Skip to main content

Neurosurgical Approaches: Drug Infusion Directly into the Parenchyma or the Cerebrospinal Fluid

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 10))

Abstract

Delivering drugs effectively to the central nervous system (CNS) has always presented a challenge. The blood–brain barrier prevents significant amounts of systemically administered therapeutics from reaching the brain. Traditional local CNS delivery (e.g., biodegradable polymers, cerebro-ventricular injection, cell implantation) has relied on diffusion, which is dependent on a concentration gradient. The rate of diffusion is inversely proportional to the size of the agent and is usually slow with respect to tissue clearance, resulting in a non-homogeneous distribution often restricted to a few millimeters from the source. By contrast, convection-enhanced delivery uses a pressure gradient established at the tip of an infusion catheter to create bulk flow, “pushing” drugs into a large volume of brain tissue. This displacement allows the infused material to engage the vasculature, with rhythmic blood vessel contractions acting as an efficient motive force to move particles along perivascular tracts. This chapter describes a fully integrated and FDA-approved drug delivery system for cerebral infusion that consists of an MR-compatible aiming device, a reflux-resistant cannula, and predictive software, allowing the monitoring of nanoparticle, viral vector, or small molecule distribution in “real time” during brain and brain tumor delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bobo RH, Laske DW et al (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 91(6):2076–2080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cabrera-Salazar MA, Bercury SD et al (2010) Intracerebroventricular delivery of glucocerebrosidase reduces substrates and increases lifespan in a mouse model of neuronopathic Gaucher disease. Exp Neurol 225:436–444

    Article  CAS  PubMed  Google Scholar 

  • Carson BS Sr, Wu Q et al (2002) New approach to tumor therapy for inoperable areas of the brain: chronic intraparenchymal drug delivery. J Neurooncol 60(2):151–158

    Article  PubMed  Google Scholar 

  • Chang M, Cooper JD et al (2008) Intraventricular enzyme replacement improves disease phenotypes in a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol Ther 16(4):649–656

    Article  CAS  PubMed  Google Scholar 

  • Chen MY, Lonser RR et al (1999) Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue-cannula sealing time. J Neurosurg 90(2):315–320

    Article  CAS  PubMed  Google Scholar 

  • Christine CW, Starr PA et al (2006) Aromatic L-amino acid decarboxylase gene transfer therapy for Parkinson’s disease: initial results of an open-label, dose escalation, safety and tolerability study. Abstract S23.005. American Academy of Neurology, San Diego, CA

    Google Scholar 

  • Dickinson PJ, LeCouteur RA et al (2008) Canine model of convection-enhanced delivery of liposomes containing CPT-11 monitored with real-time magnetic resonance imaging: laboratory investigation. J Neurosurg 108(5):989–998

    Article  CAS  PubMed  Google Scholar 

  • Dickson P, McEntee M et al (2007) Intrathecal enzyme replacement therapy: successful treatment of brain disease via the cerebrospinal fluid. Mol Genet Metabol 91:61–68

    Article  CAS  Google Scholar 

  • Dodge JC, Clarke J et al (2008) Intracerebroventricular infusion of acid sphingomyelinase corrects CNS manifestations in a mouse model of Niemann–Pick A disease. Exp Neurol 215:349–357

    Article  PubMed  Google Scholar 

  • Eberling JL, Jagust WJ et al (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983

    Article  CAS  PubMed  Google Scholar 

  • Fiandaca MS, Forsayeth JR et al (2008) Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics 5(1):123–127

    Article  PubMed Central  PubMed  Google Scholar 

  • Fiandaca MS, Varenika V et al (2009) Real-time MR imaging of adeno-associated viral vector delivery to the primate brain. Neuroimage 47(Suppl 2):T27–T35

    Article  PubMed Central  PubMed  Google Scholar 

  • Foust KD, Nurre E et al (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27(1):59–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gash DM, Zhang Z et al (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380(6571):252–255

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Patel NK et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9(5):589–595

    Article  CAS  PubMed  Google Scholar 

  • Gimenez F, Krauze MT et al (2011) Image-guided convection-enhanced delivery of GDNF protein into Monkey Putamen. Neuroimage 54(1):S189–195

    Google Scholar 

  • Gray SJ, Matagne V et al (2011) Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 19(6):1058–1069

    Article  CAS  PubMed  Google Scholar 

  • Grondin R, Zhang Z et al (2002) Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125(Pt 10):2191–2201

    Article  PubMed  Google Scholar 

  • Hadaczek P, Mirek H et al (2006) “Perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 14(1):69–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hall WA, Liu H et al (2001) Brain biopsy sampling by using prospective stereotaxis and a trajectory guide. J Neurosurg 94(1):67–71

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JF, Morrison PF et al (2001) Heparin coinfusion during convection-enhanced delivery (CED) increases the distribution of the glial-derived neurotrophic factor (GDNF) ligand family in rat striatum and enhances the pharmacological activity of neurturin. Exp Neurol 168(1):155–161

    Article  CAS  PubMed  Google Scholar 

  • Hemsley KM, Beard H et al (2008) Effect of high dose, repeated intra-cerebrospinal fluid injection of sulphamidase on neuropathology in mucopolysaccharidosis type IIIA mice. Genes Brain Behav 7:740–753

    Article  CAS  Google Scholar 

  • Hemsley KM, King B et al (2007) Injection of recombinant human sulfamidase into the CSF via the cerebellomedullrry cistern in MPS IIIA mice. Mol Genet Metab 90:313–328

    Article  CAS  PubMed  Google Scholar 

  • Hemsley KM, Norman EJ et al (2009) Effect of cisternal sulfamidase delivery in MPS IIIA Huntaway dogs—a proof of principle study. Mol Genet Metabol 98:383–392

    Article  CAS  Google Scholar 

  • Kordower JH, Palfi S et al (1999) Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 46(3):419–424

    Article  CAS  PubMed  Google Scholar 

  • Krauze MT, Forsayeth J et al (2006) Real-time imaging and quantification of brain delivery of liposomes. Pharm Res 23(11):2493–2504

    Article  CAS  PubMed  Google Scholar 

  • Krauze MT, McKnight TR et al (2005a) Real-time visualization and characterization of liposomal delivery into the monkey brain by magnetic resonance imaging. Brain Res Brain Res Protoc 16:20–26

    Article  CAS  PubMed  Google Scholar 

  • Krauze MT, Saito R et al (2005b) Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen. Exp Neurol 196(1):104–111

    Article  CAS  PubMed  Google Scholar 

  • Krauze MT, Saito R et al (2005c) Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J Neurosurg 103(5):923–929

    Article  PubMed  Google Scholar 

  • Kroll RA, Pagel MA et al (1996) Increasing volume of distribution to the brain with interstitial infusion: dose, rather than convection, might be the most important factor. Neurosurgery 38(4):746–752, discussion 752–754

    Article  CAS  PubMed  Google Scholar 

  • Kunwar S (2003) Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: presentation of interim findings from ongoing phase 1 studies. Acta Neurochir Suppl 88:105–111

    CAS  PubMed  Google Scholar 

  • Kunwar S, Prados MD et al (2007) Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 25(7):837–844

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Gill S et al (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59(3):459–466

    Article  CAS  PubMed  Google Scholar 

  • Lee WC, Tsoi YK et al (2007) Single-dose intracerebroventricular administration of galactocerebrosidase improves survival in a mouse model of globoid cell leukodystrophy. FASEB J 21(10):2520–2527

    Article  CAS  PubMed  Google Scholar 

  • Lonser RR, Corthesy ME et al (1999) Convection-enhanced selective excitotoxic ablation of the neurons of the globus pallidus internus for treatment of parkinsonism in nonhuman primates. J Neurosurg 91(2):294–302

    Article  CAS  PubMed  Google Scholar 

  • Lonser RR, Schiffman R et al (2007) Image-guided, direct convective delivery of glucocerebrosidase for neuronopathic Gaucher disease. Neurology 68(4):254–261

    Article  CAS  PubMed  Google Scholar 

  • Mardor Y, Roth Y et al (2001) Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res 61(13):4971–4973

    CAS  PubMed  Google Scholar 

  • Marks WJ, Bartus RT et al (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 9:1164–1172

    Article  CAS  PubMed  Google Scholar 

  • Martin AJ, Hall WA et al (2008) Minimally invasive precision brain access using prospective stereotaxy and a trajectory guide. J Magn Reson Imaging 27(4):737–743

    Article  PubMed  Google Scholar 

  • Martin AJ, Larson PS et al (2005) Placement of deep brain stimulator electrodes using real-time high-field interventional magnetic resonance imaging. Magn Reson Med 54(5):1107–1114

    Article  PubMed  Google Scholar 

  • Morrison PF, Chen MY et al (1999) Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics. Am J Physiol 277(4 Pt 2):R1218–R1229

    CAS  PubMed  Google Scholar 

  • Murad GJ, Walbridge S et al (2006) Real-time, image-guided, convection-enhanced delivery of interleukin 13 bound to pseudomonas exotoxin. Clin Cancer Res 12(10):145–151

    Article  Google Scholar 

  • Murad GJ, Walbridge S et al (2007) Image-guided convection-enhanced delivery of gemcitabine to the brainstem. J Neurosurg 106(2):351–356

    Article  CAS  PubMed  Google Scholar 

  • Neeves KB, Sawyer AJ et al (2007) Dilation and degradation of the brain extracellular matrix enhances penetration of infused polymer nanoparticles. Brain Res 1180:121–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen JB, Sanchez-Pernaute R et al (2001) Convection-enhanced delivery of AAV-2 combined with heparin increases TK gene transfer in the rat brain. Neuroreport 12(9):1961–1964

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TT, Pannu YS et al (2003) Convective distribution of macromolecules in the primate brain demonstrated using computerized tomography and magnetic resonance imaging. J Neurosurg 98(3):584–590

    Article  CAS  PubMed  Google Scholar 

  • Nutt JG, Burchiel KJ et al (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60(1):69–73

    Article  CAS  PubMed  Google Scholar 

  • Richardson RM, Kells AP et al (2011) Novel platform for MRI-guided convection-enhanced delivery of therapeutics: preclinical validation in nonhuman primate brain. Stereotact Funct Neurosurg 89(3):141–151

    Google Scholar 

  • Richardson RM, Larson PS et al (2008) Gene and cell delivery to the degenerated striatum: status of preclinical efforts in primate models. Neurosurgery 63(4):629–642, dicussion 642–644

    Article  PubMed  Google Scholar 

  • Richardson RM, Varenika V et al (2009) Future applications: gene therapy. Neurosurg Clin N Am 20(2):205–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenbluth KH, Eschermann JF et al (2012a) Analysis of a simulation algorithm for direct brain drug delivery. Neuroimage 59(3):2423–2429

    Google Scholar 

  • Rosenbluth KH, Martin AJ et al (2012b) Evaluation of pressure-driven brain infusions in nonhuman primates by intra-operative 7 Tesla MRI. J Magn Reson Imaging 36(6):1339–1346

    Google Scholar 

  • Rosenbluth KH, Luz M et al (2011) Design of an in-dwelling cannula for convection-enhanced delivery. J Neurosci Methods 196(1):118–123

    Google Scholar 

  • Rosenbluth KH, Martin AJ et al (2013) Rapid inverse planning for pressure-driven drug infusions in the brain. PLoS One 8(2):e56397

    Google Scholar 

  • Saito R, Krauze MT et al (2005) Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol 196(2):381–389

    Article  CAS  PubMed  Google Scholar 

  • Samaranch L, Salegio EA et al (2013) Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 24(5): 526–532

    Google Scholar 

  • Samaranch L, Salegio EA et al (2012) Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum Gene Ther 23(4):382–389

    Article  CAS  PubMed  Google Scholar 

  • Sampson JH, Akabani G et al (2003) Progress report of a phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neurooncol 65(1):27–35

    Article  PubMed  Google Scholar 

  • Sanftner LM, Sommer JM et al (2005) AAV2-mediated gene delivery to monkey putamen: evaluation of an infusion device and delivery parameters. Exp Neurol 194(2):476–483

    Article  CAS  PubMed  Google Scholar 

  • Slevin JT, Gash DM et al (2006) Unilateral intraputaminal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year each of treatment and withdrawal. Neurosurg Focus 20(5):E1

    Article  PubMed  Google Scholar 

  • Starr PA, Martin AJ et al (2010) Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg 112(3):479–490

    Google Scholar 

  • Su X, Kells AP et al (2010) Real-time MR imaging with gadoteridol predicts distribution of transgenes after convection-enhanced delivery of AAV2 vectors. Mol Ther 18(8):1490–1495

    Google Scholar 

  • Sykova E (2004) Diffusion properties of the brain in health and disease. Neurochem Int 45(4):453–466

    Article  CAS  PubMed  Google Scholar 

  • Szerlip NJ, Walbridge S et al (2007) Real-time imaging of convection-enhanced delivery of viruses and virus-sized particles. J Neurosurg 107(3):560–567

    Article  CAS  PubMed  Google Scholar 

  • Truwit CL, Liu H (2001) Prospective stereotaxy: a novel method of trajectory alignment using real-time image guidance. J Magn Reson Imaging 13(3):452–457

    Article  CAS  PubMed  Google Scholar 

  • Valles F, Fiandaca MS et al (2010) Qualitative imaging of adeno-associated virus serotype 2-human aromatic l-amino acid decarboxylase gene therapy in a phase I study for the treatment of Parkinson disease. Neurosurgery 67(5):1377–1385

    Google Scholar 

  • Varenika V, Dickenson P et al (2008) Detection of infusate leakage in the brain using real-time imaging of convection-enhanced delivery. J Neurosurg 109:874–880

    Article  PubMed Central  PubMed  Google Scholar 

  • Yin D, Forsayeth J et al (2010a) Optimized cannula design and placement for convection-enhanced delivery in rat striatum. J Neurosci Methods 187(1):46–51

    Article  PubMed Central  PubMed  Google Scholar 

  • Yin D, Richardson RM et al (2010) Cannula placement for effective convection-enhanced delivery in the nonhuman primate thalamus and brainstem: implications for clinical delivery of therapeutics. J Neurosurg 113(2):240–248

    Google Scholar 

  • Yin D, Richardson RM et al (2010b) Cannula placement for effective convection-enhanced delivery in the nonhuman primate thalamus and brainstem: implications for clinical delivery of therapeutics. J Neurosurg 113(2):240–248

    Article  PubMed  Google Scholar 

  • Yin D, Valles FE et al (2011) Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates. Neuroimage 54(1):S196–203

    Google Scholar 

  • Yin D, Valles FE et al (2009a) Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates. Neuroimage

    Google Scholar 

  • Yin D, Valles FE et al (2009b) Striatal volume differences between non-human and human primates. J Neurosci Methods 176(2):200–205

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang Z, Miyoshi Y et al (1997) Dose response to intraventricular glial cell line-derived neurotrophic factor administration in parkinsonian monkeys. J Pharmacol Exp Ther 282(3):1396–1401

    CAS  PubMed  Google Scholar 

  • Ziegler RJ, Salegio EA et al (2011) Distribution of acid sphingomyelinase in rodent and non-human primate brain after intracerebroventricular infusion. Exp Neurol 231(2):261–271

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystof Bankiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Bankiewicz, K. (2014). Neurosurgical Approaches: Drug Infusion Directly into the Parenchyma or the Cerebrospinal Fluid. In: Hammarlund-Udenaes, M., de Lange, E., Thorne, R. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9105-7_18

Download citation

Publish with us

Policies and ethics