Skip to main content

In Situ and In Vivo Animal Models

  • Chapter
  • First Online:
Drug Delivery to the Brain

Abstract

An important property in any central nervous system drug is the ability to cross the blood–brain barrier (BBB) and to reach therapeutic concentrations in brain at safe and acceptable doses. Multiple parameters influence brain drug bioavailability, including solubility, membrane permeation, and affinity for influx and efflux transporters. This chapter overviews the primary in vivo methods to assess brain drug distribution in preclinical and clinical reports. In most studies, two parameters, the BBB permeability-surface area product (PS) and brain distribution volume or partition coefficient (K p,brain), are used to characterize the ability of a drug compound to gain access to and distribute in brain. Together with the time course of systemic drug exposure, these two parameters can be used to predict total drug concentration within brain. Further, because unbound drug concentration often correlates better with drug activity, a number of studies also determine the drug free fraction (f u) so that the free concentrations can be calculated. Specific methods, such as in situ brain perfusion, brain efflux index, and brain microdialysis, are valuable to dissect specific elements of BBB drug permeation or transport as well as equilibration in brain interstitial fluid and cellular elements. Overall, these approaches complement in vivo drug distribution studies and in vitro BBB permeation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AndrĂ© P, SaubamĂ©a B, Cochois-GuĂ©gan V, Marie-Claire C, Cattelotte J, Smirnova M, Schinkel AH, Scherrmann JM, Cisternino S (2013) Transport of biogenic amine neurotransmitters at the mouse blood–retina and blood–brain barriers by uptake1 and uptake2. AAPS J 32:1989–2001

    Google Scholar 

  • Cardoso FL, Brites D, Brito MA (2010) Looking at the blood–brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev 64:328–363

    Article  CAS  PubMed  Google Scholar 

  • Crone C (1963) Permeability of capillaries of various organs as determined using the “indicator diffusion” method. Acta Physiol Scand 58:292–305

    Article  CAS  PubMed  Google Scholar 

  • Crone C (1986) Modulation of solute permeability in microvascular endothelium. Fed Proc 45:77–83

    Article  CAS  PubMed  Google Scholar 

  • de Lange ECM, Danhof M, de Boer AG, Breimer DD (1997) Methodological considerations of intracerebral microdialysis in pharmacokinetic studies of drug transport across the blood–brain barrier. Brain Res Rev 25:27–49

    Article  PubMed  Google Scholar 

  • FridĂ©n M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udanaes M, Antonsson M (2009) Structure-brain exposure relationships in rat and human using a novel set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem 52:6233–6243

    Article  PubMed  Google Scholar 

  • Duncan MW, Villacreses N, Pearson PG, Wyatt L, Rapoport SI, Kopin IJ, Markey SP, Smith QR (1991) 2-Amino-3- (methylamino)-propanoic acid (BMAA) pharmacokinetics and blood-brain barrier permeability in the rat. J Pharmacol Exp Ther 258:27–35

    CAS  PubMed  Google Scholar 

  • Hammarlund-Udenaes M, FridĂ©n M, Syvänen S, Gupta A (2008) On the rate and extent of drug delivery to the brain. Pharm Res 25:1737–1750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kakee A, Terasaki T, Sugiyama Y (1996a) Brain efflux index as a novel method of analyzing efflux transport at the blood–brain barrier. J Pharmacol Exp Ther 277:1550–1559

    CAS  PubMed  Google Scholar 

  • Kakee A, Terasaki T, Sugiyama Y (1996b) Selective brain to blood efflux transport of para-aminohippuric acid across the blood–brain barrier: in vivo evidence by use of the brain efflux index method. J Pharmacol Exp Ther 283:1018–1025

    Google Scholar 

  • Kalvass JE, Olson ER, Cassidy MP, Selley DE, Pollack GM (2007) Pharmacokinetics and pharmacodynamics of seven opioids in p-glycoprotein-competent mice; assessment of unbound brain EC50,u and correlation of in vitro, preclinical, and clinical data. J Pharmacol Exp Ther 323:346–355

    Article  CAS  PubMed  Google Scholar 

  • Kemper EM, van Zandbergen AE, Cleypool C, Mos HA, Boogerd W, Beijnen JH, van Tellingen O (2003) Increased penetration of paclitaxel into the brain by inhibition of P-glycoprotein. Clin Cancer Res 9:2849–2855

    CAS  PubMed  Google Scholar 

  • Lin F, Marchetti S, Pluim D, Iusuf D, Mazzanti R, Schellens JH, Beijnen JH, van Tellingen O (2013) Abcc4 together with abcb1 and abcg2 form a robust cooperative drug efflux system that restricts the brain entry of camptothecin analogues. Clin Cancer Res 19:2084–2095

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chen C, Smith BJ (2008) Progress in brain penetration evaluation in drug discovery and development. J Pharmacol Exp Ther 325:349–356

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ding X, Deshmukh G, Liederer BM, Hop CE (2012) Use of the cassette-dosing approach to assess brain penetration in drug discovery. Drug Metab Dispos 40:963–969

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Smith BJ, Chen C, Callegari E, Becker SL, Chen X, Cianfrogna J, Doran AC, Doran SD, Gibbs JP, Hosea N, Liu J, Nelson FR, Szewc MA, Van Deusen J (2005) Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood–brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther 313:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Vilenski O, Kwan J, Apparsundaram S, Weikert R (2009) Unbound brain concentration determines receptor occupancy: a correlation of drug concentration and brain serotonin and dopamine reuptake transporter occupancy for eighteen compounds. Drug Metab Dispos 37:1548–1556

    Article  CAS  PubMed  Google Scholar 

  • Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, Adkins CE, Roberts A, Thorsheim HR, Gaasch JA, Huang S, Palmieri D, Steeg PS, Smith QR (2010) Heterogeneous blood-tumor barrier permeability determines drug efficacy in mouse brain metastases of breast cancer. Clin Cancer Res 16:5664–5678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mandula H, Parepally JMR, Feng R, Smith QR (2006) Role of site-specific binding to plasma albumin in drug availability to brain. J Pharmacol Exp Ther 317:667–675

    Article  CAS  PubMed  Google Scholar 

  • Ohno K, Pettigrew KD, Rapoport SI (1978) Lower limits of cerebrovascular permeability to nonelectrolytes in the conscious rat. Am J Physiol 235:H299–H307

    CAS  PubMed  Google Scholar 

  • Padowski JM, Pollack GM (2011) Influence of time to achieve substrate distribution equilibrium between brain tissue abd blood on quantitation of the blood–brain barrier p-glycoprotein effect. Brain Res 1426:1–17

    Article  CAS  PubMed  Google Scholar 

  • Parepally JMR, Mandula H, Smith QR (2006) Brain uptake of nonsteroidal anti-inflammatory drugs—ibuprofen, flurbiprofen and indomethacin. Pharm Res 23:873–881

    Article  CAS  PubMed  Google Scholar 

  • Rapoport SI, Ohno K, Pettigrew KD (1979) Drug entry into the brain. Brain Res 172:354–359

    Article  CAS  PubMed  Google Scholar 

  • Renkin EM (1959) Transport of potassium from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197:1205–1210

    CAS  PubMed  Google Scholar 

  • Smith QR, Rapoport SI (1986) Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J Neurochem 46:1732–1742

    Article  CAS  PubMed  Google Scholar 

  • Smith QR (2003) A review of blood–brain barrier transport techniques. Meth Mol Med 10:191–2003

    Google Scholar 

  • Takasato Y, Rapoport SI, Smith QR (1984) An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Physiol 247:H484–H493

    CAS  PubMed  Google Scholar 

  • Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J, Gril B, Hua E, Palmieri D, Polli JW, Castellino S, Rubin SD, Lockman PR, Steeg PS, Smith QR (2012) Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res 29(3):770–781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, Gaasch JA, Palmieri D, Steeg PS, Lockman PR, Smith QR (2009) Uptake of ANG1005—a novel paclitaxel-peptide derivative, through the blood–brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 26:2486–2492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin R. Smith Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Smith, Q.R., Samala, R. (2014). In Situ and In Vivo Animal Models. In: Hammarlund-Udenaes, M., de Lange, E., Thorne, R. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9105-7_7

Download citation

Publish with us

Policies and ethics