ransom BR (2003) Glycogen regulation and functional role in mouse white matter. J Physiol 549:501

    CAS  PubMed  Google Scholar 

  • Bucher D, Goaillard JM (2011) Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog Neurobiol 94: 307–346

    PubMed  Google Scholar 

  • Buhl EH (1993) Intracellular injection in fixed slices in combination with neuroanatomical tracing techniques and electron microscopy to determine multisynaptic pathways in the brain. Microsc Res Tech 24:15–30

    CAS  PubMed  Google Scholar 

  • Bunge MB, Bunge RP, Ris H (1961) Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J Cell Biol 10:67–94

    CAS  Google Scholar 

  • Bunge RP, Bunge MB, Eldridge CF (1986) Linkage between axonal ensheathment and basal lamina production by Schwann cells. Annu Rev Neurosci 9:305–328

    CAS  PubMed  Google Scholar 

  • Butt AM (2005) Structure and function of oligodendrocytes. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 36–47

    Google Scholar 

  • Butt AM, Ransom BR (1989) Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase. Glia 2: 470–475

    CAS  PubMed  Google Scholar 

  • Butt AM, Ransom BR (1993) Morphology of astrocytes and oligodendrocytes during development in the intact rat optic nerve. J Comp Neurol 338:141–158

    CAS  PubMed  Google Scholar 

  • Cardenas DD, Ditunno J, Graziani V, Jackson AB, Lammertse D, Potter P, Sipski M, Cohen R, Blight AR (2007) Phase 2 trial of sustained-release fampridine in chronic spinal cord injury. Spinal Cord 45:158–168

    CAS  PubMed  Google Scholar 

  • Ceelen PW, Lockridge A, Newman EA (2001) Electrical coupling between glial cells in the rat retina. Glia 35:1–13

    CAS  PubMed  Google Scholar 

  • Chew SSL, Johnson CS, Green CR, nesh-Meyer HV (2010) Role of connexin43 in central nervous system injury. Exp Neurol 225:250–261

    CAS  PubMed  Google Scholar 

  • Chiu SY, Ritchie JM (1980) Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibres. Nature 284:170–171

    CAS  PubMed  Google Scholar 

  • Chiu SY, Ritchie JM (1981) Evidence for the presence of potassium channels in the paranodal region of acutely demyelinated mammalian single nerve fibres. J Physiol 313:415–437

    CAS  PubMed  Google Scholar 

  • Chiu SY, Ritchie JM (1984) On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibres. Proc R Soc Lond B Biol Sci 220:415–422

    CAS  PubMed  Google Scholar 

  • Chiu SY, Zhou L, Zhang CL, Messing A (1999) Analysis of potassium channel functions in mammalian axons by gene knockouts. J Neurocytol 28:349–364

    CAS  PubMed  Google Scholar 

  • Chomiak T, Hu B (2009) What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. PLoS One 4:e7754

    PubMed  Google Scholar 

  • Chvatal A, Pastor A, Mauch M, Sykova E, Kettenmann H (1995) Distinct populations of identified glial cells in the developing rat spinal cord slice: ion channel properties and cell morphology. Eur J Neurosci 7:129–142

    CAS  PubMed  Google Scholar 

  • Coombs JS, Curtis DR, Eccles JC (1957) The interpretation of spike potentials of motoneurones. J Physiol 139:198–231

    CAS  PubMed  Google Scholar 

  • Cronin M, Anderson PN, Cook JE, Green CR, Becker DL (2008) Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury. Mol Cell Neurosci 39:152–160

    CAS  PubMed  Google Scholar 

  • Danesh-Meyer HV, Huang R, Nicholson LFB, Green CR (2008) Connexin43 antisense oligodeoxynucleotide treatment down-regulates the inflammatory response in an in vitro interphase organotypic culture model of optic nerve ischaemia. J Clin Neurosci 15:1253–1263

    CAS  PubMed  Google Scholar 

  • David G, Barrett JN, Barrett EF (1992) Evidence that action potentials activate an internodal potassium conductance in lizard myelinated axons. J Physiol 445:277–301

    CAS  PubMed  Google Scholar 

  • David G, Barrett JN, Barrett EF (1993) Activation of internodal potassium conductance in rat myelinated axons. J Physiol 472:177–202

    CAS  PubMed  Google Scholar 

  • David G, Modney B, Scappaticci KA, Barrett JN, Barrett EF (1995) Electrical and morphological factors influencing the depolarizing after-potential in rat and lizard myelinated axons. J Physiol 489(Pt 1):141–157

    CAS  PubMed  Google Scholar 

  • Debanne D, Campanac E, Bialowas A, Carlier E, Gl A (2011) Axon physiology. Physiol Rev 91:555–602

    CAS  PubMed  Google Scholar 

  • Devaux J, Gow A (2008) Tight junctions potentiate the insulative properties of small CNS myelinated axons. J Cell Biol 183:909–921

    CAS  PubMed  Google Scholar 

  • Devaux J, Alcaraz G, Grinspan J, Bennett V, Joho R, Crest M, Scherer SS (2003) Kv3.1b is a novel component of CNS nodes. J Neurosci 23:4509–4518

    CAS  PubMed  Google Scholar 

  • Devaux JJ, Kleopa KA, Cooper EC, Scherer SS (2004) KCNQ2 is a nodal K+ channel. J Neurosci 24:1236–1244

    CAS  PubMed  Google Scholar 

  • Domercq M, Perez-Samartin A, Aparicio D, Alberdi E, Pampliega O, Matute C (2010) P2X7 receptors mediate ischemic damage to oligodendrocytes. Glia 58:730–740

    PubMed  Google Scholar 

  • Erlanger J, Gasser HS (1937) Electrical signs of nervous activity. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  • Fehlings MG, Nashmi R (1997) A new model of acute compressive spinal cord injury in vitro. J Neurosci Methods 71:215–224

    CAS  PubMed  Google Scholar 

  • Fern R, Ransom BR, Waxman SG (1995) Voltage-gated calcium channels in CNS white matter: role in anoxic injury. J Neurophysiol 74:369–377

    CAS  PubMed  Google Scholar 

  • Fern R, Davis P, Waxman SG, Ransom BR (1998) Axon conduction and survival in CNS white matter during energy deprivation: a developmental study. J Neurophysiol 79:95–105

    CAS  PubMed  Google Scholar 

  • Fernandez-Moran H, Finean JB (1957) Electron microscope and low-angle x-ray diffraction studies of the nerve myelin sheath. J Biophys Biochem Cytol 3:725–748

    CAS  PubMed  Google Scholar 

  • ffrench-Constant C, Colognato H, Franklin RJM (2004) The mysteries of myelin unwrapped. Science 304:688–689

    CAS  PubMed  Google Scholar 

  • Filley CM (1998) The behavioral neurology of cerebral white matter. Neurology 50:1535–1540

    CAS  PubMed  Google Scholar 

  • Filley CM (2010) White matter: organization and functional relevance. Neuropsychol Rev 20:158–173

    PubMed  Google Scholar 

  • Foster RE, Connors BW, Waxman SG (1982) Rat optic nerve: electrophysiological, pharmacological and anatomical studies during development. Brain Res 255:371–386

    CAS  PubMed  Google Scholar 

  • Frotscher M, Zhao S, Graber W, Drakew A, Studer D (2007) New ways of looking at synapses. Histochem Cell Biol 128:91–96

    CAS  PubMed  Google Scholar 

  • Fu Y, Sun W, Shi Y, Shi R, Cheng JX (2009) Glutamate excitotoxicity inflicts paranodal myelin splitting and retraction. PLoS One 4:e6705

    PubMed  Google Scholar 

  • Fujiyoshi K, Konomi T, Yamada M, Hikishima K, Tsuji O, Komaki Y, Momoshima S, Toyama Y, Nakamura M, Okano H (2013) Diffusion tensor imaging and tractography of the spinal cord: from experimental studies to clinical application. Exp Neurol 242:74–82

    PubMed  Google Scholar 

  • Giaume C, McCarthy KD (1996) Control of gap-junctional communication in astrocytic networks. Trends Neurosci 19:319–325

    CAS  PubMed  Google Scholar 

  • Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99

    CAS  PubMed  Google Scholar 

  • Girault JA, Peles E (2002) Development of nodes of Ranvier. Curr Opin Neurobiol 12:476–485

    CAS  PubMed  Google Scholar 

  • Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456:745–749

    CAS  PubMed  Google Scholar 

  • Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM (2008) Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56:734–749

    PubMed  Google Scholar 

  • Hanani M (2012) Lucifer yellow: an angel rather than the devil. J Cell Mol Med 16:22–31

    CAS  PubMed  Google Scholar 

  • Hansebout RR, Blight AR, Fawcett S, Reddy K (1993) 4-Aminopyridine in chronic spinal cord injury: a controlled, double-blind, crossover study in eight patients. J Neurotrauma 10:1–18

    CAS  PubMed  Google Scholar 

  • Harris JJ, Attwell D (2012) The energetics of CNS white matter. J Neurosci 32:356–371

    CAS  PubMed  Google Scholar 

  • Hayashi N, Green BA, Gonzalez-Carvajal M, Mora J, Veraa RP (1983) Local blood flow, oxygen tension, and oxygen consumption in the rat spinal cord. Part 1: Oxygen metabolism and neuronal function. J Neurosurg 58:516–525

    CAS  PubMed  Google Scholar 

  • Hayes KC (2004) The use of 4-aminopyridine (fampridine) in demyelinating disorders. CNS Drug Rev 10:295–316

    CAS  PubMed  Google Scholar 

  • Hildebrand C, Hahn R (1978) Relation between myelin sheath thickness and axon size in spinal cord white matter of some vertebrate species. J Neurol Sci 38:421–434

    CAS  PubMed  Google Scholar 

  • Hildebrand C, Remahl S, Persson H, Bjartmar C (1993) Myelinated nerve fibres in the CNS. Prog Neurobiol 40:319–384

    CAS  PubMed  Google Scholar 

  • Hinman JD, Peters A, Cabral H, Rosene DL, Hollander W, Rasband MN, Abraham CR (2006) Age-related molecular reorganization at the node of Ranvier. J Comp Neurol 495:351–362

    CAS  PubMed  Google Scholar 

  • Hirano A, Dembitzer HM (1967) A structural analysis of the myelin sheath in the central nervous system. J Cell Biol 34:555–567

    CAS  PubMed  Google Scholar 

  • Hirrlinger PG, Scheller A, Braun C, Quintela-Schneider M, Fuss B, Hirrlinger J, Kirchhoff F (2005) Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Mol Cell Neurosci 30:291–303

    CAS  PubMed  Google Scholar 

  • Huxley AF, Stampfli R (1949) Evidence for saltatory conduction in peripheral myelinated nerve fibres. J Physiol 108:315–339

    Google Scholar 

  • Imaizumi T, Kocsis JD, Waxman SG (1998) Resistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination. Brain Res 779:292–296

    CAS  PubMed  Google Scholar 

  • Jabs R, Pivneva T, Huttmann K, Wyczynski A, Nolte C, Kettenmann H, Steinhauser C (2005) Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. J Cell Sci 118:3791–3803

    CAS  PubMed  Google Scholar 

  • James G, Butt AM (2002) P2Yand P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. Eur J Pharmacol 447:247–260

    CAS  PubMed  Google Scholar 

  • Jeng LJB, Balice-Gordon RJ, Messing A, Fischbeck KH, Scherer SS (2006) The effects of a dominant connexin32 mutant in myelinating Schwann cells. Mol Cell Neurosci 32:283–298

    CAS  PubMed  Google Scholar 

  • Kachuck NJ (2009) Sustained release oral fampridine in the treatment of multiple sclerosis. Expert Opin Pharmacother 10:2025–2035

    CAS  PubMed  Google Scholar 

  • Kamasawa N, Sik A, Morita M, Yasumura T, Davidson KG, Nagy JI, Rash JE (2005) Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 136:65–86

    CAS  PubMed  Google Scholar 

  • Karadottir R, Cavelier P, Bergersen LH, Attwell D (2005) NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438:1162–1166

    CAS  PubMed  Google Scholar 

  • Kleopa KA, Orthmann JL, Enriquez A, Paul DL, Scherer SS (2004) Unique distributions of the gap junction proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia 47:346–357

    PubMed  Google Scholar 

  • Kleopa KA, Orthmann-Murphy JL, Sargiannidou I (2010) Gap junction disorders of myelinating cells. Rev Neurosci 21:397–419

    CAS  PubMed  Google Scholar 

  • Kocsis JD (1985) Aminopyridine-sensitivity of spinal cord white matter studied in vitro. Exp Brain Res 57:620–624

    CAS  PubMed  Google Scholar 

  • Kocsis JD, Waxman SG (1980) Absence of potassium conductance in central myelinated axons. Nature 287:348–349

    CAS  PubMed  Google Scholar 

  • Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1043–1054

    Google Scholar 

  • Kole MH (2011) First node of Ranvier facilitates high-frequency burst encoding. Neuron 71: 671–682

    CAS  PubMed  Google Scholar 

  • Konietzko U, Muller CM (1994) Astrocytic dye coupling in rat hippocampus: topography, developmental onset, and modulation by protein kinase C. Hippocampus 4:297–306

    CAS  PubMed  Google Scholar 

  • Krnjevic K, Puil E, Werman R (1975) Evidence for Ca2+-activated K+ conductance in cat spinal motoneurons from intracellular EGTA injections. Can J Physiol Pharmacol 53:1214–1218

    CAS  PubMed  Google Scholar 

  • Le Bihan D, Johansen-Berg H (2012) Diffusion MRI at 25: exploring brain tissue structure and function. Neuroimage 61:324–341

    PubMed  Google Scholar 

  • Lee IH, Lindqvist E, Kiehn O, Widenfalk J, Olson L (2005) Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury. J Comp Neurol 489:1–10

    CAS  PubMed  Google Scholar 

  • Lev-Ram V, Grinvald A (1987) Activity-dependent calcium transients in central nervous system myelinated axons revealed by the calcium indicator Fura-2. Biophys J 52:571–576

    CAS  PubMed  Google Scholar 

  • Li S, Stys PK (2000) Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. J Neurosci 20:1190–1198

    CAS  PubMed  Google Scholar 

  • Li J, Hertzberg EL, Nagy JI (1997) Connexin32 in oligodendrocytes and association with myelinated fibers in mouse and rat brain. J Comp Neurol 379:571–591

    CAS  PubMed  Google Scholar 

  • Li S, Mealing GA, Morley P, Stys PK (1999) Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J Neurosci 19:1–9

    Google Scholar 

  • Li X, Ionescu AV, Lynn BD, Lu S, Kamasawa N, Morita M, Davidson KG, Yasumura T, Rash JE, Nagy JI (2004) Connexin47, connexin29 and connexin32 co-expression in oligodendrocytes and cx47 association with zonula occludens-1 (zo-1) in mouse brain. Neuroscience 126:611–630

    CAS  PubMed  Google Scholar 

  • Lutz SE, Zhao Y, Gulinello M, Lee SC, Raine CS, Brosnan CF (2009) Deletion of astrocyte connexins 43 and 30 leads to a dysmyelinating phenotype and hippocampal CA1 vacuolation. J Neurosci 29:7743–7752

    CAS  PubMed  Google Scholar 

  • Maglione M, Tress O, Haas B, Karram K, Trotter J, Willecke K, Kettenmann H (2010) Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia 58:1104–1117

    PubMed  Google Scholar 

  • Magnotti LM, Goodenough DA, Paul DL (2011) Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality. Glia 59:1064–1074

    PubMed  Google Scholar 

  • Marcoux FW, Morawetz RB, Crowell RM, DeGirolami U, Halsey JH (1982) Differential regional vulnerability in transient focal cerebral ischemia. Stroke 13:339–346

    CAS  PubMed  Google Scholar 

  • Matthias K, Kirchhoff F, Seifert G, Huttmann K, Matyash M, Kettenmann H, Steinhauser C (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J Neurosci 23:1750–1758

    CAS  PubMed  Google Scholar 

  • Matute C (2010) Calcium dyshomeostasis in white matter pathology. Cell Calcium 47:150–157

    CAS  PubMed  Google Scholar 

  • Matute C (2011) Glutamate and ATP signalling in white matter pathology. J Anat 219:53–64

    CAS  PubMed  Google Scholar 

  • Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E, Arranz AM, Ravid R, Rodriguez-Antiguedad A, Sanchez-Gomez MV, Domercq M (2007) P2X7 Receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci 27:9525–9533

    CAS  PubMed  Google Scholar 

  • Menichella DM, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2003) Connexins are critical for normal myelination in the CNS. J Neurosci 23:5963

    CAS  PubMed  Google Scholar 

  • Menichella DM, Majdan M, Awatramani R, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2006) Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. J Neurosci 26:10984–10991

    CAS  PubMed  Google Scholar 

  • Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R, Zamponi GW, Wang W, Stys PK (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439:988–992

    CAS  PubMed  Google Scholar 

  • Micu I, Ridsdale A, Zhang L, Woulfe J, McClintock J, Brantner CA, Andrews SB, Stys PK (2007) Real-time measurement of free Ca2+ changes in CNS myelin by two-photon microscopy. Nat Med 13:874–879

    CAS  PubMed  Google Scholar 

  • Mierzwa A, Shroff S, Rosenbluth J (2010) Permeability of the paranodal junction of myelinated nerve fibers. J Neurosci 30:15962–15968

    CAS  PubMed  Google Scholar 

  • Mills LR, Velumian AA, Agrawal SK, Theriault E, Fehlings MG (2004) Confocal imaging of changes in glial calcium dynamics and homeostasis after mechanical injury in rat spinal cord white matter. Neuroimage 21:1070–1083

    Google Scholar 

  • Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431:195–199

    CAS  PubMed  Google Scholar 

  • Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003a) Connexin29 and connexin32 at oligodendrocyte and astrocyte gap junctions and in myelin of the mouse central nervous system. J Comp Neurol 464:356–370

    CAS  PubMed  Google Scholar 

  • Nagy JI, Ionescu AV, Lynn BD, Rash JE (2003b) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44:205–218

    CAS  PubMed  Google Scholar 

  • Nans A, Einheber S, Salzer JL, Stokes DL (2011) Electron tomography of paranodal septate-like junctions and the associated axonal and glial cytoskeletons in the central nervous system. J Neurosci Res 89:310–319

    CAS  PubMed  Google Scholar 

  • Nashmi R, Fehlings MG (2001a) Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience 104:235–251

    CAS  PubMed  Google Scholar 

  • Nashmi R, Fehlings MG (2001b) Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Res Brain Res Rev 38:165–191

    CAS  PubMed  Google Scholar 

  • Nashmi R, Jones OT, Fehlings MG (2000) Abnormal axonal physiology is associated with altered expression and distribution of Kv1.1 and Kv1.2 K+ channels after chronic spinal cord injury. Eur J Neurosci 12:491–506

    CAS  PubMed  Google Scholar 

  • Nave KA (2010) Myelination and the trophic support of long axons. Nat Rev Neurosci 11:275–283

    CAS  PubMed  Google Scholar 

  • Ness JK, Valentino M, McIver SR, Goldberg MP (2005) Identification of oligodendrocytes in experimental disease models. Glia 50:321–328

    PubMed  Google Scholar 

  • O'Carroll SJ, Alkadhi M, Nicholson LFB, Green CR (2008) Connexin43 mimetic peptides reduce swelling, astrogliosis, and neuronal cell death after spinal cord injury. Cell Commun Adhes 15:27–42

    PubMed  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29:788–806

    CAS  PubMed  Google Scholar 

  • Orkand RK, Orkand PM, Tang CM (1981) Membrane properties of neuroglia in the optic nerve of Necturus. J Exp Biol 95:49–59

    CAS  PubMed  Google Scholar 

  • Orthmann-Murphy JL, Abrams CK, Scherer SS (2008) Gap junctions couple astrocytes and oligodendrocytes. J Mol Neurosci 35:101–116

    CAS  PubMed  Google Scholar 

  • Ouardouz M, Nikolaeva MA, Coderre E, Zamponi GW, McRory JE, Trapp BD, Yin X, Wang W, Woulfe J, Stys PK (2003) Depolarization-induced Ca2+ release in ischemic spinal cord white matter involves L-type Ca2+ channel activation of ryanodine receptors. Neuron 40:53–63

    CAS  PubMed  Google Scholar 

  • Ouardouz M, Malek S, Coderre E, Stys PK (2006) Complex interplay between glutamate receptors and intracellular Ca2+ stores during ischaemia in rat spinal cord white matter. J Physiol 577:191–204

    CAS  PubMed  Google Scholar 

  • Ouardouz M, Coderre E, Basak A, Chen A, Zamponi GW, Hameed S, Rehak R, Yin X, Trapp BD, Stys PK (2009a) Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors. Ann Neurol 65:151–159

    CAS  PubMed  Google Scholar 

  • Ouardouz M, Coderre E, Zamponi GW, Hameed S, Yin X, Trapp BD, Stys PK (2009b) Glutamate receptors on myelinated spinal cord axons: II. AMPA and GluR5 receptors. Ann Neurol 65:160–166

    CAS  PubMed  Google Scholar 

  • Pan Z, Kao T, Horvath Z, Lemos J, Sul JY, Cranstoun SD, Bennett V, Scherer SS, Cooper EC (2006) A common ankyrin-G-based mechanism retains KCNQ and Nav channels at electrically active domains of the axon. J Neurosci 26:2599–2613

    CAS  PubMed  Google Scholar 

  • Park E, Velumian AA, Fehlings MG (2004) The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 21:754–774

    PubMed  Google Scholar 

  • Pastor A, Kremer M, Moller T, Kettenmann H, Dermietzel R (1998) Dye coupling between spinal cord oligodendrocytes: differences in coupling efficiency between gray and white matter. Glia 24:108–120

    CAS  PubMed  Google Scholar 

  • Perez-Duenas B, Pujol J, Soriano-Mas C, Ortiz H, Artuch R, Vilaseca MA, Campistol J (2006) Global and regional volume changes in the brains of patients with phenylketonuria. Neurology 66:1074–1078

    CAS  PubMed  Google Scholar 

  • Perkins GA, Sosinsky GE, Ghassemzadeh S, Perez A, Jones Y, Ellisman MH (2008) Electron tomographic analysis of cytoskeletal cross-bridges in the paranodal region of the node of Ranvier in peripheral nerves. J Struct Biol 161:469–480

    CAS  PubMed  Google Scholar 

  • Peters A, Palay SL, Hd W (1991) The fine structure of the nervous system. Oxford University Press, New York

    Google Scholar 

  • Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4:968–980

    CAS  PubMed  Google Scholar 

  • Poliak S, Matlis S, Ullmer C, Scherer SS, Peles E (2002) Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J Cell Biol 159:361–372

    CAS  PubMed  Google Scholar 

  • Ransom BR, Fern R (1997) Does astrocytic glycogen benefit axon function and survival in CNS white matter during glucose deprivation? Glia 21:134–141

    CAS  PubMed  Google Scholar 

  • Ransom BR, Walz W, Davis PK, Carlini WG (1992) Anoxia-induced changes in extracellular K+ and pH in mammalian central white matter. J Cereb Blood Flow Metab 12:593–602

    CAS  PubMed  Google Scholar 

  • Ransom CB, Ransom BR, Sontheimer H (2000) Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps. J Physiol (Lond) 522:427–442

    CAS  Google Scholar 

  • Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends Neurosci 26:520–522

    CAS  PubMed  Google Scholar 

  • Ransom BR, Acharya AB, Goldberg MP (2004) Molecular pathophysiology of white matter anoxic-ischemic injury. In: Mohr JP, Dennis WC, James CG, Bryce W, FRCSEd H, Philip AW (eds) Stroke, 4th edn. Churchill Livingstone, Philadelphia, pp 867–881

    Google Scholar 

  • Ransom BR, Goldberg MP, Baltan S (2011) Molecular pathophysiology of white matter anoxic-ischemic injury. In: Mohr JP, Wolf PA, Grotta JC, Moskowitz MA, Mayberg MR, von Kummer R (eds) Stroke: pathophysiology, diagnosis, and management. Elsevier, Philadelphia, pp 122–137

    Google Scholar 

  • Rasband MN (2010) Clustered K+ channel complexes in axons. Neurosci Lett 486:101–106

    CAS  PubMed  Google Scholar 

  • Rasband MN (2011) Composition, assembly, and maintenance of excitable membrane domains in myelinated axons. Semin Cell Dev Biol 22:178–184

    CAS  PubMed  Google Scholar 

  • Rasband MN, Trimmer JS, Schwarz TL, Levinson SR, Ellisman MH, Schachner M, Shrager P (1998) Potassium channel distribution, clustering, and function in remyelinating rat axons. J Neurosci 18:36–47

    CAS  PubMed  Google Scholar 

  • Rash JE (2010) Molecular disruptions of the panglial syncytium block potassium siphoning and axonal saltatory conduction: pertinence to neuromyelitis optica and other demyelinating diseases of the central nervous system. Neuroscience 168:982–1008

    CAS  PubMed  Google Scholar 

  • Rash JE, Duffy HS, Dudek FE, Bilhartz BL, Whalen LR, Yasumura T (1997) Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a “panglial syncytium” that is not coupled to neurons. J Comp Neurol 388:265–292

    CAS  PubMed  Google Scholar 

  • Reeves TM, Phillips LL, Povlishock JT (2005) Myelinated and unmyelinated axons of the corpus callosum differ in vulnerability and functional recovery following traumatic brain injury. Exp Neurol 196:126–137

    PubMed  Google Scholar 

  • Reichenbach A, Wolburg H (2005) Astrocytes and ependymal glia. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 19–35

    Google Scholar 

  • Robinson SR, Hampson EC, Munro MN, Vaney DI (1993) Unidirectional coupling of gap junctions between neuroglia. Science 262:1072–1074

    CAS  PubMed  Google Scholar 

  • Rosenbluth J (1999) A brief history of myelinated nerve fibers: one hundred and fifty years of controversy. J Neurocytol 28:251–262

    CAS  PubMed  Google Scholar 

  • Rosenbluth J (2009) Multiple functions of the paranodal junction of myelinated nerve fibers. J Neurosci Res 87:3250–3258

    CAS  PubMed  Google Scholar 

  • Rostaing P, Real E, Siksou L, Lechaire JP, Boudier T, Boeckers TM, Gertler F, Gundelfinger ED, Triller A, Marty S (2006) Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. Eur J Neurosci 24:3463–3474

    PubMed  Google Scholar 

  • Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24:517–526

    CAS  PubMed  Google Scholar 

  • Rushton WA (1951) A theory of the effects of fibre size in medullated nerve. J Physiol 115:101–122

    CAS  PubMed  Google Scholar 

  • Salzer JL, Brophy PJ, Peles E (2008) Molecular domains of myelinated axons in the peripheral nervous system. Glia 56:1532–1540

    PubMed  Google Scholar 

  • Sargiannidou I, Vavlitou N, Aristodemou S, Hadjisavvas A, Kyriacou K, Scherer SS, Kleopa KA (2009) Connexin32 Mutations cause loss of function in Schwann cells and oligodendrocytes leading to PNS and CNS myelination defects. J Neurosci 29:4736–4749

    CAS  PubMed  Google Scholar 

  • Scherer SS, Arroyo EJ (2002) Recent progress on the molecular organization of myelinated axons. J Peripher Nerv Syst 7:1–12

    CAS  PubMed  Google Scholar 

  • Scherer SS, Arroyo EJ (2009) Myelin: molecular architecture of CNS and PNS myelin sheath. In: Larry RS (ed) Encyclopedia of neuroscience. Academic, Oxford, pp 1169–1180

    Google Scholar 

  • Scherer SS, Deschenes SM, Xu YT, Grinspan JB, Fischbeck KH, Paul DL (1995) Connexin32 is a myelin-related protein in the PNS and CNS. J Neurosci 15:8281–8294

    CAS  PubMed  Google Scholar 

  • Scherer SS, Xu YT, Messing A, Willecke K, Fischbeck KH, Jeng LJB (2005) Transgenic expression of human Connexin32 in myelinating Schwann cells prevents demyelination in Connexin32-null mice. J Neurosci 25:1550–1559

    CAS  PubMed  Google Scholar 

  • Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H (2002) Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J 16:255–257

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Smith EE, Eichler FS, Filley CM (2008) Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann N Y Acad Sci 1142:266–309

    CAS  PubMed  Google Scholar 

  • Schwarz JR, Glassmeier G, Cooper EC, Kao TC, Nodera H, Tabuena D, Kaji R, Bostock H (2006) KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J Physiol 573:17–34

    CAS  PubMed  Google Scholar 

  • Shannon C, Salter M, Fern R (2007) GFP imaging of live astrocytes: regional differences in the effects of ischaemia upon astrocytes. J Anat 210:684–692

    CAS  PubMed  Google Scholar 

  • Shapovalov AI (1975) Neuronal organization and synaptic mechanisms of supraspinal motor control in vertebrates. Rev Physiol Biochem Pharmacol 72:1–54

    CAS  PubMed  Google Scholar 

  • Shi R, Blight AR (1997) Differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord. Neuroscience 77:553–562

    CAS  PubMed  Google Scholar 

  • Shroff S, Mierzwa A, Scherer SS, Peles E, Arevalo JC, Chao MV, Rosenbluth J (2011) Paranodal permeability in “myelin mutants”. Glia 59:1447–1457

    PubMed  Google Scholar 

  • Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096

    CAS  PubMed  Google Scholar 

  • Sosinsky GE, Deerinck TJ, Greco R, Buitenhuys CH, Bartol TM, Ellisman MH (2005) Development of a model for microphysiological simulations: small nodes of Ranvier from peripheral nerves of mice reconstructed by electron tomography. Neuroinformatics 3:133–162

    PubMed  Google Scholar 

  • Spiegel I, Peles E (2002) Cellular junctions of myelinated nerves (Review). Mol Membr Biol 19:95–101

    CAS  PubMed  Google Scholar 

  • Stampfli R (1954) Saltatory conduction in nerve. Physiol Rev 34:101–112

    CAS  PubMed  Google Scholar 

  • Steinhauser C, Berger T, Frotscher M, Kettenmann H (1992) Heterogeneity in the membrane current pattern of identified glial cells in the hippocampal slice. Eur J Neurosci 4:472–484

    PubMed  Google Scholar 

  • Stirling DP, Stys PK (2010) Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation. Trends Mol Med 16:160–170

    CAS  PubMed  Google Scholar 

  • Storm JF (1990) Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83:161–187

    CAS  PubMed  Google Scholar 

  • Stuart G, Spruston N, Sakmann B, Hausser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20:125–131

    CAS  PubMed  Google Scholar 

  • Stys PK (2011) The axo-myelinic synapse. Trends Neurosci 34:393–400

    CAS  PubMed  Google Scholar 

  • Stys PK, Waxman SG (2004) Ischemic white matter damage. In: Robert AL, John WG, Hans L, Klaus-Armin N, Robert M, Bruce DT (eds) Myelin biology and disorders. Academic, San Diego, pp 985–1007

    Google Scholar 

  • Stys PK, Sontheimer H, Ransom BR, Waxman SG (1993) Noninactivating, tetrodotoxin-sensitive Na+ conductance in rat optic nerve axons. Proc Natl Acad Sci U S A 90:6976–6980

    CAS  PubMed  Google Scholar 

  • Stys PK, Hubatsch DA, Leppanen LL (1998) Effects of K+ channel blockers on the anoxic response of CNS myelinated axons. Neuroreport 9:447–453

    CAS  PubMed  Google Scholar 

  • Sun D, Lye-Barthel M, Masland RH, Jakobs TC (2010) Structural remodeling of fibrous astrocytes after axonal injury. J Neurosci 30:14008–14019

    CAS  PubMed  Google Scholar 

  • Sykova E, Chvatal A (2000) Glial cells and volume transmission in the CNS. Neurochem Int 36:397–409

    CAS  PubMed  Google Scholar 

  • Szuchet S (1995) The morphology and ultrastructure of oligodendrocytes and their functional implications. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford Univ. Press, New York, Oxford, pp 23–43

    Google Scholar 

  • Szuchet S, Seeger MA (2004) Oligodendrocyte phenotypical and morphological heterogeneity: a reexamination of old concepts in view of new findings. In: Leif H (ed) Non-Neuronal cells of the nervous system: function and dysfunction. Advances in molecular and cell biology, vol 31. Elsevier, Amsterdam, pp 53–73

    Google Scholar 

  • Targ EF, Kocsis JD (1985) 4-Aminopyridine leads to restoration of conduction in demyelinated rat sciatic nerve. Brain Res 328:358–361

    CAS  PubMed  Google Scholar 

  • Tasaki I (1959) Conduction of the nerve impulse. In: Field J, Magoun HW, Hall VE (eds) Handbook of physiology. Vol. 1. Neurophysiology. American Physiological Society, Washington, DC, pp 75–121

    Google Scholar 

  • Tekkok SB, Goldberg MP (2001) AMPA/kainate receptor activation mediates hypoxic oligodendrocyte death and axonal injury in cerebral white matter. J Neurosci 21:4237–4248

    CAS  PubMed  Google Scholar 

  • Tekkok SB, Faddis BT, Goldberg MP (2005) AMPA/kainate receptors mediate axonal morphological disruption in hypoxic white matter. Neurosci Lett 382:275–279

    PubMed  Google Scholar 

  • Theis M, Sohl G, Eiberger J, Willecke K (2005) Emerging complexities in identity and function of glial connexins. Trends Neurosci 28:188–195

    CAS  PubMed  Google Scholar 

  • Theriault E, Frankenstein UN, Hertzberg EL, Nagy JI (1997) Connexin43 and astrocytic gap junctions in the rat spinal cord after acute compression injury. J Comp Neurol 382:199–214

    CAS  PubMed  Google Scholar 

  • Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927

    CAS  PubMed  Google Scholar 

  • Utzschneider DA, Kocsis JD, Waxman SG (1991) Differential sensitivity to hypoxia of the peripheral versus central trajectory of primary afferent axons. Brain Res 551:136–141

    CAS  PubMed  Google Scholar 

  • Vargas MI, Delavelle J, Jlassi H, Rilliet B, Viallon M, Becker CD, Lovblad KO (2008) Clinical applications of diffusion tensor tractography of the spinal cord. Neuroradiology 50:25–29

    PubMed  Google Scholar 

  • Velumian AA, Carlen PL (1999) Differential control of three after-hyperpolarizations in rat hippocampal neurones by intracellular calcium buffering. J Physiol 517(Pt 1):201–216

    CAS  PubMed  Google Scholar 

  • Velumian AA, Wan Y, Samoilova M, Fehlings MG (2010) Modular double sucrose gap apparatus for improved recording of compound action potentials from rat and mouse spinal cord white matter preparations. J Neurosci Methods 187:33–40

    PubMed  Google Scholar 

  • Velumian AA, Samoilova M, Fehlings MG (2011a) Visualization of cytoplasmic diffusion within living myelin sheaths of CNS white matter axons using microinjection of the fluorescent dye Lucifer Yellow. Neuroimage 56:27–34

    CAS  PubMed  Google Scholar 

  • Velumian AA, Wan Y, Samoilova M, Fehlings MG (2011b) Contribution of fast and slow conducting myelinated axons to single-peak compound action potentials in rat spinal cord white matter preparations. J Neurophysiol 105:929–941

    PubMed  Google Scholar 

  • Vyskocil F, Kritz N, Bures J (1972) Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39:255–259

    CAS  PubMed  Google Scholar 

  • Wallraff A, Odermatt B, Willecke K, Steinhauser C (2004) Distinct types of astroglial cells in the hippocampus differ in gap junction coupling. Glia 48:36–43

    PubMed  Google Scholar 

  • Wasseff SK, Scherer SS (2011) Cx32 and Cx47 mediate oligodendrocyte:astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling. Neurobiol Dis 42:506–513

    CAS  PubMed  Google Scholar 

  • Waxman SG, Bangalore L (2004) Electrophysiologic consequences of myelination. In: Robert AL, John WG, Hans L, Klaus-Armin N, Robert M, Bruce DT (eds) Myelin biology and disorders. Academic, San Diego, pp 117–141

    Google Scholar 

  • Waxman SG, Bangalore L (2005) Myelin function and saltatory conduction. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 273–284

    Google Scholar 

  • Waxman SG, Ritchie JM (1985) Organization of ion channels in the myelinated nerve fiber. Science 228:1502–1507

    CAS  PubMed  Google Scholar 

  • Waxman SG, Swadlow HA (1977) The conduction properties of axons in central white matter. Prog Neurobiol 8:297–324

    CAS  PubMed  Google Scholar 

  • Waxman SG, Davis PK, Black JA, Ransom BR (1990) Anoxic injury of mammalian central white matter: decreased susceptibility in myelin-deficient optic nerve. Ann Neurol 28:335–340

    CAS  PubMed  Google Scholar 

  • Waxman SG, Black JA, Stys PK, Ransom BR (1992) Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Res 574:105–119

    CAS  PubMed  Google Scholar 

  • Waxman SG, Black JA, Ransom BR, Stys PK (1993) Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Res 614:137–145

    CAS  PubMed  Google Scholar 

  • Waxman SG, Craner MJ, Black JA (2004) Na+ channel expression along axons in multiple sclerosis and its models. Trends Pharmacol Sci 25:584–591

    CAS  PubMed  Google Scholar 

  • Weruaga-Prieto E, Eggli P, Celio MR (1996) Topographic variations in rat brain oligodendrocyte morphology elucidated by injection of Lucifer Yellow in fixed tissue slices. J Neurocytol 25: 19–31

    CAS  PubMed  Google Scholar 

  • Xu G, Wang W, Kimelberg HK, Zhou M (2010) Electrical coupling of astrocytes in rat hippocampal slices under physiological and simulated ischemic conditions. Glia 58:481–493

    PubMed  Google Scholar 

  • Yuan X, Chittajallu R, Belachew S, Anderson S, McBain CJ, Gallo V (2002) Expression of the green fluorescent protein in the oligodendrocyte lineage: a transgenic mouse for developmental and physiological studies. J Neurosci Res 70:529–545

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Velumian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Velumian, A., Samoilova, M. (2014). White Matter: Basic Principles of Axonal Organization and Function. In: Baltan, S., Carmichael, S., Matute, C., Xi, G., Zhang, J. (eds) White Matter Injury in Stroke and CNS Disease. Springer Series in Translational Stroke Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9123-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9123-1_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9122-4

  • Online ISBN: 978-1-4614-9123-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics