Skip to main content

Which Drug or Drug Delivery Method Can Change Clinical Practice for Brain Tumor Therapy?

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 10))

  • 3642 Accesses

Abstract

Despite advances in anticancer drug discovery and development, there has been little improvement in the prognosis and outcome of malignant brain tumors. Often and repeatedly it has been found that promising experimental agents for brain tumors have had little impact on the disease in clinical trials. These disappointing results can be partially explained by the inability to deliver therapeutic agents to the CNS across the physiological barriers (the blood–brain, blood–tumor, and blood–CSF barriers). The impediment posed by these barriers leads to failure of the delivered drug to reach the desired target in adequate concentrations. This chapter shortly reviews the leading strategies that try to improve drug delivery to brain tumors in view of their likelihood to change clinical practice. Strategies that use systemic delivery and those that utilize local delivery are critically reviewed. In addition challenges posed for drug delivery by the combined treatment with anti-angiogenic therapy are outlined. For future development all new drugs or delivery systems must adhere to basic clinical expectations. These include besides an anti-tumor effect, a verified favorable toxicity profile, an easy introduction into clinical practice, feasibility of repeated or continuous administration and compatibility of the drug or strategy for any tumor size and brain location. Adherence to these essentials will enable a change in clinical practice

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Abbreviation AUC:

Area under the curve

BBB:

Blood–brain barrier

CED:

Convection-enhanced delivery

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

ECF:

Extracellular fluid

EGF:

Epidermal growth factor

HD-CTx:

High-dose chemotherapy

MTX:

Methotrexate

P-gp:

P-glycoprotein

PEG:

Polyethylene glycol

RES:

Reticuloendothelial system

SAE:

Severe adverse effects

VEGF:

Vascular endothelial growth factor

References

  • Aasen T, Izpisua Belmonte JC (2010) Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 5:371–382

    CAS  PubMed  Google Scholar 

  • Allard E, Passirani C, Benoit JP (2009) Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials 30:2302–2318

    CAS  PubMed  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    CAS  PubMed  Google Scholar 

  • Angelov L, Doolittle ND, Kraemer DF, Siegal T, Barnett GH et al (2009) Blood-brain barrier disruption and intra-arterial methotrexate-based therapy for newly diagnosed primary CNS lymphoma: a multi-institutional experience. J Clin Oncol 27:3503–3509

    CAS  PubMed  Google Scholar 

  • Bartus RT, Elliott PJ, Dean RL, Hayward NJ, Nagle TL et al (1996) Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7. Exp Neurol 142:14–28

    CAS  PubMed  Google Scholar 

  • Becker I, Becker KF, Meyermann R, Hollt V (1991) The multidrug-resistance gene MDR1 is expressed in human glial tumors. Acta Neuropathol 82:516–519

    CAS  PubMed  Google Scholar 

  • Bidros DS, Vogelbaum MA (2009) Novel drug delivery strategies in neuro-oncology. Neurotherapeutics 6:539–546

    CAS  PubMed  Google Scholar 

  • Blakeley J, Portnow J (2010) Microdialysis for assessing intratumoral drug disposition in brain cancers: a tool for rational drug development. Expert Opin Drug Metab Toxicol 6:1477–1491

    CAS  PubMed  Google Scholar 

  • Blakeley JO, Olson J, Grossman SA, He X, Weingart J et al (2009) Effect of blood brain barrier permeability in recurrent high grade gliomas on the intratumoral pharmacokinetics of methotrexate: a microdialysis study. J Neurooncol 91:51–58

    CAS  PubMed  Google Scholar 

  • Bogdahn U, Hau P, Stockhammer G, Venkataramana NK, Mahapatra AK et al (2011) Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol 13:132–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boiardi A, Bartolomei M, Silvani A, Eoli M, Salmaggi A et al (2005) Intratumoral delivery of mitoxantrone in association with 90-Y radioimmunotherapy (RIT) in recurrent glioblastoma. J Neurooncol 72:125–131

    CAS  PubMed  Google Scholar 

  • Borlongan CV, Emerich DF (2003) Facilitation of drug entry into the CNS via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, Cereport. Brain Res Bull 60:297–306

    CAS  PubMed  Google Scholar 

  • Brem H, Mahaley MS Jr, Vick NA, Black KL, Schold SC Jr et al (1991) Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg 74:441–446

    CAS  PubMed  Google Scholar 

  • Buonerba C, Di Lorenzo G, Marinelli A, Federico P, Palmieri G et al (2011) A comprehensive outlook on intracerebral therapy of malignant gliomas. Crit Rev Oncol Hematol 80:54–68

    PubMed  Google Scholar 

  • Chen MY, Lonser RR, Morrison PF, Governale LS, Oldfield EH (1999) Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 90:315–320

    CAS  PubMed  Google Scholar 

  • Chen PY, Liu HL, Hua MY, Yang HW, Huang CY et al (2010) Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment. Neuro Oncol 12:1050–1060

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cloughesy TF, Black KL (1995) Pharmacological blood-brain barrier modification for selective drug delivery. J Neurooncol 26:125–132

    CAS  PubMed  Google Scholar 

  • de Groot JF, Fuller G, Kumar AJ, Piao Y, Eterovic K et al (2010) Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol 12:233–242

    PubMed Central  PubMed  Google Scholar 

  • DeAngelis LM, Seiferheld W, Schold SC, Fisher B, Schultz CJ et al (2002) Combination chemotherapy and radiotherapy for primary central nervous system lymphoma: Radiation Therapy Oncology Group Study 93-10. J Clin Oncol 20:4643–4648

    PubMed  Google Scholar 

  • Demeule M, Regina A, Jodoin J, Laplante A, Dagenais C et al (2002) Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood-brain barrier. Vascul Pharmacol 38:339–348

    CAS  PubMed  Google Scholar 

  • Deng CX (2010) Targeted drug delivery across the blood-brain barrier using ultrasound technique. Ther Deliv 1:819–848

    CAS  PubMed Central  PubMed  Google Scholar 

  • di Tomaso E, Snuderl M, Kamoun WS, Duda DG, Auluck PK et al (2011) Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape. Cancer Res 71:19–28

    PubMed Central  PubMed  Google Scholar 

  • Ding D, Kanaly CW, Bigner DD, Cummings TJ, Herndon JE 2nd et al (2010) Convection-enhanced delivery of free gadolinium with the recombinant immunotoxin MR1-1. J Neurooncol 98:1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dukic S, Heurtaux T, Kaltenbach ML, Hoizey G, Lallemand A et al (1999) Pharmacokinetics of methotrexate in the extracellular fluid of brain C6-glioma after intravenous infusion in rats. Pharm Res 16:1219–1225

    CAS  PubMed  Google Scholar 

  • Dukic SF, Heurtaux T, Kaltenbach ML, Hoizey G, Lallemand A et al (2000) Influence of schedule of administration on methotrexate penetration in brain tumours. Eur J Cancer 36:1578–1584

    CAS  PubMed  Google Scholar 

  • Engelhard HH (2000) The role of interstitial BCNU chemotherapy in the treatment of malignant glioma. Surg Neurol 53:458–464

    CAS  PubMed  Google Scholar 

  • Ergin A, Wang M, Zhang JY, Bruce JN, Fine RL et al (2012) The feasibility of real-time in vivo optical detection of blood-brain barrier disruption with indocyanine green. J Neurooncol 106:551–560

    CAS  PubMed  Google Scholar 

  • Essig M, Weber MA, von Tengg-Kobligk H, Knopp MV, Yuh WT et al (2006) Contrast-enhanced magnetic resonance imaging of central nervous system tumors: agents, mechanisms, and applications. Top Magn Reson Imaging 17:89–106

    PubMed  Google Scholar 

  • Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(Suppl 3):11–16

    CAS  PubMed  Google Scholar 

  • Ferreri AJ, Reni M, Foppoli M, Martelli M, Pangalis GA et al (2009) High-dose cytarabine plus high-dose methotrexate versus high-dose methotrexate alone in patients with primary CNS lymphoma: a randomised phase 2 trial. Lancet 374:1512–1520

    CAS  PubMed  Google Scholar 

  • Ford J, Osborn C, Barton T, Bleehen NM (1998) A phase I study of intravenous RMP-7 with carboplatin in patients with progression of malignant glioma. Eur J Cancer 34:1807–1811

    CAS  PubMed  Google Scholar 

  • Friedman HS, Kerby T, Calvert H (2000) Temozolomide and treatment of malignant glioma. Clin Cancer Res 6:2585–2597

    CAS  PubMed  Google Scholar 

  • Fung LK, Shin M, Tyler B, Brem H, Saltzman WM (1996) Chemotherapeutic drugs released from polymers: distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea in the rat brain. Pharm Res 13:671–682

    CAS  PubMed  Google Scholar 

  • Gelman M, Chakeres DW, Newton HB (1999) Brain tumors: complications of cerebral angiography accompanied by intraarterial chemotherapy. Radiology 213:135–140

    CAS  PubMed  Google Scholar 

  • Goppert TM, Muller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13:179–187

    PubMed  Google Scholar 

  • Groothuis D, Vick NA (1982) Brain tumors and the blood-brain barrier. Trends Neurosci 5:232

    Google Scholar 

  • Haga S, Hinoshita E, Ikezaki K, Fukui M, Scheffer GL et al (2001) Involvement of the multidrug resistance protein 3 in drug sensitivity and its expression in human glioma. Jpn J Cancer Res 92:211–219

    CAS  PubMed  Google Scholar 

  • Hiraga S, Arita N, Ohnishi T, Kohmura E, Yamamoto K et al (1999) Rapid infusion of high-dose methotrexate resulting in enhanced penetration into cerebrospinal fluid and intensified tumor response in primary central nervous system lymphomas. J Neurosurg 91:221–230

    CAS  PubMed  Google Scholar 

  • Hoelzer D, Ludwig WD, Thiel E, Gassmann W, Loffler H et al (1996) Improved outcome in adult B-cell acute lymphoblastic leukemia. Blood 87:495–508

    CAS  PubMed  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    CAS  PubMed  Google Scholar 

  • Huwyler J, Wu D, Pardridge WM (1996) Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A 93:14164–14169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA (2001) Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 220:640–646

    CAS  PubMed  Google Scholar 

  • Invernici G, Cristini S, Alessandri G, Navone SE, Canzi L et al (2011) Nanotechnology advances in brain tumors: the state of the art. Recent Pat Anticancer Drug Discov 6:58–69

    CAS  PubMed  Google Scholar 

  • Ito K, Suzuki H, Horie T, Sugiyama Y (2005) Apical/basolateral surface expression of drug transporters and its role in vectorial drug transport. Pharm Res 22:1559–1577

    CAS  PubMed  Google Scholar 

  • Jain RK (1994) Barriers to drug delivery in solid tumors. Sci Am 271:58–65

    CAS  PubMed  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    CAS  PubMed  Google Scholar 

  • Jain A, Jain SK (2008) PEGylation: an approach for drug delivery. A review. Crit Rev Ther Drug Carrier Syst 25:403–447

    CAS  PubMed  Google Scholar 

  • Joshi S, Ergin A, Wang M, Reif R, Zhang J et al (2011) Inconsistent blood brain barrier disruption by intraarterial mannitol in rabbits: implications for chemotherapy. J Neurooncol 104:11–19

    CAS  PubMed  Google Scholar 

  • Kemper EM, Boogerd W, Thuis I, Beijnen JH, van Tellingen O (2004) Modulation of the blood-brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev 30:415–423

    PubMed  Google Scholar 

  • Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA et al (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A 108:3749–3754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE et al (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 20:409–416

    CAS  PubMed  Google Scholar 

  • Krewson CE, Klarman ML, Saltzman WM (1995) Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Res 680:196–206

    CAS  PubMed  Google Scholar 

  • Kruh GD, Belinsky MG (2003) The MRP family of drug efflux pumps. Oncogene 22:7537–7552

    CAS  PubMed  Google Scholar 

  • Kunwar S, Prados MD, Chang SM, Berger MS, Lang FF et al (2007) Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 25:837–844

    CAS  PubMed  Google Scholar 

  • Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J et al (2010) Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol 12:871–881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lakhal S, Wood MJ (2011) Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. Bioessays 33:737–741

    CAS  PubMed  Google Scholar 

  • Laquintana V, Trapani A, Denora N, Wang F, Gallo JM et al (2009) New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 6:1017–1032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laske DW, Youle RJ, Oldfield EH (1997) Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med 3:1362–1368

    CAS  PubMed  Google Scholar 

  • Lidar Z, Mardor Y, Jonas T, Pfeffer R, Faibel M et al (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 100:472–479

    CAS  PubMed  Google Scholar 

  • Liu L, Guo K, Lu J, Venkatraman SS, Luo D et al (2008) Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials 29:1509–1517

    CAS  PubMed  Google Scholar 

  • Liu HL, Hua MY, Chen PY, Chu PC, Pan CH et al (2010) Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology 255:415–425

    PubMed  Google Scholar 

  • Ma J, Waxman DJ (2008) Modulation of the antitumor activity of metronomic cyclophosphamide by the angiogenesis inhibitor axitinib. Mol Cancer Ther 7:79–89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma J, Chen CS, Blute T, Waxman DJ (2011) Antiangiogenesis enhances intratumoral drug retention. Cancer Res 71:2675–2685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mamot C, Drummond DC, Noble CO, Kallab V, Guo Z et al (2005) Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 65:11631–11638

    CAS  PubMed  Google Scholar 

  • Marchi N, Angelov L, Masaryk T, Fazio V, Granata T et al (2007) Seizure-promoting effect of blood-brain barrier disruption. Epilepsia 48:732–742

    CAS  PubMed  Google Scholar 

  • Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN et al (2006) Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 317:1246–1253

    CAS  PubMed  Google Scholar 

  • Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T et al (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25:2295–2305

    CAS  PubMed  Google Scholar 

  • Nakagawa H, Fujita T, Izumoto S, Kubo S, Nakajima Y et al (1993) cis-diamminedichloroplatinum (CDDP) therapy for brain metastasis of lung cancer. I. Distribution within the central nervous system after intravenous and intracarotid infusion. J Neurooncol 16:61–67

    CAS  PubMed  Google Scholar 

  • Narayana A, Kunnakkat SD, Medabalmi P, Golfinos J, Parker E et al (2012) Change in pattern of relapse after antiangiogenic therapy in high-grade glioma. Int J Radiat Oncol Biol Phys 82:77–82

    PubMed  Google Scholar 

  • Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D et al (2006) A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst 98:316–325

    PubMed  Google Scholar 

  • Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK (1995) Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res 55:5451–5458

    CAS  PubMed  Google Scholar 

  • Nghiemphu PL, Liu W, Lee Y, Than T, Graham C et al (2009) Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 72:1217–1222

    CAS  PubMed  Google Scholar 

  • Osztie E, Varallyay P, Doolittle ND, Lacy C, Jones G et al (2001) Combined intraarterial carboplatin, intraarterial etoposide phosphate, and IV Cytoxan chemotherapy for progressive optic-hypothalamic gliomas in young children. AJNR Am J Neuroradiol 22:818–823

    CAS  PubMed  Google Scholar 

  • Pang Z, Lu W, Gao H, Hu K, Chen J et al (2008) Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. J Control Release 128:120–127

    CAS  PubMed  Google Scholar 

  • Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF (2009) Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 23:35–58

    CAS  PubMed  Google Scholar 

  • Raghavan R, Brady ML, Rodriguez-Ponce MI, Hartlep A, Pedain C et al (2006) Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus 20:E12

    PubMed  Google Scholar 

  • Rajadhyaksha M, Boyden T, Liras J, El-Kattan A, Brodfuehrer J (2011) Current advances in delivery of biotherapeutics across the blood-brain barrier. Curr Drug Discov Technol 8:87–101

    CAS  PubMed  Google Scholar 

  • Rittierodt M, Harada K (2003) Repetitive doxorubicin treatment of glioblastoma enhances the PGP expression—a special role for endothelial cells. Exp Toxicol Pathol 55:39–44

    CAS  PubMed  Google Scholar 

  • Sampson JH, Akabani G, Archer GE, Berger MS, Coleman RE et al (2008) Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro Oncol 10:320–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sampson JH, Archer G, Pedain C, Wembacher-Schroder E, Westphal M et al (2010) Poor drug distribution as a possible explanation for the results of the PRECISE trial. J Neurosurg 113:301–309

    PubMed  Google Scholar 

  • Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    CAS  PubMed  Google Scholar 

  • Sarin H (2009) Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors. J Transl Med 7:77

    PubMed Central  PubMed  Google Scholar 

  • Sarin H, Kanevsky AS, Wu H, Brimacombe KR, Fung SH et al (2008) Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 6:80

    PubMed Central  PubMed  Google Scholar 

  • Sarin H, Kanevsky AS, Wu H, Sousa AA, Wilson CM et al (2009) Physiologic upper limit of pore size in the blood-tumor barrier of malignant solid tumors. J Transl Med 7:51

    PubMed Central  PubMed  Google Scholar 

  • Schneider G, Kirchin MA, Pirovano G, Colosimo C, Ruscalleda J et al (2001) Gadobenate dimeglumine-enhanced magnetic resonance imaging of intracranial metastases: effect of dose on lesion detection and delineation. J Magn Reson Imaging 14:525–539

    CAS  PubMed  Google Scholar 

  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    CAS  PubMed  Google Scholar 

  • Shahar T, Ram Z, Kanner AA (2012) Convection-enhanced delivery catheter placements for high-grade gliomas: complications and pitfalls. J Neurooncol 107:373–378

    CAS  PubMed  Google Scholar 

  • Siegal T, Goldschmidt N (2012) CNS prophylaxis in diffuse large B-cell lymphoma: if, when, how and for whom? Blood Rev 26(3):97–106

    PubMed  Google Scholar 

  • Siegal T, Rubinstein R, Bokstein F, Schwartz A, Lossos A et al (2000) In vivo assessment of the window of barrier opening after osmotic blood-brain barrier disruption in humans. J Neurosurg 92:599–605

    CAS  PubMed  Google Scholar 

  • Sikic BI, Fisher GA, Lum BL, Halsey J, Beketic-Oreskovic L et al (1997) Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 40(Suppl):S13–S19

    CAS  PubMed  Google Scholar 

  • Soni V, Jain A, Khare P, Gulbake A, Jain SK (2010) Potential approaches for drug delivery to the brain: past, present, and future. Crit Rev Ther Drug Carrier Syst 27:187–236

    CAS  PubMed  Google Scholar 

  • Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359:1011–1018

    CAS  PubMed  Google Scholar 

  • Stukel JM, Caplan MR (2009) Targeted drug delivery for treatment and imaging of glioblastoma multiforme. Expert Opin Drug Deliv 6:705–718

    CAS  PubMed  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    CAS  PubMed  Google Scholar 

  • Stupp R, Hegi ME, Gilbert MR, Chakravarti A (2007) Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 25:4127–4136

    CAS  PubMed  Google Scholar 

  • Tanner PG, Holtmannspotter M, Tonn JC, Goldbrunner R (2007) Effects of drug efflux on convection-enhanced paclitaxel delivery to malignant gliomas: technical note. Neurosurgery 61:E880–E882; discussion E882

    PubMed  Google Scholar 

  • Tfayli A, Hentschel P, Madajewicz S, Manzione J, Chowhan N et al (1999) Toxicities related to intraarterial infusion of cisplatin and etoposide in patients with brain tumors. J Neurooncol 42:73–77

    CAS  PubMed  Google Scholar 

  • Thompson EM, Frenkel EP, Neuwelt EA (2011) The paradoxical effect of bevacizumab in the therapy of malignant gliomas. Neurology 76:87–93

    CAS  PubMed  Google Scholar 

  • Ting CY, Fan CH, Liu HL, Huang CY, Hsieh HY et al (2012) Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials 33:704–712

    CAS  PubMed  Google Scholar 

  • Treat LH, McDannold N, Vykhodtseva N, Zhang Y, Tam K et al (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121:901–907

    CAS  PubMed  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    CAS  PubMed  Google Scholar 

  • van Dommelen SM, Vader P, Lakhal S, Kooijmans SA, van Solinge WW et al (2011) Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. J Control Release 161(2):635–644

    PubMed  Google Scholar 

  • Vick NA, Khandekar JD, Bigner DD (1977) Chemotherapy of brain tumors. Arch Neurol 34:523–526

    CAS  PubMed  Google Scholar 

  • Weaver M, Laske DW (2003) Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM10) for therapy of malignant gliomas. J Neurooncol 65:3–13

    PubMed  Google Scholar 

  • Weber F, Asher A, Bucholz R, Berger M, Prados M et al (2003) Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol 64:125–137

    PubMed  Google Scholar 

  • Westphal M, Ram Z, Riddle V, Hilt D, Bortey E et al (2006) Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial. Acta Neurochir (Wien) 148:269–275, discussion 275

    CAS  Google Scholar 

  • Wong HL, Wu XY, Bendayan R (2011) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64(7):686–700

    PubMed  Google Scholar 

  • Wu D, Yang J, Pardridge WM (1997) Drug targeting of a peptide radiopharmaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor. J Clin Invest 100:1804–1812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wurdinger T, Tannous BA (2009) Glioma angiogenesis: towards novel RNA therapeutics. Cell Adh Migr 3:230–235

    PubMed  Google Scholar 

  • Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH et al (2008) Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 49:30–38

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Jeong Lee H, Boado RJ, Pardridge WM (2002) Receptor-mediated delivery of an antisense gene to human brain cancer cells. J Gene Med 4:183–194

    PubMed  Google Scholar 

  • Zylber-Katz E, Gomori JM, Schwartz A, Lossos A, Bokstein F et al (2000) Pharmacokinetics of methotrexate in cerebrospinal fluid and serum after osmotic blood-brain barrier disruption in patients with brain lymphoma. Clin Pharmacol Ther 67:631–641

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tali Siegal M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Siegal, T. (2014). Which Drug or Drug Delivery Method Can Change Clinical Practice for Brain Tumor Therapy?. In: Hammarlund-Udenaes, M., de Lange, E., Thorne, R. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9105-7_24

Download citation

Publish with us

Policies and ethics