Skip to main content

Current Status and Future Challenges for the Development of Genetically Altered Live Attenuated Leishmania Vaccines

  • Chapter
  • First Online:
Book cover Pathogenesis of Leishmaniasis

Abstract

Leishmaniasis is a protozoan parasitic disease endemic to the tropical and subtropical regions of the world, with three major clinical forms, self-healing cutaneous leishmaniasis, mucocutaneous leishmaniasis, and fatal visceral leishmaniasis (VL). Drug treatment is expensive, and often results in the development of resistance due to lack of compliance and prolonged use. No vaccine is available against leishmaniasis. Immunization with first- and second-generation Leishmania vaccines has shown some efficacy in animal models but little or none in humans. However, individuals who recover from a natural infection are protected from reinfection and develop lifelong protection, suggesting infection may be a prerequisite for creating immunological memory. Genetically altered live attenuated parasites with controlled infectivity could achieve such immunological memory and yield protection without overt disease. In this chapter, we discuss development and characteristics of genetically altered live attenuated Leishmania donovani parasites and their possible use as vaccine candidates against VL. In addition, we discuss the challenges with regard to safety and immunogenicity of the live attenuated parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akopyants NS et al (2009) Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324(5924):265–268

    PubMed Central  PubMed  CAS  Google Scholar 

  • Alexander J, Bryson K (2005) T helper (h)1/Th2 and Leishmania: paradox rather than paradigm. Immunol Lett 99(1):17–23

    PubMed  CAS  Google Scholar 

  • Alexander J, Coombs GH, Mottram JC (1998) Leishmania mexicana cysteine proteinase-deficient mutants have attenuated virulence for mice and potentiate a Th1 response. J Immunol 161(12):6794–6801

    PubMed  CAS  Google Scholar 

  • Alexander J et al (2000) Endogenous IL-4 is necessary for effective drug therapy against visceral leishmaniasis. Eur J Immunol 30(10):2935–2943

    PubMed  CAS  Google Scholar 

  • Amaral VF et al (2002) Study of the safety, immunogenicity and efficacy of attenuated and killed Leishmania (Leishmania) major vaccines in a rhesus monkey (Macaca mulatta) model of the human disease. Mem Inst Oswaldo Cruz 97(7):1041–1048

    PubMed  CAS  Google Scholar 

  • Anderson JM et al (2006) Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics 7:52

    PubMed Central  PubMed  Google Scholar 

  • Anstead GM et al (2001) Malnutrition alters the innate immune response and increases early visceralization following Leishmania donovani infection. Infect Immun 69(8):4709–4718

    PubMed Central  PubMed  CAS  Google Scholar 

  • Armijos RX et al (1998) Field trial of a vaccine against New World cutaneous leishmaniasis in an at-risk child population: safety, immunogenicity, and efficacy during the first 12 months of follow-up. J Infect Dis 177(5):1352–1357

    PubMed  CAS  Google Scholar 

  • Armijos RX et al (2004) Safety, immunogenicity, and efficacy of an autoclaved Leishmania amazonensis vaccine plus BCG adjuvant against New World cutaneous leishmaniasis. Vaccine 22(9–10):1320–1326

    PubMed  CAS  Google Scholar 

  • Aslan H et al (2013) A new model of progressive visceral Leishmaniasis in Hamsters by natural transmission via bites of vector sand flies. J Infect Dis 207(8):1328–1338

    PubMed  PubMed Central  Google Scholar 

  • Bacon KM et al (2013) The potential economic value of a cutaneous leishmaniasis vaccine in seven endemic countries in the Americas. Vaccine 31(3):480–486

    PubMed Central  PubMed  Google Scholar 

  • Bahar K et al (1996) Comparative safety and immunogenicity trial of two killed Leishmania major vaccines with or without BCG in human volunteers. Clin Dermatol 14(5):489–495

    PubMed  CAS  Google Scholar 

  • Banerjee A, De M, Ali N (2008) Complete cure of experimental visceral leishmaniasis with amphotericin B in stearylamine-bearing cationic liposomes involves down-regulation of IL-10 and favorable T cell responses. J Immunol 181(2):1386–1398

    PubMed  CAS  Google Scholar 

  • Bankoti R et al (2012) Marginal zone B cells regulate antigen-specific T cell responses during infection. J Immunol 188(8):3961–3971

    PubMed  CAS  Google Scholar 

  • Basu R et al (2005) Kinetoplastid membrane protein-11 DNA vaccination induces complete protection against both pentavalent antimonial-sensitive and -resistant strains of Leishmania donovani that correlates with inducible nitric oxide synthase activity and IL-4 generation: evidence for mixed Th1- and Th2-like responses in visceral leishmaniasis. J Immunol 174(11):7160–7171

    PubMed  CAS  Google Scholar 

  • Bates PA (2006) Housekeeping by Leishmania. Trends Parasitol 22(10):447–448

    PubMed Central  PubMed  Google Scholar 

  • Bates PA (2007) Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol 37(10):1097–1106

    PubMed Central  PubMed  CAS  Google Scholar 

  • Belkaid Y et al (1998) Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J Exp Med 188(10):1941–1953

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bhandari V et al (2012) Drug susceptibility in Leishmania isolates following miltefosine treatment in cases of visceral leishmaniasis and post kala-azar dermal leishmaniasis. PLoS Negl Trop Dis 6(5):e1657

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bhattacharyya S et al (2001) Immunomodulatory role of interleukin-10 in visceral leishmaniasis: defective activation of protein kinase C-mediated signal transduction events. Infect Immun 69(3):1499–1507

    PubMed Central  PubMed  CAS  Google Scholar 

  • Campos-Neto A et al (2001) Protection against cutaneous leishmaniasis induced by recombinant antigens in murine and nonhuman primate models of the human disease. Infect Immun 69(6):4103–4108

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chakravarty J et al (2011) A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine 29(19):3531–3537

    PubMed  CAS  Google Scholar 

  • Charlab R et al (1999) Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proc Natl Acad Sci USA 96(26):15155–15160

    PubMed Central  PubMed  CAS  Google Scholar 

  • Coler RN et al (2007) Leish-111f, a recombinant polyprotein vaccine that protects against visceral Leishmaniasis by elicitation of CD4+ T cells. Infect Immun 75(9):4648–4654

    PubMed Central  PubMed  CAS  Google Scholar 

  • Collin N et al (2009) Sand fly salivary proteins induce strong cellular immunity in a natural reservoir of visceral leishmaniasis with adverse consequences for Leishmania. PLoS Pathog 5(5):e1000441

    PubMed Central  PubMed  Google Scholar 

  • Convit J et al (2003) Immunotherapy of American cutaneous leishmaniasis in Venezuela during the period 1990–99. Trans R Soc Trop Med Hyg 97(4):469–472

    PubMed  CAS  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19(1):111–126

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cua DJ, Stohlman SA (1997) In vivo effects of T helper cell type 2 cytokines on macrophage antigen-presenting cell induction of T helper subsets. J Immunol 159(12):5834–5840

    PubMed  CAS  Google Scholar 

  • Cummings HE, Tuladhar R, Satoskar AR (2010) Cytokines and their STATs in cutaneous and visceral leishmaniasis. J Biomed Biotechnol 2010:294389

    PubMed Central  PubMed  Google Scholar 

  • Darrah PA et al (2007) Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13(7):843–850

    PubMed  CAS  Google Scholar 

  • Davoudi N et al (2005) Development of a recombinant Leishmania major strain sensitive to ganciclovir and 5-fluorocytosine for use as a live vaccine challenge in clinical trials. Vaccine 23(9):1170–1177

    PubMed  CAS  Google Scholar 

  • Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27(5):305–318

    PubMed  CAS  Google Scholar 

  • Dey R et al (2007a) Induction of host protective Th1 immune response by chemokines in Leishmania donovani-infected BALB/c mice. Scand J Immunol 66(6):671–683

    PubMed  CAS  Google Scholar 

  • Dey R et al (2007b) Functional paradox in host-pathogen interaction dictates the fate of parasites. Future Microbiol 2(4):425–437

    PubMed  CAS  Google Scholar 

  • Dey R et al (2010) Characterization of a Leishmania stage-specific mitochondrial membrane protein that enhances the activity of cytochrome c oxidase and its role in virulence. Mol Microbiol 77(2):399–414

    PubMed Central  PubMed  Google Scholar 

  • Dey R et al (2013) Live attenuated Leishmania donovani p27 gene knockout parasites are nonpathogenic and elicit long-term protective immunity in BALB/c mice. J Immunol 190(5):2138–2149

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dowlati Y et al (1996) Stepwise safety trial of a killed Leishmania vaccine in Iran. Clin Dermatol 14(5):497–502

    PubMed  CAS  Google Scholar 

  • Duncan RC et al (2004) The application of gene expression microarray technology to kinetoplastid research. Curr Mol Med 4(6):611–621

    PubMed  CAS  Google Scholar 

  • Duncan R et al (2009) Biomarkers of attenuation in the Leishmania donovani centrin gene deleted cell line-requirements for safety in a live vaccine candidate. Open Parasitology 3:32–41

    Google Scholar 

  • Duthie MS et al (2012) The development and clinical evaluation of second-generation leishmaniasis vaccines. Vaccine 30(2):134–141

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ehrchen J et al (2004) Senescent BALB/c mice are able to develop resistance to Leishmania major infection. Infect Immun 72(9):5106–5114

    PubMed Central  PubMed  CAS  Google Scholar 

  • Engwerda CR et al (1998) Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control of Leishmania donovani. Eur J Immunol 28(2):669–680

    PubMed  CAS  Google Scholar 

  • Fiorentino DF, Bond MW, Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170(6):2081–2095

    PubMed  CAS  Google Scholar 

  • Fiuza JA et al (2013) Induction of immunogenicity by live attenuated Leishmania donovani centrin deleted parasites in dogs. Vaccine 31(14):1785–1792

    PubMed  CAS  Google Scholar 

  • Gannavaram S et al (2012) Deletion of mitochondrial associated ubiquitin fold modifier protein Ufm1 in Leishmania donovani results in loss of beta-oxidation of fatty acids and blocks cell division in the amastigote stage. Mol Microbiol 86(1):187–198

    PubMed  CAS  Google Scholar 

  • Ghalib HW et al (1995) IL-12 enhances Th1-type responses in human Leishmania donovani infections. J Immunol 154(9):4623–4629

    PubMed  CAS  Google Scholar 

  • Ghosh A, Zhang WW, Matlashewski G (2001) Immunization with A2 protein results in a mixed Th1/Th2 and a humoral response which protects mice against Leishmania donovani infections. Vaccine 20(1–2):59–66

    PubMed  CAS  Google Scholar 

  • Gicheru MM et al (2001) Vervet monkeys vaccinated with killed Leishmania major parasites and interleukin-12 develop a type 1 immune response but are not protected against challenge infection. Infect Immun 69(1):245–251

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gomes CM et al (2007) Correlation between the components of the insulin-like growth factor I system, nutritional status and visceral leishmaniasis. Trans R Soc Trop Med Hyg 101(7):660–667

    PubMed  CAS  Google Scholar 

  • Gomes R et al (2008) Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci USA 105(22):7845–7850

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gomes R et al (2012) KSAC, a defined Leishmania antigen, plus adjuvant protects against the virulence of L. major transmitted by its natural vector Phlebotomus duboscqi. PLoS Negl Trop Dis 6(4):e1610

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goto Y et al (2009) Leishmania infantum sterol 24-c-methyltransferase formulated with MPL-SE induces cross-protection against L. major infection. Vaccine 27(21):2884–2890

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harhay MO et al (2011) Who is a typical patient with visceral leishmaniasis? Characterizing the demographic and nutritional profile of patients in Brazil, East Africa, and South Asia. Am J Trop Med Hyg 84(4):543–550

    PubMed Central  PubMed  Google Scholar 

  • Harrington LE, Mangan PR, Weaver CT (2006) Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol 18(3):349–356

    PubMed  CAS  Google Scholar 

  • Herwaldt BL (1999) Leishmaniasis. Lancet 354(9185):1191–1199

    PubMed  CAS  Google Scholar 

  • Holaday BJ et al (1993) Potential role for interleukin-10 in the immunosuppression associated with kala azar. J Clin Invest 92(6):2626–2632

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2(4):251–262

    PubMed  CAS  Google Scholar 

  • Kamhawi S et al (2000) Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290(5495):1351–1354

    PubMed  CAS  Google Scholar 

  • Kaur S et al (2008) Effect of dose and route of inoculation on the generation of CD4+ Th1/Th2 type of immune response in murine visceral leishmaniasis. Parasitol Res 103(6):1413–1419

    PubMed  Google Scholar 

  • Kedzierski L (2010) Leishmaniasis vaccine: where are we today? J Glob Infect Dis 2(2):177–185

    PubMed Central  PubMed  Google Scholar 

  • Kedzierski L et al (2008) Decreased IL-10 and IL-13 production and increased CD44hi T cell recruitment contribute to Leishmania major immunity induced by non-persistent parasites. Eur J Immunol 38(11):3090–3100

    PubMed  CAS  Google Scholar 

  • Kenney RT et al (1998) Splenic cytokine responses in Indian kala-azar before and after treatment. J Infect Dis 177(3):815–818

    PubMed  CAS  Google Scholar 

  • Lages CS et al (2008) Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol 181(3):1835–1848

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lehn M et al (1989) IL-4 inhibits H2O2 production and antileishmanial capacity of human cultured monocytes mediated by IFN-gamma. J Immunol 143(9):3020–3024

    PubMed  CAS  Google Scholar 

  • Lessa HA et al (2001) Successful treatment of refractory mucosal leishmaniasis with pentoxifylline plus antimony. Am J Trop Med Hyg 65(2):87–89

    PubMed  CAS  Google Scholar 

  • Liew FY, Li Y, Millott S (1990) Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of Leishmania major through the induction of nitric oxide. J Immunol 145(12):4306–4310

    PubMed  CAS  Google Scholar 

  • Lin Y, Slight SR, Khader SA (2010) Th17 cytokines and vaccine-induced immunity. Semin Immunopathol 32(1):79–90

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lindenstrom T et al (2009) Tuberculosis subunit vaccination provides long-term protective immunity characterized by multifunctional CD4 memory T cells. J Immunol 182(12):8047–8055

    PubMed  CAS  Google Scholar 

  • Liu D et al (2013) Deficiency of Leishmania phosphoglycans influences the magnitude but does not affect the quality of secondary (memory) anti-Leishmania immunity. PLoS One 8(6):e66058

    PubMed Central  PubMed  CAS  Google Scholar 

  • Maciel BL et al (2008) Association of nutritional status with the response to infection with Leishmania chagasi. Am J Trop Med Hyg 79(4):591–598

    PubMed  Google Scholar 

  • Mahajan B et al (2008) Centrins, cell cycle regulation proteins in human malaria parasite Plasmodium falciparum. J Biol Chem 283(46):31871–31883

    PubMed  CAS  Google Scholar 

  • Malafaia G (2009) Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review. Parasite Immunol 31(10):587–596

    PubMed  CAS  Google Scholar 

  • Masopust D et al (2006) Stimulation history dictates memory CD8 T cell phenotype: implications for prime-boost vaccination. J Immunol 177(2):831–839

    PubMed  CAS  Google Scholar 

  • Melby PC et al (2001) Leishmania donovani p36(LACK) DNA vaccine is highly immunogenic but not protective against experimental visceral leishmaniasis. Infect Immun 69(8):4719–4725

    PubMed Central  PubMed  CAS  Google Scholar 

  • Misra A et al (2001) Successful vaccination against Leishmania donovani infection in Indian langur using alum-precipitated autoclaved Leishmania major with BCG. Vaccine 19(25–26):3485–3492

    PubMed  CAS  Google Scholar 

  • Mizbani A et al (2009) Recombinant Leishmania tarentolae expressing the A2 virulence gene as a novel candidate vaccine against visceral leishmaniasis. Vaccine 28(1):53–62

    PubMed  Google Scholar 

  • Monteiro MC et al (2007) Effect of Lutzomyia longipalpis salivary gland extracts on leukocyte migration induced by Leishmania major. Am J Trop Med Hyg 76(1):88–94

    PubMed  Google Scholar 

  • Moore KW et al (1990) Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRFI. Science 248(4960):1230–1234

    PubMed  CAS  Google Scholar 

  • Moore JW et al (2012) B cell: T cell interactions occur within hepatic granulomas during experimental visceral leishmaniasis. PLoS One 7(3):e34143

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mosmann TR, Moore KW (1991) The role of IL-10 in crossregulation of TH1 and TH2 responses. Immunol Today 12(3):A49–A53

    PubMed  CAS  Google Scholar 

  • Mougneau E et al (1995) Expression cloning of a protective Leishmania antigen. Science 268(5210):563–566

    PubMed  CAS  Google Scholar 

  • Murphy ML et al (2001) IL-10 mediates susceptibility to Leishmania donovani infection. Eur J Immunol 31(10):2848–2856

    PubMed  CAS  Google Scholar 

  • Murray HW (1997) Endogenous interleukin-12 regulates acquired resistance in experimental visceral leishmaniasis. J Infect Dis 175(6):1477–1479

    PubMed  CAS  Google Scholar 

  • Murray HW et al (2000) Visceral leishmaniasis in mice devoid of tumor necrosis factor and response to treatment. Infect Immun 68(11):6289–6293

    PubMed Central  PubMed  CAS  Google Scholar 

  • Murray HW et al (2003) Determinants of response to interleukin-10 receptor blockade immunotherapy in experimental visceral leishmaniasis. J Infect Dis 188(3):458–464

    PubMed  CAS  Google Scholar 

  • Murray HW et al (2005) Advances in leishmaniasis. Lancet 366(9496):1561–1577

    PubMed  CAS  Google Scholar 

  • Muyombwe A et al (1997) Selective killing of Leishmania amastigotes expressing a thymidine kinase suicide gene. Exp Parasitol 85(1):35–42

    PubMed  CAS  Google Scholar 

  • Nakaya HI et al (2011) Systems biology of vaccination for seasonal influenza in humans. Nat Immunol 12(8):786–795

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nylen S, Sacks D (2007) Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 28(9):378–384

    PubMed  CAS  Google Scholar 

  • Nylen S et al (2007) Splenic accumulation of IL-10 mRNA in T cells distinct from CD4 + CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204(4):805–817

    PubMed Central  PubMed  CAS  Google Scholar 

  • Okwor I et al (2009) Inoculation of killed Leishmania major into immune mice rapidly disrupts immunity to a secondary challenge via IL-10-mediated process. Proc Natl Acad Sci USA 106(33):13951–13956

    PubMed Central  PubMed  CAS  Google Scholar 

  • Oliveira F et al (2006) From transcriptome to immunome: identification of DTH inducing proteins from a Phlebotomus ariasi salivary gland cDNA library. Vaccine 24(3):374–390

    PubMed  CAS  Google Scholar 

  • Oliveira F et al (2008) Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease. PLoS Negl Trop Dis 2(4):e226

    PubMed Central  PubMed  Google Scholar 

  • Oliveira F et al (2009) Sand flies, Leishmania, and transcriptome-borne solutions. Parasitol Int 58(1):1–5

    PubMed Central  PubMed  Google Scholar 

  • Oliveira F et al (2011) Lesion size correlates with Leishmania antigen-stimulated TNF-levels in human cutaneous leishmaniasis. Am J Trop Med Hyg 85(1):70–73

    PubMed Central  PubMed  CAS  Google Scholar 

  • Papadopoulou B et al (2002) Reduced infectivity of a Leishmania donovani biopterin transporter genetic mutant and its use as an attenuated strain for vaccination. Infect Immun 70(1):62–68

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pearson RD et al (1992) Visceral leishmaniasis: a model for infection-induced cachexia. Am J Trop Med Hyg 47(1 Pt 2):8–15

    PubMed  CAS  Google Scholar 

  • Peters NC et al (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321(5891):970–974

    PubMed Central  PubMed  CAS  Google Scholar 

  • Peters NC et al (2009) Vector transmission of Leishmania abrogates vaccine-induced protective immunity. PLoS Pathog 5(6):e1000484

    PubMed Central  PubMed  Google Scholar 

  • Peters NC et al (2012) Evaluation of recombinant Leishmania polyprotein plus glucopyranosyl lipid A stable emulsion vaccines against sand fly-transmitted Leishmania major in C57BL/6 mice. J Immunol 189(10):4832–4841

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pitta MG et al (2009) IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J Clin Invest 119(8):2379–2387

    PubMed Central  PubMed  CAS  Google Scholar 

  • Polley R et al (2006) Adoptive immunotherapy against experimental visceral leishmaniasis with CD8+ T cells requires the presence of cognate antigen. Infect Immun 74(1):773–776

    PubMed Central  PubMed  CAS  Google Scholar 

  • Querec TD et al (2009) Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10(1):116–125

    PubMed  CAS  Google Scholar 

  • Rafati S et al (2005) Protective vaccination against experimental canine visceral leishmaniasis using a combination of DNA and protein immunization with cysteine proteinases type I and II of L. infantum. Vaccine 23(28):3716–3725

    PubMed  CAS  Google Scholar 

  • Rafati S, Zahedifard F, Nazgouee F (2006) Prime-boost vaccination using cysteine proteinases type I and II of Leishmania infantum confers protective immunity in murine visceral leishmaniasis. Vaccine 24(12):2169–2175

    PubMed  CAS  Google Scholar 

  • Rogers ME et al (2004) Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG. Nature 430(6998):463–467

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ruiz JH, Becker I (2007) CD8 cytotoxic T cells in cutaneous leishmaniasis. Parasite Immunol 29(12):671–678

    PubMed  CAS  Google Scholar 

  • Sacks D, Kamhawi S (2001) Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu Rev Microbiol 55:453–483

    PubMed  CAS  Google Scholar 

  • Sacks DL et al (1984) Cutaneous leishmaniasis in anti-IgM-treated mice: enhanced resistance due to functional depletion of a B cell-dependent T cell involved in the suppressor pathway. J Immunol 132(4):2072–2077

    PubMed  CAS  Google Scholar 

  • Salisbury JL (1995) Centrin, centrosomes, and mitotic spindle poles. Curr Opin Cell Biol 7(1):39–45

    PubMed  CAS  Google Scholar 

  • Saravia NG et al (2006) Pathogenicity and protective immunogenicity of cysteine proteinase-deficient mutants of Leishmania mexicana in non-murine models. Vaccine 24(19):4247–4259

    PubMed  CAS  Google Scholar 

  • Scott P (2003) Development and regulation of cell-mediated immunity in experimental leishmaniasis. Immunol Res 27(2–3):489–498

    PubMed  CAS  Google Scholar 

  • Scott P, Natovitz P, Sher A (1986) B lymphocytes are required for the generation of T cells that mediate healing of cutaneous leishmaniasis. J Immunol 137(3):1017–1021

    PubMed  CAS  Google Scholar 

  • Selvapandiyan A et al (2001) Expression of a mutant form of Leishmania donovani centrin reduces the growth of the parasite. J Biol Chem 276(46):43253–43261

    PubMed  CAS  Google Scholar 

  • Selvapandiyan A et al (2004) Centrin gene disruption impairs stage-specific basal body duplication and cell cycle progression in Leishmania. J Biol Chem 279(24):25703–25710

    PubMed  CAS  Google Scholar 

  • Selvapandiyan A et al (2006) Genetically modified live attenuated parasites as vaccines for leishmaniasis. Indian J Med Res 123(3):455–466

    PubMed  CAS  Google Scholar 

  • Selvapandiyan A et al (2007) Centrin1 is required for organelle segregation and cytokinesis in Trypanosoma brucei. Mol Biol Cell 18:3290–3301

    PubMed Central  PubMed  CAS  Google Scholar 

  • Selvapandiyan A et al (2009) Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis. J Immunol 183(3):1813–1820

    PubMed  CAS  Google Scholar 

  • Selvapandiyan A et al (2012) Immunity to visceral leishmaniasis using genetically defined live-attenuated parasites. J Trop Med 2012:631460

    PubMed Central  PubMed  Google Scholar 

  • Silvestre R et al (2007) SIR2-deficient Leishmania infantum induces a defined IFN-gamma/IL-10 pattern that correlates with protection. J Immunol 179(5):3161–3170

    PubMed  CAS  Google Scholar 

  • Singh N et al (2007) Age-influenced population kinetics and immunological responses of Leishmania donovani in hamsters. Parasitol Res 101(4):919–924

    PubMed  Google Scholar 

  • Sjolander A et al (1998) Vaccination with recombinant parasite surface antigen 2 from Leishmania major induces a Th1 type of immune response but does not protect against infection. Vaccine 16(20):2077–2084

    PubMed  CAS  Google Scholar 

  • Skeiky YA et al (2002) Protective efficacy of a tandemly linked, multi-subunit recombinant leishmanial vaccine (Leish-111f) formulated in MPL adjuvant. Vaccine 20(27–28):3292–3303

    PubMed  CAS  Google Scholar 

  • Soong L et al (1995) Leishmania pifanoi amastigote antigens protect mice against cutaneous leishmaniasis. Infect Immun 63(9):3559–3566

    PubMed Central  PubMed  CAS  Google Scholar 

  • Spath GF et al (2003) Persistence without pathology in phosphoglycan-deficient Leishmania major. Science 301(5637):1241–1243

    PubMed  Google Scholar 

  • Spath GF et al (2004) Identification of a compensatory mutant (lpg2-REV) of Leishmania major able to survive as amastigotes within macrophages without LPG2-dependent glycoconjugates and its significance to virulence and immunization strategies. Infect Immun 72(6):3622–3627

    PubMed Central  PubMed  Google Scholar 

  • Squires KE et al (1989) Experimental visceral leishmaniasis: role of endogenous IFN-gamma in host defense and tissue granulomatous response. J Immunol 143(12):4244–4249

    PubMed  CAS  Google Scholar 

  • Srivastava P et al (2011) Unusual case of resistance to amphotericin B in visceral leishmaniasis in a region in India where leishmaniasis is not endemic. J Clin Microbiol 49(8):3088–3091

    PubMed Central  PubMed  Google Scholar 

  • Srividya G et al (2007) Transcriptome analysis during the process of in vitro differentiation of Leishmania donovani using genomic microarrays. Parasitology 134(Pt 11):1527–1539

    PubMed  CAS  Google Scholar 

  • Stager S, Smith DF, Kaye PM (2000) Immunization with a recombinant stage-regulated surface protein from Leishmania donovani induces protection against visceral leishmaniasis. J Immunol 165(12):7064–7071

    PubMed  CAS  Google Scholar 

  • Stern JJ et al (1988) Role of L3T4+ and LyT-2+ cells in experimental visceral leishmaniasis. J Immunol 140(11):3971–3977

    PubMed  CAS  Google Scholar 

  • Streit JA et al (2001) Protective immunity against the protozoan Leishmania chagasi is induced by subclinical cutaneous infection with virulent but not avirulent organisms. J Immunol 166(3):1921–1929

    PubMed  CAS  Google Scholar 

  • Sundar S, Chatterjee M (2006) Visceral leishmaniasis—current therapeutic modalities. Indian J Med Res 123(3):345–352

    PubMed  CAS  Google Scholar 

  • Tewary P et al (2005) A heterologous prime-boost vaccination regimen using ORFF DNA and recombinant ORFF protein confers protective immunity against experimental visceral leishmaniasis. J Infect Dis 191(12):2130–2137

    PubMed  CAS  Google Scholar 

  • Titus RG et al (1995) Development of a safe live Leishmania vaccine line by gene replacement. Proc Natl Acad Sci USA 92(22):10267–10271

    PubMed Central  PubMed  CAS  Google Scholar 

  • Trautmann L, Sekaly RP (2011) Solving vaccine mysteries: a systems biology perspective. Nat Immunol 12(8):729–731

    PubMed  CAS  Google Scholar 

  • Tumang MC et al (1994) Role and effect of TNF-alpha in experimental visceral leishmaniasis. J Immunol 153(2):768–775

    PubMed  CAS  Google Scholar 

  • Uzonna JE et al (2004) Vaccination with phosphoglycan-deficient Leishmania major protects highly susceptible mice from virulent challenge without inducing a strong Th1 response. J Immunol 172(6):3793–3797

    PubMed  CAS  Google Scholar 

  • van Zandbergen G et al (2004) Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages. J Immunol 173(11):6521–6525

    PubMed  Google Scholar 

  • Vouldoukis I et al (1997) Interleukin-10 and interleukin-4 inhibit intracellular killing of Leishmania infantum and Leishmania major by human macrophages by decreasing nitric oxide generation. Eur J Immunol 27(4):860–865

    PubMed  CAS  Google Scholar 

  • Wanasen N, Xin L, Soong L (2008) Pathogenic role of B cells and antibodies in murine Leishmania amazonensis infection. Int J Parasitol 38(3–4):417–429

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zaph C et al (2004) Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat Med 10(10):1104–1110

    PubMed  CAS  Google Scholar 

  • Zhang WW, Matlashewski G (1997) Loss of virulence in Leishmania donovani deficient in an amastigote-specific protein, A2. Proc Natl Acad Sci USA 94(16):8807–8811

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang WW, Matlashewski G (2001) Characterization of the A2-A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Mol Microbiol 39(4):935–948

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Alain Debrabant and Sanjai Kumar (DETTD, CBER/FDA) for critical review of the manuscript. This work was supported by intramural funds of the Center for Biologics Evaluation and Research, FDA.

Disclaimer The findings of this study are an informal communication and represent authors’ own best judgment. These comments do not bind or obligate the Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hira L. Nakhasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dey, R., Gannavaram, S., Selvapandiyan, A., Fiuza, J., Duncan, R., Nakhasi, H.L. (2014). Current Status and Future Challenges for the Development of Genetically Altered Live Attenuated Leishmania Vaccines. In: Satoskar, A., Durvasula, R. (eds) Pathogenesis of Leishmaniasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9108-8_4

Download citation

Publish with us

Policies and ethics