Skip to main content

Pharmacoeconomic Considerations in CNS Drug Development

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 10))

  • 3606 Accesses

Abstract

Recent advances in understanding of the blood–brain barrier (BBB) suggest that we are entering an era in which basic discoveries of BBB structure and function may be parlayed into meaningful disease applications. The development of impactful human therapies is a difficult and lengthy process; nonetheless, many researchers desire to see their work applied to the treatment of human disease. Significant financial reward will follow functional solutions to BBB delivery challenges; however, validating a trans-BBB delivery strategy to support and sustain a clinical program is costly and risky and requires multidisciplinary expertise. Investigators must necessarily garner funding and expertise for such campaigns, mainly through government grants, private investment firms, and industrial partnerships. Among the many considerations for researchers looking to advance brain delivery technology are the commercial aspects of the technology and the requirements attached to the funding mechanisms for clinical development. Early choices about delivery modality and target therapy (indication) have important consequences for the development process. An understanding of the forces that currently drive the pricing of therapeutics and the factors considered by potential investors who can fund expensive clinical development programs is helpful for framing a discussion about the pharmacoeconomics of BBB delivery. Complex multimodal delivery technologies may have added challenges for demonstrating safety and significantly higher drug manufacturing costs that can influence the risk–benefit analysis made by potential investors. Both the therapeutic application and the delivery system influence the path to generating commercial or government interest in advancing a particular brain delivery approach toward the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood–brain barrier

CNS:

Central nervous system

GMP:

Good manufacturing practice

NIH:

National Institute of Health

QALY:

Auality-adjusted life year

References

  • Adams CP, Brantner VV (2006) Estimating the cost of new drug development: is it really 802 million dollars? Health Aff (Millwood) 25(2):420–428

    Article  Google Scholar 

  • Arnold RJG (2007) Cost-effectiveness analysis: should it be required for drug registration and beyond? Drug Discov Today 12(21–22):960–965

    Article  PubMed  Google Scholar 

  • Basu P, Joglekar G, Rai S, Suresh P, Vernon J (2008) Analysis of manufacturing costs in pharmaceutical companies. J Pharm Innov 3(1):30–40

    Article  Google Scholar 

  • Beg S, Samad A, Alam MI, Nazish I (2011) Dendrimers as novel systems for delivery of neuropharmaceuticals to the brain. CNS Neurol Disord Drug Targets 10(5):576–588

    Article  CAS  PubMed  Google Scholar 

  • Bensmail D, Ward AB, Wissel J, Motta F, Saltuari L, Lissens J, Cros S, Beresniak A (2009) Cost-effectiveness modeling of intrathecal baclofen therapy versus other interventions for disabling spasticity. Neurorehabil Neural Repair 23(6):546–552

    Article  CAS  PubMed  Google Scholar 

  • Bidros DS, Liu JK, Vogelbaum MA (2010) Future of convection-enhanced delivery in the treatment of brain tumors. Future Oncol 6(1):117–125

    Article  CAS  PubMed  Google Scholar 

  • Bisht R (2011) Brain drug delivery system: a comprehensive review on recent experimental and clinical findings. Int J Pharm Sci Res 2(4):792–806

    CAS  Google Scholar 

  • Blasi P, Schoubben A, Giovagnoli S, Rossi C, Ricci M (2011) Solid lipid nanoparticles to improve brain drug delivery. Nanomater Life Sci 10:365–394

    CAS  Google Scholar 

  • Bodor N, Shek E, Higuchi T (1975) Delivery of a quaternary pyridinium salt across the blood-brain barrier by its dihydropyridine derivative. Science 190(4210):155–156

    Article  CAS  PubMed  Google Scholar 

  • Cagnoni PJ, Walsh TJ, Prendergast MM, Bodensteiner D, Hiemenz S, Greenberg RN, Arndt CA, Schuster M, Seibel N, Yeldandi V, Tong KB (2000) Pharmacoeconomic analysis of liposomal amphotericin B versus conventional amphotericin B in the empirical treatment of persistently febrile neutropenic patients. J Clin Oncol 18(12):2476–2483

    CAS  PubMed  Google Scholar 

  • Celia C, Cosco D, Paolino D, Fresta M (2011) Nanoparticulate devices for brain drug delivery. Med Res Rev 31(5):716–756

    CAS  Google Scholar 

  • Crunkhorn S (2012) Neurological disorders: nanoparticle opens door to cerebral palsy treatment. Nat Rev Drug Discov 11(6):440–441

    Article  CAS  PubMed  Google Scholar 

  • de Lissovoy G, Matza LS, Green H, Werner M, Edgar T (2007) Cost-effectiveness of intrathecal baclofen therapy for the treatment of severe spasticity associated with cerebral palsy. J Child Neurol 22(1):49–59

    Article  PubMed  Google Scholar 

  • De Rosa G, Salzano G, Caraglia M, Abbruzzese A (2012) Nanotechnologies: a strategy to overcome blood-brain barrier. Curr Drug Metab 13(1):61–69

    Article  PubMed  Google Scholar 

  • Ding H, Inoue S, Ljubimov AV, Patil R, Portilla-Arias J, Hu J, Konda B, Wawrowsky KA, Fujita M, Karabalin N, Sasaki T, Black KL, Holler E, Ljubimova JY (2010) Inhibition of brain tumor growth by intravenous poly (beta-L-malic acid) nanobioconjugate with pH-dependent drug release [corrected]. Proc Natl Acad Sci U S A 107(42):18143–18148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Etame AB, Diaz RJ, Smith CA, Mainprize TG, Hynynen K, Rutka JT (2012) Focused ultrasound disruption of the blood-brain barrier: a new frontier for therapeutic delivery in molecular neurooncology. Neurosurg Focus 32(1):E3

    Article  PubMed  Google Scholar 

  • Ferguson SD, Foster K, Yamini B (2007) Convection-enhanced delivery for treatment of brain tumors. Expert Rev Anticancer Ther 7(12 Suppl):S79–S85

    Article  CAS  PubMed  Google Scholar 

  • Frank RT, Aboody KS, Najbauer J (2011) Strategies for enhancing antibody delivery to the brain. Biochim Biophys Acta Rev Cancer 1816(2):191–198

    Article  CAS  Google Scholar 

  • Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 37(1):48–57

    Article  CAS  PubMed  Google Scholar 

  • Goldie SJ, Kohli M, Grima D, Weinstein MC, Wright TC, Bosch FX, Franco E (2004) Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine. J Natl Cancer Inst 96(8):604–615

    Article  PubMed  Google Scholar 

  • Gosk S, Vermehren C, Storm G, Moos T (2004) Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J Cereb Blood Flow Metab 24(11):1193–1204

    Article  CAS  PubMed  Google Scholar 

  • Hall WA, Rustamzadeh E, Asher AL (2003) Convection-enhanced delivery in clinical trials. Neurosurg Focus 14(2):E2

    Article  PubMed  Google Scholar 

  • Haque S, Md S, Alam MI, Sahni JK, Ali J, Baboota S (2012) Nanostructure-based drug delivery systems for brain targeting. Drug Dev Ind Pharm 38(4):387–411

    Article  CAS  PubMed  Google Scholar 

  • Herve F, Ghinea N, Scherrmann JM (2008) CNS delivery via adsorptive transcytosis. AAPS J 10(3):455–472

    Article  PubMed  Google Scholar 

  • Iwadate Y, Namba H, Saegusa T, Sueyoshi K (1993) Intra-arterial mannitol infusion in the chemotherapy for malignant brain tumors. J Neurooncol 15(2):185–193

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Jain SK (2011) Drug targeting to the brain—a review. Curr Nanosci 7(1):21–36

    Article  CAS  Google Scholar 

  • Jeffrey P, Summerfield S (2010) Assessment of the blood-brain barrier in CNS drug discovery. Neurobiol Dis 37(1):33–37

    Article  CAS  PubMed  Google Scholar 

  • Kessel M, Frank F (2007) A better prescription for drug-development financing. Nat Biotechnol 25(8):859–866

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Kelly M, Pirlot T (2001) Continuous intrathecal morphine treatment for chronic pain of nonmalignant etiology: long-term benefits and efficacy. Surg Neurol 55(2):79–88

    Article  CAS  PubMed  Google Scholar 

  • Landis MS, Boyden T, Pegg S (2012) Nasal-to-CNS drug delivery: where are we now and where are we heading? An industrial perspective. Ther Deliv 3(2):195–208

    Article  CAS  PubMed  Google Scholar 

  • Lock K, Wilson K, Murphy D, Riesco JA (2011) A cost-effectiveness model of smoking cessation based on a randomised controlled trial of varenicline versus placebo in patients with chronic obstructive pulmonary disease. Expert Opin Pharmacother 12(17):2613–2626

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Duchene D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329(1–2):1–11

    Article  CAS  PubMed  Google Scholar 

  • Malakoutikhah M, Teixido M, Giralt E (2011) Shuttle-mediated drug delivery to the brain. Angew Chem Int Ed 50(35):7998–8014

    Article  CAS  Google Scholar 

  • Malerba F, Paoletti F, Capsoni S, Cattaneo A (2011) Intranasal delivery of therapeutic proteins for neurological diseases. Expert Opin Drug Deliv 8(10):1277–1296

    Article  CAS  PubMed  Google Scholar 

  • Malhotra M, Prakash S (2011) Targeted drug delivery across blood-brain-barrier using cell penetrating peptides tagged nanoparticles. Curr Nanosci 7(1):81–93

    Article  CAS  Google Scholar 

  • Marino P, Roche H, Moatti JP (2008) High-dose chemotherapy for patients with high-risk breast cancer: a clinical and economic assessment using a quality-adjusted survival analysis. Am J Clin Oncol 31(2):117–124

    Article  CAS  PubMed  Google Scholar 

  • Martin-Banderas L, Holgado MA, Venero JL, Alvarez-Fuentes J, Fernandez-Arevalo M (2011) Nanostructures for drug delivery to the brain. Curr Med Chem 18(34):5303–5321

    Article  CAS  PubMed  Google Scholar 

  • Mehta AI, Choi BD, Raghavan R, Brady M, Friedman AH, Bigner DD, Pastan I, Sampson JH (2011) Imaging of convection enhanced delivery of toxins in humans. Toxins 3(3):201–206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meropol NJ, Schrag D, Smith TJ, Mulvey TM, Langdon RM Jr, Blum D, Ubel PA, Schnipper LE (2009) American Society of Clinical Oncology guidance statement: the cost of cancer care. J Clin Oncol 27(23):3868–3874

    Article  PubMed  Google Scholar 

  • Misra A (2003) Drug delivery to the central nervous system: a review. J Pharm Pharm Sci 6(2):252–273

    CAS  PubMed  Google Scholar 

  • Moos T, Morgan EH (2001) Restricted transport of anti-transferrin receptor antibody (OX26) through the blood-brain barrier in the rat. J Neurochem 79(1):119–129

    Article  CAS  PubMed  Google Scholar 

  • Nair SB, Dileep A, Rajanikant GK (2012) Nanotechnology based diagnostic and therapeutic strategies for neuroscience with special emphasis on ischemic stroke. Curr Med Chem 19(5):744–756

    Article  CAS  PubMed  Google Scholar 

  • Panagiotou T, Fisher RJ (2011) Enhanced transport capabilities via nanotechnologies: impacting bioefficacy, controlled release strategies, and novel chaperones. J Drug Deliv 902403:ePub Apr 26, 1–14

    Google Scholar 

  • Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2(1):3–14

    Article  PubMed Central  PubMed  Google Scholar 

  • Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214

    CAS  PubMed  Google Scholar 

  • Pinheiro E, Vasan A, Kim JY, Lee E, Guimier JM, Perriens J (2006) Examining the production costs of antiretroviral drugs. AIDS 20(13):1745–1752

    Article  PubMed  Google Scholar 

  • Rajadhyaksha M, Boyden T, Liras J, El-Kattan A, Brodfuehrer J (2011) Current advances in delivery of biotherapeutics across the blood-brain barrier. Curr Drug Discov Technol 8(2):87–101

    Article  CAS  PubMed  Google Scholar 

  • Ranson MR, Cheeseman S, White S, Margison J (2001) Caelyx (stealth liposomal doxorubicin) in the treatment of advanced breast cancer. Crit Rev Oncol Hematol 37(2):115–120

    Article  CAS  PubMed  Google Scholar 

  • Raudino G, Caffo M, Caruso G, Alafaci C, Tomasello F (2011) Nanoparticle-based cerebral drug-delivery systems and antiangiogenic approach in gliomas treatment. Recent Pat Nanotechnol 5(3):239–244

    Article  CAS  PubMed  Google Scholar 

  • Regina A, Demeule M, Che C, Lavallee I, Poirier J, Gabathuler R, Beliveau R, Castaigne JP (2008) Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol 155(2):185–197

    Article  CAS  PubMed  Google Scholar 

  • Rip J, Schenk GJ, de Boer AG (2009) Differential receptor-mediated drug targeting to the diseased brain. Expert Opin Drug Deliv 6(3):227–237

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg J, Nicas M, Yomashiro Y (2003) Understanding toxic substances. California Hazard Evaluation and Information Service–Occupational Health Branch Service. http://www.lni.wa.gov/wisha/p-ts/pdfs/toxicsubstances.pdf. Accessed 7 Jul 2012

  • Schneider CK, Salmikangas P, Jilma B et al (2010) Challenges with advanced therapy medicinal products and how to meet them. Nat Rev Drug Discov 9(3):195–201

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Jacob A, Tandon M, Kumar D (2010) Orphan drug: development trends and strategies. J Pharm Bioallied Sci 2(4):290–299

    Article  PubMed Central  PubMed  Google Scholar 

  • Shawkat H, Westwood M-M, Mortimer A (2012) Mannitol: a review of its clinical uses. Contin Educ Anaesth Crit Care Pain

    Google Scholar 

  • Shinde RL, Jindal AB, Devarajan PV (2011) Microemulsions and nanoemulsions for targeted drug delivery to the brain. Curr Nanosci 7(1):119–133

    Article  CAS  Google Scholar 

  • Su X, Zhan X, Tang F, Yao J, Wu J (2011) Magnetic nanoparticles in brain disease diagnosis and targeting drug delivery. Curr Nanosci 7(1):37–46

    Article  CAS  Google Scholar 

  • Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, Gaasch JA, Mittapalli RK, Palmieri D, Steeg PS, Lockman PR, Smith QR (2009) Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 26(11):2486–2494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian X, Canton I, Battaglia G (2011) Targeting transcytosis across the blood-brain-barrier. Nanotech conference & expo 2011: an interdisciplinary integrative forum on nanotechnology, biotechnology and microtechnology, vol 3, Boston, 13–16 June 2011, pp 459–462

    Google Scholar 

  • Tucker IG (2011) Drug delivery to the brain via the blood–brain barrier: a review of the literature and some recent patent disclosures. Ther Deliv 2(3):311–327

    Article  CAS  PubMed  Google Scholar 

  • Ugwoke MI, Agu RU, Verbeke N, Kinget R (2005) Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives. Adv Drug Deliv Rev 57(11):1640–1665

    Article  CAS  PubMed  Google Scholar 

  • Wankhede M, Bouras A, Kaluzova M, Hadjipanayis Costas G (2012) Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol 5(2):173–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wermeling DP (1993) Value of investigational drugs. Am J Hosp Pharm 50(8):1576

    CAS  PubMed  Google Scholar 

  • Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, Atwal J, Elliott JM, Prabhu S, Watts RJ, Dennis MS (2011) Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 3(84):84ra44

    Article  PubMed  Google Scholar 

  • Zhong XP, NewmanP CM, Loh E (2011) Recent advances in biotherapeutics drug discovery and development. InTech, Shanghai, pp 363–378

    Google Scholar 

  • Zulsdorf TB, Coenen C, Fiedeler AF, Milburn C, Weinroth M (2011) Quantum engagements: social reflections of nanoscience and emerging technologies. PA, IOS Press, Lansdale

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Gray, D. (2014). Pharmacoeconomic Considerations in CNS Drug Development. In: Hammarlund-Udenaes, M., de Lange, E., Thorne, R. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9105-7_13

Download citation

Publish with us

Policies and ethics