Skip to main content

In Vitro Models of CNS Barriers

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 10))

Abstract

This chapter reviews the history and modern applications of isolated preparations of the three main CNS barrier layers and cell culture preparations derived from them. In vitro models give valuable mechanistic information but also provide useful assay systems for drug discovery and delivery programmes. However, it is important to take into account practical issues including species differences and the degree to which the differentiated state of the in vivo barrier is retained. The range of models available is reviewed, with a critical evaluation of their strengths and weaknesses, and guidance in selecting and optimizing a suitable model for particular applications. New understanding of the unstirred water layers and paracellular leak pathway in in vitro preparations gives greater insights into the “intrinsic permeability” of the membrane, and a variety of techniques permit characterization of the transport systems and enzymes contributing to barrier function. Increasingly, aspects of CNS pathology are being modelled in cell culture, aiding the optimization of drug delivery regimes in pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ (2004) Prediction of blood-brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov Today Technol 1:407–416

    CAS  Google Scholar 

  • Abbott NJ (2013) Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36:437–449

    CAS  PubMed  Google Scholar 

  • Abbott NJ, Dolman DE, Drndarski S, Fredriksson SM (2012) An improved in vitro blood-brain barrier model: rat brain endothelial cells co-cultured with astrocytes. Methods Mol Biol 814:415–430

    CAS  PubMed  Google Scholar 

  • Angelow S, Zeni P, Galla HJ (2004) Usefulness and limitation of primary cultured porcine choroid plexus epithelial cells as an in vitro model to study drug transport at the blood-CSF barrier. Adv Drug Deliv Rev 56:1859–1873

    CAS  PubMed  Google Scholar 

  • Audus KL, Borchardt RT (1986) Characterisation of an in vitro blood-brain barrier model system for studying drug transport and metabolism. Pharm Res 3:81–87

    CAS  PubMed  Google Scholar 

  • Audus KL, Rose JM, Wang W, Borchardt RT (1998) Brain microvessel endothelial cell culture systems. In: Pardridge WM (ed) Introduction to the blood-brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge

    Google Scholar 

  • Avdeef A (2011) How well can in vitro brain microcapillary endothelial cell models predict rodent in vivo blood-brain barrier permeability? Eur J Pharm Sci 43:109–124

    CAS  PubMed  Google Scholar 

  • Avdeef A (2012) Absorption and drug development: solubility, permeability and charge state, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Baehr C, Reichel V, Fricker G (2006) Choroid plexus epithelial monolayers - a cell culture model from porcine brain. Cerebrospinal Fluid Res 3:13

    PubMed Central  PubMed  Google Scholar 

  • Ball K, Bouzom F, Scherrmann JM, Walther B, Declèves X (2012) Development of a physiologically based pharmacokinetic model for the rat central nervous system and determination of an in vitro-in vivo scaling methodology for the blood-brain barrier permeability of two transporter substrates, morphine and oxycodone. J Pharm Sci 101:4277–4292

    CAS  PubMed  Google Scholar 

  • Ball K, Bouzom F, Scherrmann JM, Walther B, Declèves X (2013) Physiologically based pharmacokinetic modelling of drug penetration across the blood-brain barrier – towards a mechanistic IVIVE-based approach. AAPS J 15:913–932

    Google Scholar 

  • Ballermann BJ, Dardik A, Eng E, Liu A (1998) Shear stress and the endothelium. Kidney Int Suppl 67:S100–S108

    CAS  PubMed  Google Scholar 

  • Benson K, Cramer S, Galla HJ (2013) Impedance-based cell monitoring: barrier properties and beyond. Fluids Barriers CNS 10(1):5. doi:10.1186/2045-8118-10-5

    PubMed Central  PubMed  Google Scholar 

  • Booth R, Kim H (2012) Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12:1784–1792

    CAS  PubMed  Google Scholar 

  • Bouldin TW, Krigman MR (1975) Differential permeability of cerebral capillary and choroid plexus to lanthanum ion. Brain Res 99:444–448

    CAS  PubMed  Google Scholar 

  • Bowman PD, Betz AL, Ar D, Wolinsky JS, Penney JB, Shivers RR, Goldstein GW (1981) Primary culture of capillary endothelium from rat brain. In Vitro 17:353–362

    CAS  PubMed  Google Scholar 

  • Bowman PD, Ennis SR, Rarey KE, Betz AL, Goldstein GW (1983) Brain microvessel endothelial cells in culture: a model for study of blood-brain barrier permeability. Ann Neurol 14:396–402

    CAS  PubMed  Google Scholar 

  • Brendel K, Meezan E, Carlson EC (1974) Isolated brain microvessels: a purified, metabolically active preparation from bovine cerebral cortex. Science 185:953–955

    CAS  PubMed  Google Scholar 

  • Burek M, Salvador E, Förster CY (2012) Generation of an immortalized murine brainmicrovascular endothelial cell line as an in vitro blood brain barrier model. J Vis Exp 29(66):e4022. doi:10.3791/4022

    Google Scholar 

  • Campos CR, Schröter C, Wang X, Miller DS (2012) ABC transporter function and regulation at the blood-spinal cord barrier. J Cereb Blood Flow Metab 32:1559–1566

    CAS  PubMed  Google Scholar 

  • Candela P, Gosselet F, Saint-Pol J, Sevin E, Boucau MC, Boulanger E, Cecchelli R, Fenart L (2010) Apical-to-basolateral transport of amyloid-β peptides through blood-brain barrier cells is mediated by the receptor for advanced glycation end-products and is restricted by P-glycoprotein. J Alzheimers Dis 22:849–859

    CAS  PubMed  Google Scholar 

  • Cecchelli R, Dehouck B, Descamps L, Fenart L, Buée-Scherrer V, Duhem C, Lundquist S, Rentfel M, Torpier G, Dehouck MP (1999) In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev 36:165–178

    CAS  PubMed  Google Scholar 

  • Cohen-Kashi Malina K, Cooper I, Teichberg VI (2009) Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness. Brain Res 1284:12–21

    CAS  PubMed  Google Scholar 

  • Cohen-Kashi-Malina K, Cooper I, Teichberg VI (2012) Mechanisms of glutamate efflux at the blood-brain barrier: involvement of glial cells. J Cereb Blood Flow Metab 32:177–189

    CAS  PubMed  Google Scholar 

  • Coisne C, Dehouck L, Faveeuw C, Delplace Y, Miller F, Landry C, Morissette C, Fenart L, Cecchelli R, Tremblay P, Dehouck B (2005) Mouse syngenic in vitro blood-brain barrier model: a new tool to examine inflammatory events in cerebral endothelium. Lab Invest 85:734–746

    CAS  PubMed  Google Scholar 

  • Cucullo L, Couraud PO, Weksler B, Romero IA, Hossain M, Rapp E, Janigro D (2008) Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab 28:312–328

    CAS  PubMed  Google Scholar 

  • Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D (2011) The role of shear stress in blood-brain barrier endothelial physiology. BMC Neurosci 12:40

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cucullo L, McAllister MS, Kight K, Krizanac-Bengez L, Marroni M, Mayberg MR, Stanness KA, Janigro D (2002) A new dynamic in vitro model for the multidimensional study of astrocyte-endothelial cell interactions at the blood-brain barrier. Brain Res 951:243–254

    CAS  PubMed  Google Scholar 

  • Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y, Dehouck MP, Berezowski V, Fenart L, Cecchelli R (2008) An in vitro blood-brain barrier model for high throughput (HTS) toxicological screening. Toxicol In Vitro 22:799–811

    CAS  PubMed  Google Scholar 

  • Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA (2010a) The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One 5(10):e13741. doi:10.1371/journal.pone.0013741

    PubMed Central  PubMed  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010b) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dasgupta S, Wang G, Yu RK (2011) Sulfoglucuronosyl paragloboside promotes endothelial cell apoptosis in inflammation: elucidation of a novel glycosphingolipid-signaling pathway. J Neurochem 119:749–759

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Boer AG, Sutanto W (eds) (1997) Drug transport across the blood-brain barrier. Harwood, Amsterdam

    Google Scholar 

  • DeBault LE, Cancilla PA (1980) Gamma-glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cells in vitro. Science 207:653–655

    CAS  PubMed  Google Scholar 

  • Dehouck MP, Méresse S, Delorme P, Fruchart JC, Cecchelli R (1990) An easier, reproducible, and mass-production method to study the blood-brain barrier in vitro. J Neurochem 54:1798–1801

    CAS  PubMed  Google Scholar 

  • Deli MA, Abrahám CS, Kataoka Y, Niwa M (2005) Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 25:59–127

    PubMed  Google Scholar 

  • Dorovini-Zis K, Prameya R, Bowman PD (1991) Culture and characteristics of microvascular endothelial cells derived from human brain. Lab Invest 64:425–436

    CAS  PubMed  Google Scholar 

  • Duport S, Robert F, Muller D, Grau G, Parisi L, Stoppini L (1998) An in vitro blood-brain barrier model: cocultures between endothelial cells and organotypic brain slice cultures. Proc Natl Acad Sci U S A 95:1840–1845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dutheil F, Jacob A, Dauchy S, Beaune P, Scherrmann JM, Declèves X, Loriot MA (2010) ABC transporters and cytochromes P450 in the human central nervous system: influence on brain pharmacokinetics and contribution to neurodegenerative disorders. Expert Opin Drug Metab Toxicol 6:1161–1174

    CAS  PubMed  Google Scholar 

  • Ehrlich P (1885) Das Sauerstoffbeduerfnis des Organismus, In: Eine Farbenanalytische Studie. Hirschwald, Berlin

    Google Scholar 

  • Förster C, Silwedel C, Golenhofen N, Burek M, Kietz S, Mankertz J, Drenckhahn D (2005) Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system. J Physiol 565:475–486

    PubMed  Google Scholar 

  • Franke H, Galla HJ, Beuckmann CT (1999) An improved low-permeability in vitro-model of the blood-brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res 818:65–71

    CAS  PubMed  Google Scholar 

  • Franke H, Galla HJ, Beuckmann CT (2000) Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood-brain barrier in vitro. Brain Res Brain Res Protoc 5:248–256

    CAS  PubMed  Google Scholar 

  • Fricker G (2002) Drug transport across the blood-brain barrier. In: Pelkonen O, Baumann A, Reichel A (eds) Pharmacokinetic challenges in drug discovery. Springer, Berlin

    Google Scholar 

  • Gaillard PJ, de Boer AG (2000) Relationship between permeability status of the blood-brain barrier and in vitro permeability coefficient of a drug. Eur J Pharm Sci 12:95–102

    CAS  PubMed  Google Scholar 

  • Garberg P (1998) In vitro models of the blood-brain barrier. ATLA 28:821–847

    Google Scholar 

  • Garberg P, Ball M, Borg N, Cecchelli R, Fenart L, Hurst RD, Lindmark T, Mabondzo A, Nilsson JE, Raub TJ, Stanimirovic D, Terasaki T, Oberg JO, Osterberg T (2005) In vitro models for the blood-brain barrier. Toxicol In Vitro 19:299–334

    CAS  PubMed  Google Scholar 

  • Ge S, Song L, Pachter JS (2005) Where is the blood-brain barrier … really? J Neurosci Res 79:421–427

    CAS  PubMed  Google Scholar 

  • Gibbs JE, Thomas SA (2002) The distribution of the anti-HIV drug, 2'3'-dideoxycytidine (ddC), across the blood-brain and blood-cerebrospinal fluid barriers and the influence of organic anion transport inhibitors. J Neurochem 80:392–404

    CAS  PubMed  Google Scholar 

  • Gil ES, Wu L, Xu L, Lowe TL (2012) β-Cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier. Biomacromolecules 13:3533–3541

    CAS  PubMed  Google Scholar 

  • Giri R, Selvaraj S, Miller CA, Hofman F, Yan SD, Stern D, Zlokovic BV, Kalra VK (2002) Effect of endothelial cell polarity on beta-amyloid-induced migration of monocytes across normal and AD endothelium. Am J Physiol Cell Physiol 283:C895–C904

    CAS  PubMed  Google Scholar 

  • Giurdanella G, Motta C, Muriana S, Arena V, Anfuso CD, Lupo G, Alberghina M (2011) Cytosolic and calcium-independent phospholipase A(2) mediate glioma-enhanced proangiogenic activity of brain endothelial cells. Microvasc Res 81:1–17

    CAS  PubMed  Google Scholar 

  • Grasset E, Pinto M, Dussaulx E, Zweibaum A, Desjeux JF (1984) Epithelial properties of human colonic carcinoma cell line Caco-2: electrical parameters. Am J Physiol 247:C260–C267

    CAS  PubMed  Google Scholar 

  • Greenwood J, Pryce G, Devine L, Male DK, dos Santos WL, Calder VL, Adamson P (1996) SV40 large T immortalised cell lines of the rat blood-brain and blood-retinal barriers retain their phenotypic and immunological characteristics. J Neuroimmunol 71:51–63

    CAS  PubMed  Google Scholar 

  • Griep LM, Wolbers F, de Wagenaar B, ter Braak PM, Weksler BB, Romero IA, Couraud PO, Vermes I, van der Meer AD, van den Berg A (2013) BBB ON CHIP: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function. Biomed Microdevices 15:145–150

    CAS  PubMed  Google Scholar 

  • Hart MN, VanDyk LF, Moore SA, Shasby DM, Cancilla PA (1987) Differential opening of the brain endothelial barrier following neutralization of the endothelial luminal anionic charge in vitro. J Neuropathol Exp Neurol 46:141–153

    CAS  PubMed  Google Scholar 

  • Hartz AM, Bauer B, Soldner EL, Wolf A, Boy S, Backhaus R, Mihaljevic I, Bogdahn U, Klünemann HH, Schuierer G, Schlachetzki F (2012) Amyloid-β contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke 43:514–523

    CAS  PubMed  Google Scholar 

  • Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ (2011) Development of a three-dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-cultivation Transwell models. J Neurosci Methods 199:223–229

    PubMed  Google Scholar 

  • Hellinger E, Veszelka S, Tóth AE, Walter F, Kittel A, Bakk ML, Tihanyi K, Háda V, Nakagawa S, Duy TD, Niwa M, Deli MA, Vastag M (2012) Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Eur J Pharm Biopharm 82:340–351

    CAS  PubMed  Google Scholar 

  • Helms HC, Waagepetersen HS, Nielsen CU, Brodin B (2010) Paracellular tightness and claudin-5 expression is increased in the BCEC/astrocyte blood-brain barrier model by increasing media buffer capacity during growth. AAPS J 12:759–770

    CAS  PubMed  Google Scholar 

  • Helms HC, Madelung R, Waagepetersen HS, Nielsen CU, Brodin B (2012) In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate. Glia 60:882–893

    PubMed  Google Scholar 

  • Hoheisel D, Nitz T, Franke H, Wegener J, Hakvoort A, Tilling T, Galla HJ (1998) Hydrocortisone reinforces the blood-brain barrier properties in a serum free cell culture system. Biochem Biophys Res Commun 247:312–315

    CAS  PubMed  Google Scholar 

  • Hoshi Y, Uchida Y, Tachikawa M, Inoue T, Ohtsuki S, Terasaki T (2013) Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci 102:3343–3355

    CAS  PubMed  Google Scholar 

  • Hosoya KI, Takashima T, Tetsuka K, Nagura T, Ohtsuki S, Takanaga H, Ueda M, Yanai N, Obinata M, Terasaki T (2000) mRNA expression and transport characterization of conditionally immortalized rat brain capillary endothelial cell lines; a new in vitro BBB model for drug targeting. J Drug Target 8:357–370

    Google Scholar 

  • Hosoya K, Tomi M, Ohtsuki S, Takanaga H, Ueda M, Yanai N, Obinata M, Terasaki T (2001) Conditionally immortalized retinal capillary endothelial cell lines (TR-iBRB) expressing differentiated endothelial cell functions derived from a transgenic rat. Exp Eye Res 72:163–172

    CAS  PubMed  Google Scholar 

  • Huber O, Brunner A, Maier P, Kaufmann R, Couraud PO, Cremer C, Fricker G (2012) Localization microscopy (SPDM) reveals clustered formations of P-glycoprotein in a human blood-brain barrier model. PLoS One 7(9):e44776. doi:10.1371/journal.pone.0044776

    PubMed Central  PubMed  Google Scholar 

  • Hurst RD, Fritz IB (1996) Properties of an immortalised vascular endothelial/glioma cell co-culture model of the blood-brain barrier. J Cell Physiol 167:81–88

    CAS  PubMed  Google Scholar 

  • Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, Kamiie J, Terasaki T (2011a) Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 100:3939–3950

    CAS  PubMed  Google Scholar 

  • Ito S, Ohtsuki S, Katsukura Y, Funaki M, Koitabashi Y, Sugino A, Murata S, Terasaki T (2011b) Atrial natriuretic peptide is eliminated from the brain by natriuretic peptide receptor-C-mediated brain-to-blood efflux transport at the blood-brain barrier. J Cereb Blood Flow Metab 31:457–466

    CAS  PubMed  Google Scholar 

  • Ito S, Ohtsuki S, Nezu Y, Koitabashi Y, Murata S, Terasaki T (2011c) 1α,25-Dihydroxyvitamin D3 enhances cerebral clearance of human amyloid-β peptide(1-40) from mouse brain across the blood-brain barrier. Fluids Barriers CNS 8:20. doi:10.1186/2045-8118-8-20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janigro D, Leaman SM, Stanness KA (1999) Dynamic modeling of the blood-brain barrier: a novel tool for studies of drug delivery to the brain. Pharm Sci Technolo Today 2:7–12

    CAS  PubMed  Google Scholar 

  • Janson C, Romanova L, Hansen E, Hubel A, Lam C (2011) Immortalization and functional characterization of rat arachnoid cell lines. Neuroscience 177:23–34

    CAS  PubMed  Google Scholar 

  • Joó F (1992) The cerebral microvessels in culture, an update. J Neurochem 58:1–17

    PubMed  Google Scholar 

  • Joó F, Karnushina I (1973) A procedure for the isolation of capillaries from rat brain. Cytobios 8:41–48

    PubMed  Google Scholar 

  • Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K, Sekine Y, Uchida Y, Ito S, Terasaki T (2008) Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res 25:1469–1483

    CAS  PubMed  Google Scholar 

  • Karlstedt K, Jin C, Panula P (2013) Expression of histamine receptor Hrh3 and Hrh4 in rat brain endothelial cells. Br J Pharmacol 170:58–66

    CAS  PubMed  Google Scholar 

  • Kasa P, Pakaski M, Joó F, Lajtha A (1991) Endothelial cells from human fetal brain microvessels may be cholinoceptive, but do not synthesize acetylcholine. J Neurochem 56:2143–2146

    CAS  PubMed  Google Scholar 

  • Kido Y, Tamai I, Okamoto M, Suzuki F, Tsuji A (2000) Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood-brain barrier using in vitro cultured cells and in vivo BUI studies. Pharm Res 17:555–562

    Google Scholar 

  • Kovács R, Papageorgiou I, Heinemann U (2011) Slice cultures as a model to study neurovascular coupling and blood brain barrier in vitro. Cardiovasc Psychiatry Neurol 2011:646958. doi:10.1155/2011/646958

    PubMed Central  PubMed  Google Scholar 

  • Krämer SD, Abbott NJ, Begley DJ (2001) Biological models to study blood-brain barrier permeation. In: Testa B, van de Waterbeemd H, Folkers G, Guy R (eds) Pharmacokinetic optimization in drug research: biological, physicochemical and computational strategies. Wiley-VCH, Weinheim

    Google Scholar 

  • Lam CH, Hansen EA, Hubel A (2011) Arachnoid cells on culture plates and collagen scaffolds: phenotype and transport properties. Tissue Eng Part A 17:1759–1766

    CAS  PubMed  Google Scholar 

  • Lam CH, Hansen EA, Janson C, Bryan A, Hubel A (2012) The characterization of arachnoid cell transport II: paracellular transport and blood-cerebrospinal fluid barrier formation. Neuroscience 222:228–238

    CAS  PubMed  Google Scholar 

  • Larochelle C, Cayrol R, Kebir H, Alvarez JI, Lécuyer MA, Ifergan I, Viel É, Bourbonnière L, Beauseigle D, Terouz S, Hachehouche L, Gendron S, Poirier J, Jobin C, Duquette P, Flanagan K, Yednock T, Arbour N, Prat A (2012) Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain 135:2906–2924

    PubMed  Google Scholar 

  • Lee NY, Choi HO, Kang YS (2012) The acetylcholinesterase inhibitors competitively inhibited an acetyl L-carnitine transport through the blood-brain barrier. Neurochem Res 37:1499–1507

    CAS  PubMed  Google Scholar 

  • Li YJ, Boado RJ, Pardridge WM (2001) Blood-brain barrier genomics. J Cereb Blood Flow Metab 21:61–68

    CAS  PubMed  Google Scholar 

  • Li JY, Boado RJ, Pardridge WM (2002) Rat blood-brain barrier genomics. II. J Cereb Blood Flow Metab 22:1319–1326

    CAS  PubMed  Google Scholar 

  • Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP, Shusta EV (2012) Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30:783–791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lippmann ES, Al-Ahmad A, Palecek SP, Shusta EV (2013) Modeling the blood-brain barrier using stem cell sources. Fluids Barriers CNS 10(1):2. doi:10.1186/2045-8118-10-2

    PubMed Central  PubMed  Google Scholar 

  • Liu KK, Dorovini-Zis K (2012) Differential regulation of CD4+ T cell adhesion to cerebral microvascular endothelium by the chemokines CCL2 and CCL3. Int J Mol Sci 13:16119–16140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lohmann C, Hüwel S, Galla HJ (2002) Predicting blood-brain barrier permeability of drugs: evaluation of different in vitro assays. J Drug Target 10:263–276

    CAS  PubMed  Google Scholar 

  • Lundquist S, Renftel M, Brillault J, Fenart L, Cecchelli R, Dehouck MP (2002) Prediction of drug transport through the blood-brain barrier in vivo: a comparison between two in vitro cell models. Pharm Res 19:976–981

    CAS  PubMed  Google Scholar 

  • Macdonald JA, Murugesan N, Pachter JS (2010) Endothelial cell heterogeneity of blood-brain barrier gene expression along the cerebral microvasculature. J Neurosci Res 88:1457–1474

    CAS  PubMed  Google Scholar 

  • Miller DS (2010) Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci 31:246–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller DW, Audus KL, Borchardt RT (1992) Application of cultured endothelial cells of the brain microvasculature in the study of the blood-brain barrier. J Tiss Cult Meth 14:217–224

    Google Scholar 

  • Miller DS, Nobmann SN, Gutmann H, Toeroek M, Drewe J, Fricker G (2000) Xenobiotic transport across isolated brain microvessels studied by confocal microscopy. Mol Pharm 58:1357–1367

    CAS  Google Scholar 

  • Monnot AD, Zheng W (2013) Culture of choroid plexus epithelial cells and in vitro model of blood-CSF barrier. Methods Mol Biol 945:13–29

    PubMed  Google Scholar 

  • Mukhtar M, Pomerantz RJ (2000) Development of an in vitro blood-brain barrier model to study molecular neuropathogenesis and neurovirologic disorders induced by human immunodeficiency virus type 1 infection. J Hum Virol 3:324–334

    CAS  PubMed  Google Scholar 

  • Muruganandam A, Herx LM, Monette R, Durkin JP, Stanimirovic DB (1997) Development of immortalized cerebromicrovascular endothelial cell line as an in vitro model of the human blood-brain barrier. FASEB J 11:1187–1197

    CAS  PubMed  Google Scholar 

  • Naik P, Cucullo L (2012) In vitro blood-brain barrier models: current and perspective technologies. J Pharm Sci 101:1337–1354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int 54:253–263

    CAS  PubMed  Google Scholar 

  • Neuhaus W, Germann B, Plattner VE, Gabor F, Wirth M, Noe CR (2009) Alteration of the glycocalyx of two blood-brain barrier mimicking cell lines is inducible by glioma conditioned media. Brain Res 1279:82–89

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Uchida Y, Kubo Y, Terasaki T (2011) Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci 100:3547–3559

    CAS  PubMed  Google Scholar 

  • Okura T, Ito R, Ishiguro N, Tamai I, Deguchi Y (2007) Blood-brain barrier transport of pramipexole, a dopamine D2 agonist. Life Sci 80:1564–1571

    CAS  PubMed  Google Scholar 

  • Panula P, Joó F, Rechardt L (1978) Evidence for the presence of viable endothelial cells in cultures derived from dissociated rat brain. Experientia 34:95–97

    CAS  PubMed  Google Scholar 

  • Pardridge WM (1998) Isolated brain capillaries: an in vitro model of blood-brain barrier research. In: Pardridge WM (ed) Introduction to the blood-brain barrier: methodology, biology and pathology. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Patabendige A, Skinner RA, Abbott NJ (2013a) Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance. Brain Res 1521:1–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patabendige A, Skinner RA, Morgan L, Abbott NJ (2013b) A detailed method for preparation of a functional and flexible blood-brain barrier model using porcine brain endothelial cells. Brain Res 1521:16–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paul D, Cowan AE, Ge S, Pachter JS (2013) Novel 3D analysis of Claudin-5 reveals significant endothelial heterogeneity among CNS microvessels. Microvasc Res 86:1–10

    CAS  PubMed  Google Scholar 

  • Perrière N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, Couvreur P, Scherrmann JM, Temsamani J, Couraud PO, Deli MA, Roux F (2005) Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood-brain barrier-specific properties. J Neurochem 93:279–289

    PubMed  Google Scholar 

  • Pottiez G, Duban-Deweer S, Deracinois B, Gosselet F, Camoin L, Hachani J, Couraud PO, Cecchelli R, Dehouck MP, Fenart L, Karamanos Y, Flahaut C (2011) A differential proteomic approach identifies structural and functional components that contribute to the differentiation of brain capillary endothelial cells. J Proteomics 75:628–641

    CAS  PubMed  Google Scholar 

  • Prabhakarpandian B, Shen MC, Nichols JB, Mills IR, Sidoryk-Wegrzynowicz M, Aschner M, Pant K (2013) SyM-BBB: a microfluidic blood brain barrier model. Lab Chip 13:1093–1101

    CAS  PubMed  Google Scholar 

  • Preston JE, Segal MB, Walley GJ, Zlokovic BV (1989) Neutral amino acid uptake by the isolated perfused sheep choroid plexus. J Physiol 408:31–43

    CAS  PubMed  Google Scholar 

  • Priya Eddy E, Maleef BE, Hart TK, Smith PL (1997) In vitro models to predict blood-brain barrier permeability. Adv Drug Deliv Rev 23:185–198

    Google Scholar 

  • Qiao R, Jia Q, Hüwel S, Xia R, Liu T, Gao F, Galla HJ, Gao M (2012) Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano 6:3304–3310

    CAS  PubMed  Google Scholar 

  • Raub TJ, Kuentzel SL, Sawada GA (1992) Permeability of bovine brain microvessel endothelial cells in vitro: barrier tightening by a factor released from astroglioma cells. Exp Cell Res 199:330–340

    CAS  PubMed  Google Scholar 

  • Redzic ZB (2013) Studies on the human choroid plexus in vitro. Fluids Barriers CNS 10(1):10. doi:10.1186/2045-8118-10-10

    PubMed Central  PubMed  Google Scholar 

  • Régina A, Romero IA, Greenwood J, Adamson P, Bourre JM, Couraud PO, Roux F (1999) Dexamethasone regulation of P-glycoprotein activity in an immortalized rat brain endothelial cell line, GPNT. J Neurochem 73:1954–1963

    PubMed  Google Scholar 

  • Reichel A, Begley DJ, Abbott NJ (2003) An overview of in vitro techniques for blood-brain barrier studies. Methods Mol Med 89:307–324

    CAS  PubMed  Google Scholar 

  • Ribeiro MM, Castanho MA, Serrano I (2010) In vitro blood-brain barrier models–latest advances and therapeutic applications in a chronological perspective. Mini Rev Med Chem 10:262–270

    CAS  PubMed  Google Scholar 

  • Riganti C, Salaroglio IC, Pinzòn-Daza ML, Caldera V, Campia I, Kopecka J, Mellai M, Annovazzi L, Couraud PO, Bosia A, Ghigo D, Schiffer D (2013) Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling. Cell Mol Life Sci

    Google Scholar 

  • Roux F, Couraud PO (2005) Rat brain endothelial cell lines for the study of blood-brain barrier permeability and transport functions. Cell Mol Neurobiol 25:41–58

    PubMed  Google Scholar 

  • Roux F, Durieu-Trautmann O, Chaverot N, Claire M, Mailly P, Bourre JM, Strosberg AD, Couraud PO (1994) Regulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J Cell Physiol 159:101–113

    CAS  PubMed  Google Scholar 

  • Rubin LL, Hall DE, Porter S, Barbu K, Cannon C, Horner HC, Janatpour M, Liaw CW, Manning K, Morales J, Tanner LI, Tomaselli KJ, Bard F (1991) A cell culture model of the blood-brain barrier. J Cell Biol 115:1725–1735

    CAS  PubMed  Google Scholar 

  • Rutten MJ, Hoover RL, Karnovsky MJ (1987) Electrical resistance and macromolecular permeability of brain endothelial monolayer cultures. Brain Res 425:301–310

    CAS  PubMed  Google Scholar 

  • Saubaméa B, Cochois-Guégan V, Cisternino S, Scherrmann JM (2012) Heterogeneity in the rat brain vasculature revealed by quantitative confocal analysis of endothelial barrier antigen and P-glycoprotein expression. J Cereb Blood Flow Metab 32:81–92

    PubMed  Google Scholar 

  • Schroten M, Hanisch FG, Quednau N, Stump C, Riebe R, Lenk M, Wolburg H, Tenenbaum T, Schwerk C (2012) A novel porcine in vitro model of the blood-cerebrospinal fluid barrier with strong barrier function. PLoS One 7(6):e39835. doi:10.1371/journal.pone.0039835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shah KK, Yang L, Abbruscato TJ (2012) In vitro models of the blood-brain barrier. Methods Mol Biol 814:431–449

    CAS  PubMed  Google Scholar 

  • Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud PO, Terasaki T, Scherrmann JM (2011) Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 8:1332–1341

    CAS  PubMed  Google Scholar 

  • Shawahna R, Decleves X, Scherrmann JM (2013) Hurdles with using in vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes. Curr Drug Metab 14:120–136

    CAS  PubMed  Google Scholar 

  • Shirai A, Naito M, Tatsuta T, Dong J, Hanaoka K, Mikami K, Oh-hara T, Tsuruo T (1994) Transport of cyclosporin A across the brain capillary endothelial cell monolayer by P-glycoprotein. Biochim Biophys Acta 1222:400–404

    CAS  PubMed  Google Scholar 

  • Siakotos AN, Rouser G (1969) Isolation of highly purified human and bovine brain endothelial cells and nuclei and their phospholipid composition. Lipids 4:234–239

    CAS  PubMed  Google Scholar 

  • Skinner RA, Gibson RM, Rothwell NJ, Pinteaux E, Penny JI (2009) Transport of interleukin-1 across cerebromicrovascular endothelial cells. Br J Pharmacol 156:1115–1123

    CAS  PubMed  Google Scholar 

  • Stanness KA, Guatteo E, Janigro D (1996) A dynamic model of the blood-brain barrier “in vitro”. Neurotoxicology 17:481–496

    CAS  PubMed  Google Scholar 

  • Stanness KA, Westrum LE, Fornaciari E, Mascagni P, Nelson JA, Stenglein SG, Myers T, Janigro D (1997) Morphological and functional characterization of an in vitro blood-brain barrier model. Brain Res 771:329–342

    CAS  PubMed  Google Scholar 

  • Steiner O, Coisne C, Engelhardt B, Lyck R (2011) Comparison of immortalized bEnd5 and primary mouse brain microvascular endothelial cells as in vitro blood-brain barrier models for the study of T cell extravasation. J Cereb Blood Flow Metab 31:315–327

    CAS  PubMed  Google Scholar 

  • Strazielle N, Ghersi-Egea JF (1999) Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. J Neurosci 19:6275–6289

    CAS  PubMed  Google Scholar 

  • Strazielle N, Ghersi-Egea JF (2013) Physiology of blood-brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 10:1473–1491

    CAS  PubMed  Google Scholar 

  • Summerfield SG, Read K, Begley DJ, Obradovic T, Hidalgo IJ, Coggon S, Lewis AV, Porter RA, Jeffrey P (2007) Central nervous system drug disposition: the relationship between in situ brain permeability and brain free fraction. J Pharmacol Exp Ther 322:205–313

    CAS  PubMed  Google Scholar 

  • Tega Y, Akanuma S, Kubo Y, Terasaki T, Hosoya K (2013) Blood-to-brain influx transport of nicotine at the rat blood-brain barrier: involvement of a pyrilamine-sensitive organic cation transport process. Neurochem Int 62:173–181

    CAS  PubMed  Google Scholar 

  • Terasaki T, Hosoya K (2001) Conditionally immortalized cell lines as a new in vitro model for the study of barrier functions. Biol Pharm Bull 24:111–118

    CAS  PubMed  Google Scholar 

  • Terasaki T, Ohtsuki S, Hori S, Takanaga H, Nakashima E, Hosoya K (2003) New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov Today 8:944–954

    CAS  PubMed  Google Scholar 

  • Thanabalasundaram G, Schneidewind J, Pieper C, Galla HJ (2011) The impact of pericytes on the blood-brain barrier integrity depends critically on the pericyte differentiation stage. Int J Biochem Cell Biol 43:1284–1293

    CAS  PubMed  Google Scholar 

  • Thornton P, McColl BW, Cooper L, Rothwell NJ, Allan SM (2010) Interleukin-1 drives cerebrovascular inflammation via MAP kinase-independent pathways. Curr Neurovasc Res 7:330–340

    CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Kamiie J, Terasaki T (2011a) Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther 339:579–588

    CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T (2011b) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117:333–345

    CAS  PubMed  Google Scholar 

  • Uchida Y, Tachikawa M, Obuchi W, Hoshi Y, Tomioka Y, Ohtsuki S, Terasaki T (2013) A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood-brain barrier in ddY, FVB, and C57BL/6J mice. Fluids Barriers CNS 10(1):21. doi:10.1186/2045-8118-10-21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Usui T, Kubo Y, Akanuma SI, Hosoya KI (2013) β-Alanine and l-histidine transport across the inner blood-retinal barrier: potential involvement in l-carnosine supply. Exp Eye Res 113:135–142

    CAS  PubMed  Google Scholar 

  • Vandenhaute E, Dehouck L, Boucau MC, Sevin E, Uzbekov R, Tardivel M, Gosselet F, Fenart L, Cecchelli R, Dehouck MP (2011) Modelling the neurovascular unit and the blood-brain barrier with the unique function of pericytes. Curr Neurovasc Res 8:258–269

    CAS  PubMed  Google Scholar 

  • Vandenhaute E, Sevin E, Hallier-Vanuxeem D, Dehouck MP, Cecchelli R (2012) Case study: adapting in vitro blood-brain barrier models for use in early-stage drug discovery. Drug Discov Today 17:285–290

    PubMed  Google Scholar 

  • Vilas-Boas V, Silva R, Nunes C, Reis S, Ferreira L, Vieira C, Carvalho F, Bastos MD, Remião F (2013) Mechanisms of P-gp inhibition and effects on membrane fluidity of a new rifampicin derivative, 1,8-dibenzoyl-rifampicin. Toxicol Lett 220:259–266

    CAS  PubMed  Google Scholar 

  • Wagner EF, Risau W (1994) Oncogenes in the study of endothelial cell growth and differentiation. Semin Cancer Biol 5:137–145

    CAS  PubMed  Google Scholar 

  • Wallace BK, Foroutan S, O’Donnell ME (2011) Ischemia-induced stimulation of Na-K-Cl cotransport in cerebral microvascular endothelial cells involves AMP kinase. Am J Physiol Cell Physiol 301:C316–C326

    CAS  PubMed  Google Scholar 

  • Wang Q, Luo W, Zhang W, Liu M, Song H, Chen J (2011) Involvement of DMT1 + IRE in the transport of lead in an in vitro BBB model. Toxicol In Vitro 25:991–998

    CAS  PubMed  Google Scholar 

  • Wang S, Qaisar U, Yin X, Grammas P (2012) Gene expression profiling in Alzheimer’s disease brain microvessels. J Alzheimers Dis 31:193–205

    CAS  PubMed  Google Scholar 

  • Watanabe T, Dohgu S, Takata F, Nishioku T, Nakashima A, Futagami K, Yamauchi A, Kataoka Y (2013) Paracellular barrier and tight junction protein expression in the immortalized brain endothelial cell lines bEND.3, bEND.5 and mouse brain endothelial cell 4. Biol Pharm Bull 36:492–495

    CAS  PubMed  Google Scholar 

  • Watson PM, Paterson JC, Thom G, Ginman U, Lundquist S, Webster CI (2013) Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier. BMC Neurosci 14(1):59

    PubMed Central  PubMed  Google Scholar 

  • Wegener J, Sieber M, Galla HJ (1996) Impedance analysis of epithelial and endothelial cell monolayers cultured on gold surfaces. J Biochem Biophys Methods 32:151–170

    CAS  PubMed  Google Scholar 

  • Wegener J, Hakvoort A, Galla HJ (2000) Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain Res 853:115–124

    CAS  PubMed  Google Scholar 

  • Weksler BB, Subileau EA, Perrière N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874

    CAS  PubMed  Google Scholar 

  • Weksler B, Romero IA, Couraud PO (2013) The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 10(1):16. doi:10.1186/2045-8118-10-16

    PubMed Central  PubMed  Google Scholar 

  • Williams RL, Courtneidge SA, Wagner EF (1988) Embryonic lethalities and endothelial tumors in chimeric mice expressing polyoma virus middle T oncogene. Cell 52:121–131

    CAS  PubMed  Google Scholar 

  • Williams RL, Risau W, Zerwes HG, Drexler H, Aguzzi A, Wagner EF (1989) Endothelioma cells expressing the polyoma middle T oncogene induce hemangiomas by host cell recruitment. Cell 57:1053–1063

    CAS  PubMed  Google Scholar 

  • Wilson G (1990) Cell culture techniques for the study of drug transport. Eur J Drug Metab Pharmacokinet 15:159–163

    CAS  PubMed  Google Scholar 

  • Yasuda K, Cline C, Vogel P, Onciu M, Fatima S, Sorrentino BP, Thirumaran RK, Ekins S, Urade Y, Fujimori K, Schuetz EG (2013) Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier. Drug Metab Dispos 41:923–931

    CAS  PubMed  Google Scholar 

  • Youdim KA, Avdeef A, Abbott NJ (2003) In vitro trans-monolayer permeability calculations: often forgotten assumptions. Drug Discov Today 8:997–1003

    CAS  PubMed  Google Scholar 

  • Zhang Y, Li CS, Ye Y, Johnson K, Poe J, Johnson S, Bobrowski W, Garrido R, Madhu C (2006) Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability. Drug Metab Dispos 34:1935–1943

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for discussions and comments from many colleagues especially Dr. Alex Avdeef, and Prof Margareta Hammarlund-Udenaes; for redrawing of Fig. 6.1 by Dr. Robert Thorne; and for Fig. 6.4 from Dr. Anika Hartz and Dr. Björn Bauer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Joan Abbott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Abbott, N.J., Dolman, D.E.M., Yusof, S.R., Reichel, A. (2014). In Vitro Models of CNS Barriers. In: Hammarlund-Udenaes, M., de Lange, E., Thorne, R. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9105-7_6

Download citation

Publish with us

Policies and ethics