Advertisement

Room in a Room: A Neglected Concept for Auralization

  • Markus Christoph
Chapter

Abstract

The term Room in a Room describes an old technique which can be utilized for auralization purposes. Thereby the auralization procedure can be divided into an analysis- and a synthesis task, usually dependent of each other. The analysis recordings in the source room have to be made exactly at those directions where loudspeakers are physically placed in the target room. In doing so, the spatial separation, respectively, filtering will be realized by beamforming. The outputs of the different, fixed beamformers provide the signals for the loudspeakers in the target room, representing the synthesis of this auralization technique. Different methods of how such a beamformer can robustly be designed will be presented in this chapter.

Keywords

Auralization Beamforming 3D-beamformer Modal beamforming 

References

  1. 1.
    D. Griesinger, Binaural techniques for music reproduction, 8th International Converence of the AES, May 1990Google Scholar
  2. 2.
    P. Mackensen, U. Felderhoff, G. Theile, U. Horbach, R. Pellegrini, Binaural room scanning—a new tool for acoustic and psychoacoustic research. DAGA. (1999)Google Scholar
  3. 3.
    J. Garas, Adaptive 3D sound systems (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000)CrossRefGoogle Scholar
  4. 4.
    B. Wiggins, An investigation into the real-time manipulation and control of three-dimensional sound fields, Doctoral Thesis, University of Derby, Derby, UK, 2004Google Scholar
  5. 5.
    J. Vilkamo, T. Lokki, V. Pulkki, Directional audio coding: virtual microphone-based synthesis and subjective evaluation. J. Audio Eng. Soc. 57(9), 709–724 (2009)Google Scholar
  6. 6.
    S. Spors, H. Buchner, R. Rabenstein, W. Humboldt, Active listening room compensation for massive multichannel sound reproduction systems using wave-domain adaptive filtering. J. Acoust. Soc. Am. 122(1), 354–369 (2007)CrossRefGoogle Scholar
  7. 7.
    J. Daniel, R. Nicol, S. Moreau, Further investigations of high order Ambisonics and wave field synthesis for holophonic sound imaging, 114th AES Convention, Springer, Amsterdam, The Netherlands, Mar 2003Google Scholar
  8. 8.
    E. Gilbert, S. Morgan, Optimum design of directive antenna arrays subject to random variations. Bell Syst. Tech. J. 637–663 (1955)Google Scholar
  9. 9.
    J. Bitzer, K. D. Kammeyer, K. U. Simmer. An alternative implementation of the superdirective beamformer, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, New York, Oct 1999Google Scholar
  10. 10.
    M. Dörbecker, Mehrkanalige Signalverarbeitung zur Verbesserung akustisch gestörter Sprachsignale am Beispiel elektronischer Hörhilfen, Doctoral Thesis, IND, RWTH Aachen, No. 10, ed. by P Vary, Aachener Beiträge zu Digitalen Nachrichtensystemen (ABDN), Mainz in Aachen, (1998)Google Scholar
  11. 11.
    A. Farina, Simultaneous measurement of impulse response and distortion with a swept-sine technique, 110th AES Convention, Paris, France, Feb 2000Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Harman/Becker Automotive Systems GmbHStraubingGermany

Personalised recommendations