Skip to main content

Recent Progress in Blood–Brain Barrier and Blood–CSF Barrier Transport Research: Pharmaceutical Relevance for Drug Delivery to the Brain

  • Chapter
  • First Online:

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 10))

Abstract

The blood–brain barrier (BBB) and the blood–CSF barrier (BCSFB) possess multiple transport systems for endogenous and xenobiotic compounds to maintain functional homeostasis in the central nervous system (CNS). Accumulating evidence on the transport systems has provided a basis for the development of rational strategies for drug delivery and targeting to CNS. The blood-to-brain influx transport systems at the BBB have a great potential for CNS-acting drug delivery and targeting to the brain. The brain-to-blood efflux transport systems at the BBB including ATP-binding cassette transporters hinder the drug penetration to the brain. Efflux transport systems at the BBB and BCSFB also play an important role in cerebral clearance of endogenous neurotoxic compounds which are associated with disorders of the CNS. Several drugs influence the endogenous clearance system at the brain barriers. This chapter focuses on the current state of knowledge concerning the roles of transport systems for endogenous and xenobiotic compounds at the BBB and the BCSFB, and the potential implications of these systems for CNS drug delivery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABC:

ATP-binding cassette

Aβ:

Amyloid-β peptide

AD:

Alzheimer’s disease

α2M:

α2-macrogloblin

AMA:

Amantadine

ANP:

Atrial natriuretic peptide

Apo:

Apolipoprotein

Asct:

Alanine-serine-cysteine transporter

Ata:

Amino acid transporter

ATB0,+ :

Amino acid transporter B0,+

BBB:

Blood–brain barrier

BCSFB:

Blood–cerebrospinal fluid barrier

BCRP:

Breast cancer-resistance protein

Cat:

Cationic amino acid transporter

Cht:

Choline transporter

Cnt:

Concentrative nucleoside transporter

CNS:

Central nervous system

Crt:

Creatine transporter

Ctl:

Choline transporter-like protein

DHEAS:

Dehydroepiandrosterone sulfate

DPDPE:

[D-penicillamine2,5]encephalin

Eaat:

Excitatory amino acid transporter

ENT:

Equilibrative nucleoside transporter

4F2hc:

Heavy chain of the 4F2 cell-surface antigen

GABA:

γ-Aminobutyric acid

GAMT:

S-Adenosylmethionine:guanidinoacetate N-methyltransferase

Gat:

γ-Aminobutyric acid transporter

GLUT:

Glucose transporter

GC:

Guanidino compound

GlySar:

Glycylsarcosine

hCMEC/D3:

Human capillary endothelial cell line

HDL:

High-density lipoprotein

HVA:

Homovanillic acid

IS:

Indoxyl sulfate

LAT/Lat:

L-type amino acid transporter

LRP:

Low-density lipoprotein receptor-related protein

Mate:

Multidrug and toxin extrusion transporter

MCT/Mct:

Monocarboxylic acid transporter

MDR:

Multidrug-resistance protein

6-MP:

6-Mercaptopurine

MPP+ :

1-Methyl-4-phenylpyridinium

MRP/Mrp:

Multidrug-resistance-associated protein

mTOR:

Mammalian target of rapamycin

Npr-C:

Natriuretic peptide receptor C

NSAID:

Nonsteroidal anti-inflammatory drug

Oat:

Organic anion transporter

OATP/Oatp:

Organic anion transporting polypeptide

Oct:

Organic cation transporter

Octn:

Organic cation/carnitine transporters

PAO:

Phenylarsine oxide

Pept:

Proton-coupled oligopeptide transporter

PGE2 :

Prostaglandin E2

P-gp:

P-glycoprotein

Pmat:

Plasma membrane monoamine transporter

RIM:

Rimantadine

Taut:

Taurine transporter

TCDD:

2,3,7,8-Tetrachlorodibenzo-p-dioxin

PPx:

Pharmacoproteomics

SLC:

Solute carrier

6-TG:

6-Thioguanine

TR-BBB:

Rat conditionally immortalized brain capillary endothelial cell line

TR-CSFB:

Conditionally immortalized choroid plexus epithelial cell line

References

  • Abbott NJ, Romero IA (1996) Transporting therapeutics across the blood-brain barrier. Mol Med Today 2:106–113

    CAS  PubMed  Google Scholar 

  • Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    CAS  PubMed  Google Scholar 

  • Adkison KD, Shen DD (1996) Uptake of valproic acid into rat brain is mediated by a medium-chain fatty acid transporter. J Pharmacol Exp Ther 276:1189–1200

    CAS  PubMed  Google Scholar 

  • Agarwal S, Sane R, Gallardo JL, Ohlfest JR, Elmquist WF (2010) Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther 334:147–155

    CAS  PubMed  Google Scholar 

  • Agarwal S, Uchida Y, Mittapalli RK, Sane R, Terasaki T, Elmquist WF (2012) Quantitative proteomics of transporter expression in brain capillary endothelial cells isolated from P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and P-gp/Bcrp knockout mice. Drug Metab Dispos 40:1164–1169

    CAS  PubMed  Google Scholar 

  • Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J, Vera JC, Golde DW (1997) Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. J Clin Invest 100:2842–2848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akanuma S, Hosoya K, Ito S, Tachikawa M, Terasaki T, Ohtsuki S (2010) Involvement of multidrug resistance-associated protein 4 in efflux transport of prostaglandin E(2) across mouse blood-brain barrier and its inhibition by intravenous administration of cephalosporins. J Pharmacol Exp Ther 333:912–919

    CAS  PubMed  Google Scholar 

  • Akanuma S, Uchida Y, Ohtsuki S, Kamiie J, Tachikawa M, Terasaki T, Hosoya K (2011a) Molecular-weight-dependent, anionic-substrate-preferential transport of beta-lactam antibiotics via multidrug resistance-associated protein 4. Drug Metab Pharmacokinet 26:602–611

    CAS  PubMed  Google Scholar 

  • Akanuma S, Uchida Y, Ohtsuki S, Tachikawa M, Terasaki T, Hosoya K (2011b) Attenuation of prostaglandin E2 elimination across the mouse blood-brain barrier in lipopolysaccharide-induced inflammation and additive inhibitory effect of cefmetazole. Fluids Barriers CNS 8:24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andre P, Debray M, Scherrmann JM, Cisternino S (2009) Clonidine transport at the mouse blood-brain barrier by a new H+ antiporter that interacts with addictive drugs. J Cereb Blood Flow Metab 29:1293–1304

    CAS  PubMed  Google Scholar 

  • Asaba H, Hosoya K, Takanaga H, Ohtsuki S, Tamura E, Takizawa T, Terasaki T (2000) Blood-brain barrier is involved in the efflux transport of a neuroactive steroid, dehydroepiandrosterone sulfate, via organic anion transporting polypeptide 2. J Neurochem 75:1907–1916

    CAS  PubMed  Google Scholar 

  • Baltes S, Fedrowitz M, Tortos CL, Potschka H, Loscher W (2007) Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J Pharmacol Exp Ther 320:331–343

    CAS  PubMed  Google Scholar 

  • Barakat S, Demeule M, Pilorget A, Regina A, Gingras D, Baggetto LG, Beliveau R (2007) Modulation of p-glycoprotein function by caveolin-1 phosphorylation. J Neurochem 101:1–8

    CAS  PubMed  Google Scholar 

  • Bauer M, Zeitlinger M, Karch R, Matzneller P, Stanek J, Jager W, Bohmdorfer M, Wadsak W, Mitterhauser M, Bankstahl JP, Loscher W, Koepp M, Kuntner C, Muller M, Langer O (2012) Pgp-mediated interaction between (R)-[11C]verapamil and tariquidar at the human blood-brain barrier: a comparison with rat data. Clin Pharmacol Ther 91:227–233

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beal MF (2011) Neuroprotective effects of creatine. Amino Acids 40:1305–1313

    CAS  PubMed  Google Scholar 

  • Boado RJ, Li JY, Nagaya M, Zhang C, Pardridge WM (1999) Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Proc Natl Acad Sci U S A 96:12079–12084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boado RJ, Li JY, Pardridge WM (2003) Site-directed mutagenesis of rabbit LAT1 at amino acids 219 and 234. J Neurochem 84:1322–1331

    CAS  PubMed  Google Scholar 

  • Boström E, Simonsson US, Hammarlund-Udenaes M (2006) In vivo blood-brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics. Drug Metab Dispos 34:1624–1631

    PubMed  Google Scholar 

  • Breedveld P, Pluim D, Cipriani G, Wielinga P, van Tellingen O, Schinkel AH, Schellens JH (2005) The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 65:2577–2582

    CAS  PubMed  Google Scholar 

  • Chen ZS, Lee K, Kruh GD (2001) Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem 276:33747–33754

    CAS  PubMed  Google Scholar 

  • Chen Y, Agarwal S, Shaik NM, Chen C, Yang Z, Elmquist WF (2009) P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J Pharmacol Exp Ther 330:956–963

    CAS  PubMed  Google Scholar 

  • Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, Jiang H, Prior JL, Sagare A, Bales KR, Paul SM, Zlokovic BV, Piwnica-Worms D, Holtzman DM (2005) P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cisternino S, Chapy H, Andre P, Smirnova M, Debray M, Scherrmann JM (2013) Coexistence of passive and proton antiporter-mediated processes in nicotine transport at the mouse blood-brain barrier. AAPS J 15:299–307

    CAS  PubMed  Google Scholar 

  • Cooray HC, Blackmore CG, Maskell L, Barrand MA (2002) Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13:2059–2063

    CAS  PubMed  Google Scholar 

  • Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci U S A 86:695–698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dagenais C, Ducharme J, Pollack GM (2001) Uptake and efflux of the peptidic delta-opioid receptor agonist. Neurosci Lett 301:155–158

    CAS  PubMed  Google Scholar 

  • Dagenais C, Graff CL, Pollack GM (2004) Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol 67:269–276

    CAS  PubMed  Google Scholar 

  • De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI (1991) Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 325:703–709

    PubMed  Google Scholar 

  • de Vries NA, Zhao J, Kroon E, Buckle T, Beijnen JH, van Tellingen O (2007) P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res 13:6440–6449

    PubMed  Google Scholar 

  • Dechent P, Pouwels PJ, Wilken B, Hanefeld F, Frahm J (1999) Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 277:R698–R704

    CAS  PubMed  Google Scholar 

  • Decleves X, Jacob A, Yousif S, Shawahna R, Potin S, Scherrmann JM (2011) Interplay of drug metabolizing CYP450 enzymes and ABC transporters in the blood-brain barrier. Curr Drug Metab 12:732–741

    CAS  PubMed  Google Scholar 

  • Deguchi Y, Yokoyama Y, Sakamoto T, Hayashi H, Naito T, Yamada S, Kimura R (2000) Brain distribution of 6-mercaptopurine is regulated by the efflux transport system in the blood-brain barrier. Life Sci 66:649–662

    CAS  PubMed  Google Scholar 

  • del Amo EM, Urtti A, Yliperttula M (2008) Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 35:161–174

    PubMed  Google Scholar 

  • Duan H, Wang J (2013) Impaired monoamine and organic cation uptake in choroid plexus in mice with targeted disruption of the plasma membrane monoamine transporter (Slc29a4) gene. J Biol Chem 288:3535–3544

    CAS  PubMed  Google Scholar 

  • Egleton RD, Davis TP (1999) Transport of the delta-opioid receptor agonist [D-penicillamine2,5] enkephalin across the blood-brain barrier involves transcytosis1. J Pharm Sci 88:392–397

    CAS  PubMed  Google Scholar 

  • Egleton RD, Abbruscato TJ, Thomas SA, Davis TP (1998) Transport of opioid peptides into the central nervous system. J Pharm Sci 87:1433–1439

    CAS  PubMed  Google Scholar 

  • Farrell CL, Pardridge WM (1991) Ultrastructural localization of blood-brain barrier-specific antibodies using immunogold-silver enhancement techniques. J Neurosci Methods 37:103–110

    CAS  PubMed  Google Scholar 

  • Fujiyoshi M, Ohtsuki S, Hori S, Tachikawa M, Terasaki T (2007) 24S-hydroxycholesterol induces cholesterol release from choroid plexus epithelial cells in an apical- and apoE isoform-dependent manner concomitantly with the induction of ABCA1 and ABCG1 expression. J Neurochem 100:968–978

    CAS  PubMed  Google Scholar 

  • Fujiyoshi M, Tachikawa M, Ohtsuki S, Ito S, Uchida Y, Akanuma S, Kamiie J, Hashimoto T, Hosoya K, Iwatsubo T, Terasaki T (2011) Amyloid-beta peptide(1-40) elimination from cerebrospinal fluid involves low-density lipoprotein receptor-related protein 1 at the blood-cerebrospinal fluid barrier. J Neurochem 118:407–415

    CAS  PubMed  Google Scholar 

  • Gao B, Stieger B, Noe B, Fritschy JM, Meier PJ (1999) Localization of the organic anion transporting polypeptide 2 (Oatp2) in capillary endothelium and choroid plexus epithelium of rat brain. J Histochem Cytochem 47:1255–1264

    CAS  PubMed  Google Scholar 

  • Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, Meier PJ (2000) Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther 294:73–79

    CAS  PubMed  Google Scholar 

  • Gazzin S, Strazielle N, Schmitt C, Fevre-Montange M, Ostrow JD, Tiribelli C, Ghersi-Egea JF (2008) Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J Comp Neurol 510:497–507

    CAS  PubMed  Google Scholar 

  • Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    CAS  PubMed  Google Scholar 

  • Gynther M, Laine K, Ropponen J, Leppanen J, Mannila A, Nevalainen T, Savolainen J, Jarvinen T, Rautio J (2008) Large neutral amino acid transporter enables brain drug delivery via prodrugs. J Med Chem 51:932–936

    CAS  PubMed  Google Scholar 

  • Gynther M, Jalkanen A, Lehtonen M, Forsberg M, Laine K, Ropponen J, Leppanen J, Knuuti J, Rautio J (2010) Brain uptake of ketoprofen-lysine prodrug in rats. Int J Pharm 399:121–128

    CAS  PubMed  Google Scholar 

  • Hacker HJ, Thorens B, Grobholz R (1991) Expression of facilitative glucose transporter in rat liver and choroid plexus. A histochemical study in native cryostat sections. Histochemistry 96:435–439

    CAS  PubMed  Google Scholar 

  • Halmos T, Santarromana M, Antonakis K, Scherman D (1996) Synthesis of glucose-chlorambucil derivatives and their recognition by the human GLUT1 glucose transporter. Eur J Pharmacol 318:477–484

    CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    CAS  PubMed  Google Scholar 

  • Hiramatsu M (2003) A role for guanidino compounds in the brain. Mol Cell Biochem 244:57–62

    CAS  PubMed  Google Scholar 

  • Hori S, Ohtsuki S, Tachikawa M, Kimura N, Kondo T, Watanabe M, Nakashima E, Terasaki T (2004) Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J Neurochem 90:526–536

    CAS  PubMed  Google Scholar 

  • Hosoya K, Sugawara M, Asaba H, Terasaki T (1999) Blood-brain barrier produces significant efflux of L-aspartic acid but not D-aspartic acid: in vivo evidence using the brain efflux index method. J Neurochem 73:1206–1211

    CAS  PubMed  Google Scholar 

  • Hosoya K, Tetsuka K, Nagase K, Tomi M, Saeki S, Ohtsuki S, Takanaga H, Yanai N, Obinata M, Kikuchi A, Okano T, Terasaki T (2000a) Conditionally immortalized brain capillary endothelial cell lines established from a transgenic mouse harboring temperature-sensitive simian virus 40 large T-antigen gene. AAPS PharmSci 2:E27

    CAS  PubMed  Google Scholar 

  • Hosoya KI, Takashima T, Tetsuka K, Nagura T, Ohtsuki S, Takanaga H, Ueda M, Yanai N, Obinata M, Terasaki T (2000b) mRNA expression and transport characterization of conditionally immortalized rat brain capillary endothelial cell lines; a new in vitro BBB model for drug targeting. J Drug Target 8:357–370

    CAS  PubMed  Google Scholar 

  • Huang SC, Stout DB, Yee RE, Satyamurthy N, Barrio JR (1998) Distribution volume of radiolabeled large neutral amino acids in brain tissue. J Cereb Blood Flow Metab 18:1288–1293

    CAS  PubMed  Google Scholar 

  • Huber O, Brunner A, Maier P, Kaufmann R, Couraud PO, Cremer C, Fricker G (2012) Localization microscopy (SPDM) reveals clustered formations of P-glycoprotein in a human blood-brain barrier model. PLoS One 7:e44776

    PubMed Central  PubMed  Google Scholar 

  • Ito S, Ohtsuki S, Terasaki T (2006) Functional characterization of the brain-to-blood efflux clearance of human amyloid-beta peptide (1-40) across the rat blood-brain barrier. Neurosci Res 56:246–252

    CAS  PubMed  Google Scholar 

  • Ito S, Ohtsuki S, Kamiie J, Nezu Y, Terasaki T (2007) Cerebral clearance of human amyloid-beta peptide (1-40) across the blood-brain barrier is reduced by self-aggregation and formation of low-density lipoprotein receptor-related protein-1 ligand complexes. J Neurochem 103:2482–2490

    CAS  PubMed  Google Scholar 

  • Ito S, Ueno T, Ohtsuki S, Terasaki T (2010) Lack of brain-to-blood efflux transport activity of low-density lipoprotein receptor-related protein-1 (LRP-1) for amyloid-beta peptide(1-40) in mouse: involvement of an LRP-1-independent pathway. J Neurochem 113:1356–1363

    CAS  PubMed  Google Scholar 

  • Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, Kamiie J, Terasaki T (2011a) Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 100:3939–3950

    CAS  PubMed  Google Scholar 

  • Ito S, Ohtsuki S, Katsukura Y, Funaki M, Koitabashi Y, Sugino A, Murata S, Terasaki T (2011b) Atrial natriuretic peptide is eliminated from the brain by natriuretic peptide receptor-C-mediated brain-to-blood efflux transport at the blood-brain barrier. J Cereb Blood Flow Metab 31:457–466

    CAS  PubMed  Google Scholar 

  • Ito S, Ohtsuki S, Nezu Y, Koitabashi Y, Murata S, Terasaki T (2011c) 1alpha,25-dihydroxyvitamin D3 enhances cerebral clearance of human amyloid-beta peptide(1-40) from mouse brain across the blood-brain barrier. Fluids Barriers CNS 8:20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang H, Hu Y, Keep RF, Smith DE (2009) Enhanced antinociceptive response to intracerebroventricular kyotorphin in Pept2 null mice. J Neurochem 109:1536–1543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kageyama T, Nakamura M, Matsuo A, Yamasaki Y, Takakura Y, Hashida M, Kanai Y, Naito M, Tsuruo T, Minato N, Shimohama S (2000) The 4F2hc/LAT1 complex transports L-DOPA across the blood-brain barrier. Brain Res 879:115–121

    CAS  PubMed  Google Scholar 

  • Kakee A, Takanaga H, Terasaki T, Naito M, Tsuruo T, Sugiyama Y (2001) Efflux of a suppressive neurotransmitter, GABA, across the blood-brain barrier. J Neurochem 79:110–118

    CAS  PubMed  Google Scholar 

  • Kakee A, Takanaga H, Hosoya K, Sugiyama Y, Terasaki T (2002) In vivo evidence for brain-to-blood efflux transport of valproic acid across the blood-brain barrier. Microvasc Res 63:233–238

    CAS  PubMed  Google Scholar 

  • Kamiie J, Ohtsuki S, Iwase R, Ohmine K, Katsukura Y, Yanai K, Sekine Y, Uchida Y, Ito S, Terasaki T (2008) Quantitative atlas of membrane transporter proteins: development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm Res 25:1469–1483

    CAS  PubMed  Google Scholar 

  • Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273:23629–23632

    CAS  PubMed  Google Scholar 

  • Kasahara T, Maeda M, Boles E, Kasahara M (2009) Identification of a key residue determining substrate affinity in the human glucose transporter GLUT1. Biochim Biophys Acta 1788:1051–1055

    CAS  PubMed  Google Scholar 

  • Kastin AJ, Fasold MB, Smith RR, Horner KA, Zadina JE (2001) Saturable brain-to-blood transport of endomorphins. Exp Brain Res 139:70–75

    CAS  PubMed  Google Scholar 

  • Kastin AJ, Fasold MB, Zadina JE (2002) Endomorphins, met-enkephalin, Tyr-MIF-1, and the P-glycoprotein efflux system. Drug Metab Dispos 30:231–234

    CAS  PubMed  Google Scholar 

  • Kido Y, Tamai I, Okamoto M, Suzuki F, Tsuji A (2000) Functional clarification of MCT1-mediated transport of monocarboxylic acids at the blood-brain barrier using in vitro cultured cells and in vivo BUI studies. Pharm Res 17:55–62

    CAS  PubMed  Google Scholar 

  • Kim MH, Maeng HJ, Yu KH, Lee KR, Tsuruo T, Kim DD, Shim CK, Chung SJ (2010) Evidence of carrier-mediated transport in the penetration of donepezil into the rat brain. J Pharm Sci 99:1548–1566

    CAS  PubMed  Google Scholar 

  • Kis B, Isse T, Snipes JA, Chen L, Yamashita H, Ueta Y, Busija DW (2006) Effects of LPS stimulation on the expression of prostaglandin carriers in the cells of the blood-brain and blood-cerebrospinal fluid barriers. J Appl Physiol 100:1392–1399

    CAS  PubMed  Google Scholar 

  • Kitazawa T, Hosoya K, Watanabe M, Takashima T, Ohtsuki S, Takanaga H, Ueda M, Yanai N, Obinata M, Terasaki T (2001) Characterization of the amino acid transport of new immortalized choroid plexus epithelial cell lines: a novel in vitro system for investigating transport functions at the blood-cerebrospinal fluid barrier. Pharm Res 18:16–22

    CAS  PubMed  Google Scholar 

  • Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y (2010) Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther 333:788–796

    CAS  PubMed  Google Scholar 

  • Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251

    CAS  PubMed  Google Scholar 

  • Kooijmans SA, Senyschyn D, Mezhiselvam MM, Morizzi J, Charman SA, Weksler B, Romero IA, Couraud PO, Nicolazzo JA (2012) The involvement of a Na+- and Cl-dependent transporter in the brain uptake of amantadine and rimantadine. Mol Pharm 9:883–893

    CAS  PubMed  Google Scholar 

  • Kreisl WC, Liow JS, Kimura N, Seneca N, Zoghbi SS, Morse CL, Herscovitch P, Pike VW, Innis RB (2010) P-glycoprotein function at the blood-brain barrier in humans can be quantified with the substrate radiotracer 11C-N-desmethyl-loperamide. J Nucl Med 51:559–566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kubo Y, Kusagawa Y, Tachikawa M, Akanuma SI, Hosoya KI (2013) Involvement of a novel organic cation transporter in verapamil transport across the inner blood-retinal barrier. Pharm Res 30:847–856

    CAS  PubMed  Google Scholar 

  • Kusuhara H, Suzuki H, Terasaki T, Kakee A, Lemaire M, Sugiyama Y (1997) P-Glycoprotein mediates the efflux of quinidine across the blood-brain barrier. J Pharmacol Exp Ther 283:574–580

    CAS  PubMed  Google Scholar 

  • Kusuhara H, He Z, Nagata Y, Nozaki Y, Ito T, Masuda H, Meier PJ, Abe T, Sugiyama Y (2003) Expression and functional involvement of organic anion transporting polypeptide subtype 3 (Slc21a7) in rat choroid plexus. Pharm Res 20:720–727

    CAS  PubMed  Google Scholar 

  • Lauritzen F, de Lanerolle NC, Lee TS, Spencer DD, Kim JH, Bergersen LH, Eid T (2011) Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus. Neurobiol Dis 41:577–584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee NY, Choi HO, Kang YS (2012) The acetylcholinesterase inhibitors competitively inhibited an acetyl L-carnitine transport through the blood-brain barrier. Neurochem Res 37:1499–1507

    CAS  PubMed  Google Scholar 

  • Leggas M, Adachi M, Scheffer GL, Sun D, Wielinga P, Du G, Mercer KE, Zhuang Y, Panetta JC, Johnston B, Scheper RJ, Stewart CF, Schuetz JD (2004) Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol 24:7612–7621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leiderman DB, Balish M, Bromfield EB, Theodore WH (1991) Effect of valproate on human cerebral glucose metabolism. Epilepsia 32:417–422

    CAS  PubMed  Google Scholar 

  • Leino RL, Gerhart DZ, Drewes LR (1999) Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain Res Dev Brain Res 113:47–54

    CAS  PubMed  Google Scholar 

  • Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38:519–527

    CAS  PubMed  Google Scholar 

  • Levin VA (1980) Relationship of octanol/water partition coefficient and molecular weight to rat brain capillary permeability. J Med Chem 23:682–684

    CAS  PubMed  Google Scholar 

  • Li JY, Boado RJ, Pardridge WM (2001) Cloned blood-brain barrier adenosine transporter is identical to the rat concentrative Na+ nucleoside cotransporter CNT2. J Cereb Blood Flow Metab 21:929–936

    CAS  PubMed  Google Scholar 

  • Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK, Al-Ahmad A, Palecek SP, Shusta EV (2012) Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30:783–791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyajima M, Kusuhara H, Fujishima M, Adachi Y, Sugiyama Y (2011) Organic anion transporter 3 mediates the efflux transport of an amphipathic organic anion, dehydroepiandrosterone sulfate, across the blood-brain barrier in mice. Drug Metab Dispos 39:814–819

    CAS  PubMed  Google Scholar 

  • Mori S, Takanaga H, Ohtsuki S, Deguchi T, Kang YS, Hosoya K, Terasaki T (2003) Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J Cereb Blood Flow Metab 23:432–440

    CAS  PubMed  Google Scholar 

  • Mori S, Ohtsuki S, Takanaga H, Kikkawa T, Kang YS, Terasaki T (2004) Organic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs. J Neurochem 90:931–941

    CAS  PubMed  Google Scholar 

  • Mullauer J, Kuntner C, Bauer M, Bankstahl JP, Muller M, Voskuyl RA, Langer O, Syvanen S (2012) Pharmacokinetic modeling of P-glycoprotein function at the rat and human blood-brain barriers studied with (R)-[11C]verapamil positron emission tomography. EJNMMI Res 2:58

    PubMed Central  PubMed  Google Scholar 

  • Nagata Y, Kusuhara H, Endou H, Sugiyama Y (2002) Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus. Mol Pharmacol 61:982–988

    CAS  PubMed  Google Scholar 

  • Nakayama H, Kitaichi K, Ito Y, Hashimoto K, Takagi K, Yokoi T, Ozaki N, Yamamoto T, Hasegawa T (2007) The role of organic cation transporter-3 in methamphetamine disposition and its behavioral response in rats. Brain Res 1184:260–269

    CAS  PubMed  Google Scholar 

  • Nakazawa Y, Okura T, Shimomura K, Terasaki T, Deguchi Y (2010) Drug-drug interaction between oxycodone and adjuvant analgesics in blood-brain barrier transport and antinociceptive effect. J Pharm Sci 99:467–474

    CAS  PubMed  Google Scholar 

  • Ni Z, Bikadi Z, Rosenberg MF, Mao Q (2010) Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab 11:603–617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nies AT, Jedlitschky G, Konig J, Herold-Mende C, Steiner HH, Schmitt HP, Keppler D (2004) Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 129:349–360

    CAS  PubMed  Google Scholar 

  • Nishida Y, Ito S, Ohtsuki S, Yamamoto N, Takahashi T, Iwata N, Jishage K, Yamada H, Sasaguri H, Yokota S, Piao W, Tomimitsu H, Saido TC, Yanagisawa K, Terasaki T, Mizusawa H, Yokota T (2009) Depletion of vitamin E increases amyloid beta accumulation by decreasing its clearances from brain and blood in a mouse model of Alzheimer disease. J Biol Chem 284:33400–33408

    CAS  PubMed  Google Scholar 

  • O’Kane RL, Martinez-Lopez I, DeJoseph MR, Vina JR, Hawkins RA (1999) Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J Biol Chem 274:31891–31895

    PubMed  Google Scholar 

  • Ocheltree SM, Shen H, Hu Y, Xiang J, Keep RF, Smith DE (2004) Role of PEPT2 in the choroid plexus uptake of glycylsarcosine and 5-aminolevulinic acid: studies in wild-type and null mice. Pharm Res 21:1680–1685

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Terasaki T (2007) Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 24:1745–1758

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Asaba H, Takanaga H, Deguchi T, Hosoya K, Otagiri M, Terasaki T (2002a) Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem 83:57–66

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Tachikawa M, Takanaga H, Shimizu H, Watanabe M, Hosoya K, Terasaki T (2002b) The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab 22:1327–1335

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Kikkawa T, Mori S, Hori S, Takanaga H, Otagiri M, Terasaki T (2004a) Mouse reduced in osteosclerosis transporter functions as an organic anion transporter 3 and is localized at abluminal membrane of blood-brain barrier. J Pharmacol Exp Ther 309:1273–1281

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Takizawa T, Takanaga H, Hori S, Hosoya K, Terasaki T (2004b) Localization of organic anion transporting polypeptide 3 (oatp3) in mouse brain parenchymal and capillary endothelial cells. J Neurochem 90:743–749

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Yamaguchi H, Kang YS, Hori S, Terasaki T (2010) Reduction of L-type amino acid transporter 1 mRNA expression in brain capillaries in a mouse model of Parkinson’s disease. Biol Pharm Bull 33:1250–1252

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Uchida Y, Kubo Y, Terasaki T (2011) Quantitative targeted absolute proteomics-based ADME research as a new path to drug discovery and development: methodology, advantages, strategy, and prospects. J Pharm Sci 100:3547–3559

    CAS  PubMed  Google Scholar 

  • Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, Glacial F, Decleves X, Scherrmann JM, Couraud PO, Kubo Y, Tachikawa M, Terasaki T (2013) Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Mol Pharm 10:289–296

    CAS  PubMed  Google Scholar 

  • Okuda T, Haga T, Kanai Y, Endou H, Ishihara T, Katsura I (2000) Identification and characterization of the high-affinity choline transporter. Nat Neurosci 3:120–125

    CAS  PubMed  Google Scholar 

  • Okura T, Ito R, Ishiguro N, Tamai I, Deguchi Y (2007) Blood-brain barrier transport of pramipexole, a dopamine D2 agonist. Life Sci 80:1564–1571

    CAS  PubMed  Google Scholar 

  • Okura T, Hattori A, Takano Y, Sato T, Hammarlund-Udenaes M, Terasaki T, Deguchi Y (2008) Involvement of the pyrilamine transporter, a putative organic cation transporter, in blood-brain barrier transport of oxycodone. Drug Metab Dispos 36:2005–2013

    CAS  PubMed  Google Scholar 

  • Okura T, Kato S, Takano Y, Sato T, Yamashita A, Morimoto R, Ohtsuki S, Terasaki T, Deguchi Y (2011) Functional characterization of rat plasma membrane monoamine transporter in the blood-brain and blood-cerebrospinal fluid barriers. J Pharm Sci 100:3924–3938

    CAS  PubMed  Google Scholar 

  • Omerovic E, Bollano E, Lorentzon M, Walser M, Mattsson-Hulten L, Isgaard J (2003) Growth hormone induces myocardial expression of creatine transporter and decreases plasma levels of IL-1beta in rats during early postinfarct cardiac remodeling. Growth Horm IGF Res 13:239–245

    CAS  PubMed  Google Scholar 

  • Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593

    CAS  PubMed  Google Scholar 

  • Ose A, Kusuhara H, Yamatsugu K, Kanai M, Shibasaki M, Fujita T, Yamamoto A, Sugiyama Y (2008) P-glycoprotein restricts the penetration of oseltamivir across the blood-brain barrier. Drug Metab Dispos 36:427–434

    CAS  PubMed  Google Scholar 

  • Ose A, Ito M, Kusuhara H, Yamatsugu K, Kanai M, Shibasaki M, Hosokawa M, Schuetz JD, Sugiyama Y (2009) Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos 37:315–321

    CAS  PubMed  Google Scholar 

  • Pan W, Kastin AJ, Zankel TC, van Kerkhof P, Terasaki T, Bu G (2004) Efficient transfer of receptor-associated protein (RAP) across the blood-brain barrier. J Cell Sci 117:5071–5078

    CAS  PubMed  Google Scholar 

  • Pardridge WM (1988) Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol 28:25–39

    CAS  PubMed  Google Scholar 

  • Pardridge WM (2001) Brain drug targeting: the future of brain drug development. Cambridge University Press, United Kingdom

    Google Scholar 

  • Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32:1959–1972

    CAS  PubMed  Google Scholar 

  • Pavan B, Dalpiaz A (2011) Prodrugs and endogenous transporters: are they suitable tools for drug targeting into the central nervous system? Curr Pharm Des 17:3560–3576

    CAS  PubMed  Google Scholar 

  • Peckham EM, Traynor JR (2006) Comparison of the antinociceptive response to morphine and morphine-like compounds in male and female Sprague-Dawley rats. J Pharmacol Exp Ther 316:1195–1201

    CAS  PubMed  Google Scholar 

  • Peura L, Malmioja K, Laine K, Leppanen J, Gynther M, Isotalo A, Rautio J (2011) Large amino acid transporter 1 (LAT1) prodrugs of valproic acid: new prodrug design ideas for central nervous system delivery. Mol Pharm 8:1857–1866

    CAS  PubMed  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52:201–243

    CAS  PubMed  Google Scholar 

  • Pincus JH, Barry K (1988) Protein redistribution diet restores motor function in patients with DOPA-resistant “off” periods. Neurology 38:481–483

    CAS  PubMed  Google Scholar 

  • Polli JW, Olson KL, Chism JP, John-Williams LS, Yeager RL, Woodard SM, Otto V, Castellino S, Demby VE (2009) An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab Dispos 37:439–442

    CAS  PubMed  Google Scholar 

  • Polt R, Porreca F, Szabo LZ, Bilsky EJ, Davis P, Abbruscato TJ, Davis TP, Harvath R, Yamamura HI, Hruby VJ (1994) Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Proc Natl Acad Sci U S A 91:7114–7118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prasad PD, Wang H, Huang W, Kekuda R, Rajan DP, Leibach FH, Ganapathy V (1999) Human LAT1, a subunit of system L amino acid transporter: molecular cloning and transport function. Biochem Biophys Res Commun 255:283–288

    CAS  PubMed  Google Scholar 

  • Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270

    CAS  PubMed  Google Scholar 

  • Sadiq MW, Borgs A, Okura T, Shimomura K, Kato S, Deguchi Y, Jansson B, Björkman S, Terasaki T, Hammarlund-Udenaes M (2011) Diphenhydramine active uptake at the blood-brain barrier and its interaction with oxycodone in vitro and in vivo. J Pharm Sci 100:3912–3923

    CAS  PubMed  Google Scholar 

  • Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    CAS  PubMed  Google Scholar 

  • Schliamser SE, Cars O, Norrby SR (1991) Neurotoxicity of beta-lactam antibiotics: predisposing factors and pathogenesis. J Antimicrob Chemother 27:405–425

    CAS  PubMed  Google Scholar 

  • Schuetz JD, Connelly MC, Sun D, Paibir SG, Flynn PM, Srinivas RV, Kumar A, Fridland A (1999) MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 5:1048–1051

    CAS  PubMed  Google Scholar 

  • Shen H, Smith DE, Keep RF, Xiang J, Brosius FC 3rd (2003) Targeted disruption of the PEPT2 gene markedly reduces dipeptide uptake in choroid plexus. J Biol Chem 278:4786–4791

    CAS  PubMed  Google Scholar 

  • Shen H, Smith DE, Keep RF, Brosius FC 3rd (2004) Immunolocalization of the proton-coupled oligopeptide transporter PEPT2 in developing rat brain. Mol Pharm 1:248–256

    CAS  PubMed  Google Scholar 

  • Shen J, Carcaboso AM, Hubbard KE, Tagen M, Wynn HG, Panetta JC, Waters CM, Elmeliegy MA, Stewart CF (2009) Compartment-specific roles of ATP-binding cassette transporters define differential topotecan distribution in brain parenchyma and cerebrospinal fluid. Cancer Res 69:5885–5892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, Miller CA, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106:1489–1499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shiiki T, Ohtsuki S, Kurihara A, Naganuma H, Nishimura K, Tachikawa M, Hosoya K, Terasaki T (2004) Brain insulin impairs amyloid-beta(1-40) clearance from the brain. J Neurosci 24:9632–9637

    CAS  PubMed  Google Scholar 

  • Shimomura K, Okura T, Kato S, Couraud PO, Schermann JM, Terasaki T, Deguchi Y (2013) Functional expression of a proton-coupled organic cation (H+/OC) antiporter in human brain capillary endothelial cell line hCMEC/D3, a human blood–brain barrier model. Fluids Barriers CNS 10:8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shojaiefard M, Christie DL, Lang F (2005) Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3. Biochem Biophys Res Commun 334:742–746

    CAS  PubMed  Google Scholar 

  • Shojaiefard M, Christie DL, Lang F (2006) Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR. Biochem Biophys Res Commun 341:945–949

    CAS  PubMed  Google Scholar 

  • Silvasti M, Rosenberg P, Seppala T, Svartling N, Pitkanen M (1998) Comparison of analgesic efficacy of oxycodone and morphine in postoperative intravenous patient-controlled analgesia. Acta Anaesthesiol Scand 42:576–580

    CAS  PubMed  Google Scholar 

  • Smith QR, Takasato Y, Rapoport SI (1984) Kinetic analysis of L-leucine transport across the blood-brain barrier. Brain Res 311:167–170

    CAS  PubMed  Google Scholar 

  • Smith QR, Momma S, Aoyagi M, Rapoport SI (1987) Kinetics of neutral amino acid transport across the blood-brain barrier. J Neurochem 49:1651–1658

    CAS  PubMed  Google Scholar 

  • Smith DE, Hu Y, Shen H, Nagaraja TN, Fenstermacher JD, Keep RF (2011) Distribution of glycylsarcosine and cefadroxil among cerebrospinal fluid, choroid plexus, and brain parenchyma after intracerebroventricular injection is markedly different between wild-type and Pept2 null mice. J Cereb Blood Flow Metab 31:250–261

    CAS  PubMed  Google Scholar 

  • Somogyvari-Vigh A, Kastin AJ, Liao J, Zadina JE, Pan W (2004) Endomorphins exit the brain by a saturable efflux system at the basolateral surface of cerebral endothelial cells. Exp Brain Res 156:224–230

    CAS  PubMed  Google Scholar 

  • Spector R, Johanson CE (2010) Vectorial ligand transport through mammalian choroid plexus. Pharm Res 27:2054–2062

    CAS  PubMed  Google Scholar 

  • Stoll J, Wadhwani KC, Smith QR (1993) Identification of the cationic amino acid transporter (System y+) of the rat blood-brain barrier. J Neurochem 60:1956–1959

    CAS  PubMed  Google Scholar 

  • Sugiyama D, Kusuhara H, Taniguchi H, Ishikawa S, Nozaki Y, Aburatani H, Sugiyama Y (2003) Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood-brain barrier: high affinity transporter for thyroxine. J Biol Chem 278:43489–43495

    CAS  PubMed  Google Scholar 

  • Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, Yan N (2012) Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 490:361–366

    CAS  PubMed  Google Scholar 

  • Sunden Y, Park CH, Matsuda K, Anagawa A, Kimura T, Ochiai K, Kida H, Umemura T (2003) The effects of antipyretics on influenza virus encephalitis in mice and chicks. J Vet Med Sci 65:1185–1188

    CAS  PubMed  Google Scholar 

  • Suzuki T, Moriki Y, Goto H, Tomono K, Hanano M, Watanabe J (2002a) Investigation on the influx transport mechanism of pentazocine at the blood-brain barrier in rats using the carotid injection technique. Biol Pharm Bull 25:1351–1355

    CAS  PubMed  Google Scholar 

  • Suzuki T, Oshimi M, Tomono K, Hanano M, Watanabe J (2002b) Investigation of transport mechanism of pentazocine across the blood-brain barrier using the in situ rat brain perfusion technique. J Pharm Sci 91:2346–2353

    CAS  PubMed  Google Scholar 

  • Suzuki M, Suzuki H, Sugimoto Y, Sugiyama Y (2003) ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 278:22644–22649

    CAS  PubMed  Google Scholar 

  • Suzuki T, Miyata M, Zaima C, Furuishi T, Fukami T, Kugawa F, Tomono K (2010a) Blood-brain barrier transport of naloxone does not involve P-glycoprotein-mediated efflux. J Pharm Sci 99:413–421

    CAS  PubMed  Google Scholar 

  • Suzuki T, Ohmuro A, Miyata M, Furuishi T, Hidaka S, Kugawa F, Fukami T, Tomono K (2010b) Involvement of an influx transporter in the blood-brain barrier transport of naloxone. Biopharm Drug Dispos 31:243–252

    CAS  PubMed  Google Scholar 

  • Sweet DH, Miller DS, Pritchard JB (2001) Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem 276:41611–41619

    CAS  PubMed  Google Scholar 

  • Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK (2002) Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem 277:26934–26943

    CAS  PubMed  Google Scholar 

  • Sykes D, Sweet DH, Lowes S, Nigam SK, Pritchard JB, Miller DS (2004) Organic anion transport in choroid plexus from wild-type and organic anion transporter 3 (Slc22a8)-null mice. Am J Physiol Renal Physiol 286:F972–F978

    CAS  PubMed  Google Scholar 

  • Tachikawa M, Hosoya K (2011) Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders. Fluids Barriers CNS 8:13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tachikawa M, Fukaya M, Terasaki T, Ohtsuki S, Watanabe M (2004) Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci 20:144–160

    PubMed  Google Scholar 

  • Tachikawa M, Watanabe M, Hori S, Fukaya M, Ohtsuki S, Asashima T, Terasaki T (2005) Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. J Neurochem 95:294–304

    CAS  PubMed  Google Scholar 

  • Tachikawa M, Fujinawa J, Takahashi M, Kasai Y, Fukaya M, Sakai K, Yamazaki M, Tomi M, Watanabe M, Sakimura K, Terasaki T, Hosoya K (2008a) Expression and possible role of creatine transporter in the brain and at the blood-cerebrospinal fluid barrier as a transporting protein of guanidinoacetate, an endogenous convulsant. J Neurochem 107:768–778

    CAS  PubMed  Google Scholar 

  • Tachikawa M, Kasai Y, Takahashi M, Fujinawa J, Kitaichi K, Terasaki T, Hosoya K (2008b) The blood-cerebrospinal fluid barrier is a major pathway of cerebral creatinine clearance: involvement of transporter-mediated process. J Neurochem 107:432–442

    CAS  PubMed  Google Scholar 

  • Tachikawa M, Kasai Y, Yokoyama R, Fujinawa J, Ganapathy V, Terasaki T, Hosoya K (2009) The blood-brain barrier transport and cerebral distribution of guanidinoacetate in rats: involvement of creatine and taurine transporters. J Neurochem 111:499–509

    CAS  PubMed  Google Scholar 

  • Tachikawa M, Ozeki G, Higuchi T, Akanuma S, Tsuji K, Hosoya K (2012a) Role of the blood-cerebrospinal fluid barrier transporter as a cerebral clearance system for prostaglandin E(2) produced in the brain. J Neurochem 123:750–760

    CAS  PubMed  Google Scholar 

  • Tachikawa M, Tsuji K, Yokoyama R, Higuchi T, Ozeki G, Yashiki A, Akanuma S, Hayashi K, Nishiura A, Hosoya K (2012b) A clearance system for prostaglandin D2, a sleep-promoting factor, in cerebrospinal fluid: role of the blood-cerebrospinal barrier transporters. J Pharmacol Exp Ther 343:608–616

    CAS  PubMed  Google Scholar 

  • Takanaga H, Ohtsuki S, Hosoya K, Terasaki T (2001) GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier. J Cereb Blood Flow Metab 21:1232–1239

    CAS  PubMed  Google Scholar 

  • Takanaga H, Tokuda N, Ohtsuki S, Hosoya K, Terasaki T (2002) ATA2 is predominantly expressed as system A at the blood-brain barrier and acts as brain-to-blood efflux transport for L-proline. Mol Pharmacol 61:1289–1296

    CAS  PubMed  Google Scholar 

  • Takasawa K, Terasaki T, Suzuki H, Ooie T, Sugiyama Y (1997) Distributed model analysis of 3′-azido-3′-deoxythymidine and 2′,3′-dideoxyinosine distribution in brain tissue and cerebrospinal fluid. J Pharmacol Exp Ther 282:1509–1517

    CAS  PubMed  Google Scholar 

  • Tega Y, Akanuma SI, Kubo Y, Terasaki T, Hosoya KI (2012) Blood-to-brain influx transport of nicotine at the rat blood-brain barrier: Involvement of a pyrilamine-sensitive organic cation transport process. Neurochem Int 62:173–181

    PubMed  Google Scholar 

  • Terada T, Inui K (2008) Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). Biochem Pharmacol 75:1689–1696

    CAS  PubMed  Google Scholar 

  • Terasaki T, Hosoya K (1999) The blood-brain barrier efflux transporters as a detoxifying system for the brain. Adv Drug Deliv Rev 36:195–209

    CAS  PubMed  Google Scholar 

  • Terasaki T, Pardridge WM (1988) Restricted transport of 3′-azido-3′-deoxythymidine and dideoxynucleosides through the blood-brain barrier. J Infect Dis 158:630–632

    CAS  PubMed  Google Scholar 

  • Terasaki T, Tsuji A (1994) Drug delivery to the brain utilizing blood-brain barrier transport systems. J Control Release 29:163–169

    CAS  Google Scholar 

  • Terasaki T, Ohtsuki S, Hori S, Takanaga H, Nakashima E, Hosoya K (2003) New approaches to in vitro models of blood-brain barrier drug transport. Drug Discov Today 8:944–954

    CAS  PubMed  Google Scholar 

  • Tetsuka K, Takanaga H, Ohtsuki S, Hosoya K, Terasaki T (2003) The l-isomer-selective transport of aspartic acid is mediated by ASCT2 at the blood-brain barrier. J Neurochem 87:891–901

    CAS  PubMed  Google Scholar 

  • Teuscher NS, Shen H, Shu C, Xiang J, Keep RF, Smith DE (2004) Carnosine uptake in rat choroid plexus primary cell cultures and choroid plexus whole tissue from PEPT2 null mice. J Neurochem 89:375–382

    CAS  PubMed  Google Scholar 

  • Torremans A, Marescau B, Possemiers I, Van Dam D, D’Hooge R, Isbrandt D, De Deyn PP (2005) Biochemical and behavioural phenotyping of a mouse model for GAMT deficiency. J Neurol Sci 231:49–55

    CAS  PubMed  Google Scholar 

  • Traiffort E, Ruat M, O’Regan S, Meunier FM (2005) Molecular characterization of the family of choline transporter-like proteins and their splice variants. J Neurochem 92:1116–1125

    CAS  PubMed  Google Scholar 

  • Tsuji A, Terasaki T, Takabatake Y, Tenda Y, Tamai I, Yamashima T, Moritani S, Tsuruo T, Yamashita J (1992) P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci 51:1427–1437

    CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Kamiie J, Terasaki T (2011a) Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther 339:579–588

    CAS  PubMed  Google Scholar 

  • Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T (2011b) Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 117:333–345

    CAS  PubMed  Google Scholar 

  • Uchino H, Kanai Y, Kim DK, Wempe MF, Chairoungdua A, Morimoto E, Anders MW, Endou H (2002) Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol 61:729–737

    CAS  PubMed  Google Scholar 

  • Urquhart BL, Kim RB (2009) Blood-brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol 65:1063–1070

    CAS  PubMed  Google Scholar 

  • Wang X, Cabrera RM, Li Y, Miller DS, Finnell RH (2013) Functional regulation of P-glycoprotein at the blood-brain barrier in proton-coupled folate transporter (PCFT) mutant mice. FASEB J 27:1167–1175

    CAS  PubMed  Google Scholar 

  • Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO (2005) Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874

    CAS  PubMed  Google Scholar 

  • Wijnholds J, deLange EC, Scheffer GL, van den Berg DJ, Mol CA, van der Valk M, Schinkel AH, Scheper RJ, Breimer DD, Borst P (2000) Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J Clin Invest 105:279–285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong HY, Chu TS, Lai JC, Fung KP, Fok TF, Fujii T, Ho YY (2005) Sodium valproate inhibits glucose transport and exacerbates Glut1-deficiency in vitro. J Cell Biochem 96:775–785

    CAS  PubMed  Google Scholar 

  • Xia L, Engel K, Zhou M, Wang J (2007) Membrane localization and pH-dependent transport of a newly cloned organic cation transporter (PMAT) in kidney cells. Am J Physiol Renal Physiol 292:F682–F690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong H, Callaghan D, Jones A, Bai J, Rasquinha I, Smith C, Pei K, Walker D, Lue LF, Stanimirovic D, Zhang W (2009) ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides. J Neurosci 29:5463–5475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamazaki M, Fukuoka H, Nagata O, Kato H, Ito Y, Terasaki T, Tsuji A (1994a) Transport mechanism of an H1-antagonist at the blood-brain barrier: transport mechanism of mepyramine using the carotid injection technique. Biol Pharm Bull 17:676–679

    CAS  PubMed  Google Scholar 

  • Yamazaki M, Terasaki T, Yoshioka K, Nagata O, Kato H, Ito Y, Tsuji A (1994b) Carrier-mediated transport of H1-antagonist at the blood-brain barrier: a common transport system of H1-antagonists and lipophilic basic drugs. Pharm Res 11:1516–1518

    CAS  PubMed  Google Scholar 

  • Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, Tani Y, Taketani Y, Uchino H, Kim JY, Inatomi J, Okayasu I, Miyamoto K, Takeda E, Goya T, Endou H (2001) Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta 1514:291–302

    CAS  PubMed  Google Scholar 

  • Yanai K, Tashiro M (2007) The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacol Ther 113:1–15

    CAS  PubMed  Google Scholar 

  • Ylikangas H, Peura L, Malmioja K, Leppanen J, Laine K, Poso A, Lahtela-Kakkonen M, Rautio J (2012) Structure-activity relationship study of compounds binding to large amino acid transporter 1 (LAT1) based on pharmacophore modeling and in situ rat brain perfusion. Eur J Pharm Sci 48:523–531

    PubMed  Google Scholar 

  • Zufferey R, Santiago TC, Brachet V, Ben Mamoun C (2004) Reexamining the role of choline transporter-like (Ctlp) proteins in choline transport. Neurochem Res 29:461–467

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to acknowledge the collaboration of Drs. K. Hosoya and S. Akanuma (University of Toyama). This work was supported, in part, by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Terasaki Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Tachikawa, M., Uchida, Y., Ohtsuki, S., Terasaki, T. (2014). Recent Progress in Blood–Brain Barrier and Blood–CSF Barrier Transport Research: Pharmaceutical Relevance for Drug Delivery to the Brain. In: Hammarlund-Udenaes, M., de Lange, E., Thorne, R. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9105-7_2

Download citation

Publish with us

Policies and ethics