Skip to main content

Target Shape Estimation Using an Automotive Radar

  • Chapter
  • First Online:
Smart Mobile In-Vehicle Systems

Abstract

Estimating the shape of vehicles is crucial for radar-based advanced driver assistance and safety systems. However, conventional radar processing is unable to resolve the different parts of a vehicle as required for this task. To address this issue a two-stage approach is considered which employs high-resolution techniques in combination with conventional Fourier-based methods. Single- and two-dimensional high-resolution estimation is discussed, which includes range and range-rate estimation in the temporal dimensions of the radar data. A novel technique referred to as cell interpolation is proposed, which can employ range and range-rate estimates in combination with Fourier-domain data for direction-of-arrival estimation. Two-stage processing has been implemented in the case of two-dimensional high-resolution estimation using the spectral RELAX algorithm and experimental results are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Andres, P. Feil, W. Menzel, H.L. Bloecher, J. Dickmann, Analysis of automobile scattering center locations by SAR measurements, in Proceedings of the Radar Conference (RADAR), Kansas City, USA, 23–27 May 2011

    Google Scholar 

  2. J. Van Bladel, Electromagnetic Fields (John Wiley & Sons, New York, 2007)

    Book  Google Scholar 

  3. H. Buddendiek, Streuzentrenmodelle zur Simulation der Wellenausbreitung für automobile Radar- und Funksysteme, PhD Thesis, Technische Universität München, 2011

    Google Scholar 

  4. F. Engels, Target shape estimation using an automotive radar, in Proceedings of the 5th Biennial Workshop on DSP for In-Vehicle Systems, Kiel, Germany, September 2011

    Google Scholar 

  5. J. Gunnarsson, L. Svensson, L. Danielsson, F. Bengtsson, Tracking vehicles using radar detections, in Proceedings of the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 13–15 June 2007

    Google Scholar 

  6. F. Gustafsson, Automotive safety systems. IEEE Signal Processing Magazine 26(4), 32–47 (Jul 2009)

    Article  MathSciNet  Google Scholar 

  7. P. Heidenreich, Antenna array processing: autocalibration and fast high-resolution methods for automotive radar, PhD Thesis, Technische Universität Darmstadt, 2012

    Google Scholar 

  8. E. Jacobson, P. Kootsookos, Fast, accurate frequency estimators. IEEE Signal Processing Magazine 24(3), 32–47 (2007)

    Google Scholar 

  9. R. Klemm, Principles of Space-Time Adaptive Processing (The Institution of Engineering and Technology, London, 2006)

    Book  Google Scholar 

  10. E.F. Knott, J.F. Shaeffer, M.T. Tuley, Radar Cross Section (Artech House, Boston, 1993)

    Book  Google Scholar 

  11. N. Levanon, E. Mozeson, Radar Signals (John Wiley & Sons, New York, 2004)

    Book  Google Scholar 

  12. D.A. McNamara, C.W.I. Pistorius, J.A.G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction (Artech House, Boston, 1989)

    Google Scholar 

  13. M. Pesavento, Fast algorithms for multidimensional harmonic retrieval, PhD Thesis, Ruhr-Universität Bochum, 2005

    Google Scholar 

  14. R.H. Rasshofer, K. Naab, 77 GHz long range radar systems status, ongoing developments and future challenges, in Proceedings of the European Radar Conference (EURAD), Paris, France, 6–7 October 2005

    Google Scholar 

  15. A.W. Rihaczek, Principles of High Resolution Radar (Artech House, Boston, 1969)

    Google Scholar 

  16. R. Schneider, Modellierung der Wellenausbreitung für ein bildgebendes KFZ-Radar, PhD Thesis, Universität Karlsruhe, 1998

    Google Scholar 

  17. M. Schoor, Hochauflösende Winkelschätzung für automobile Radarsysteme, PhD Thesis, Universität Stuttgart, 2010

    Google Scholar 

  18. P. Stoica, R. Moses, Spectral Analysis of Signals (Prentice Hall, Upper Saddle River, NJ, 2005)

    MATH  Google Scholar 

  19. J.A. Stratton, Electromagnetic Theory (John Wiley & Sons, New York, 2007)

    Google Scholar 

  20. H. Winner, Radarsensorik, in Handbuch Fahrerassitenzsysteme, ed. by H. Winner, S. Hakuli, G. Wolf (Vieweg + Teubner, Wiesbaden, Germany, 2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Engels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Engels, F. (2014). Target Shape Estimation Using an Automotive Radar. In: Schmidt, G., Abut, H., Takeda, K., Hansen, J. (eds) Smart Mobile In-Vehicle Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9120-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9120-0_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9119-4

  • Online ISBN: 978-1-4614-9120-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics