Skip to main content

Anatomy and Physiology of the Blood–Brain Barriers

  • Chapter
  • First Online:
Drug Delivery to the Brain

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 10))

Abstract

This chapter covers the three main barrier layers separating blood and the central nervous system (CNS): the endothelium of the brain vasculature, the epithelium of the choroid plexus secreting cerebrospinal fluid (CSF) into the ventricles and the arachnoid epithelium forming the middle layer of the meninges on the brain surface. There are three key barrier features at each site that control the composition of brain fluids and regulate CNS drug permeation: (1) physical barriers result from features of the cell membranes and of the tight junctions restricting the paracellular pathway through intercellular clefts; (2) transport barriers result from membrane transporters mediating solute uptake and efflux, together with vesicular mechanisms mediating transcytosis of larger molecules such as peptides and proteins and (3) enzymatic barriers result from cell surface and intracellular enzymes that can modify molecules in transit. Brain fluids (CSF and brain interstitial fluid) are secreted, flow through particular routes and then drain back into the venous system; this fluid turnover aids central homeostasis and also affects CNS drug concentration. Several CNS pathologies involve changes in the barrier layers and the fluid systems. Many of these aspects of physiology and pathology have implications for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aänismaa P, Gatlik-Landwojtowicz E, Seelig A (2008) P-glycoprotein senses its substrates and the lateral membrane packing density: consequences for the catalytic cycle. Biochemistry 47:10197–10207

    Article  PubMed  Google Scholar 

  • Abbott NJ (1992) Comparative physiology of the blood–brain barrier. In: Bradbury MWB (ed) Physiology and pharmacology of the blood–brain barrier, vol 103, Handb Exp Pharmacol. Springer, Heidelberg, pp 371–396

    Chapter  Google Scholar 

  • Abbott NJ, Mendonça LL, Dolman DE (2003) The blood-brain barrier in systemic lupus erythematosus. Lupus 12:908–915

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ (2013) Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36:437–449

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ, Friedman A (2012) Overview and introduction: the blood–brain barrier in health and disease. Epilepsia 53 (Suppl 6):1–6

    Article  PubMed Central  PubMed  Google Scholar 

  • Abbott NJ, Rönnbäck L, Hansson E (2006) Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L, Bernard M, van Horssen J, de Vries HE, Charron F, Prat A (2011) The Hedgehog pathway promotes blood–brain barrier integrity and CNS immune quiescence. Science 334:1727–1731

    Article  CAS  PubMed  Google Scholar 

  • Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  • Bazan NG, Eady TN, Khoutorova L, Atkins KD, Hong S, Lu Y, Zhang C, Jun B, Obenaus A, Fredman G, Zhu M, Winkler JW, Petasis NA, Serhan CN, Belayev L (2012) Novel aspirin-triggered neuroprotectin D1 attenuates cerebral ischemic injury after experimental stroke. Exp Neurol 236:122–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becker NH, Novikoff AB, Zimmerman HM (1967) Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem 15:160–165

    Article  CAS  PubMed  Google Scholar 

  • Bodor N, Buchwald P (2003) Brain targeted drug delivery; experiences to date. Am J Drug Deliv 1:13–26

    Article  Google Scholar 

  • Bundgaard M, Abbott NJ (2008) All vertebrates started out with a glial blood–brain barrier 4–500 million years ago. Glia 56:699–708

    Article  PubMed  Google Scholar 

  • Caporali A, Emanueli C (2011) MicroRNA regulation in angiogenesis. Vascul Pharmacol 55:79–86

    Article  CAS  PubMed  Google Scholar 

  • Cayrol R, Haqqani AS, Ifergan I, Dodelet-Devillers A, Prat A (2011) Isolation of human brain endothelial cells and characterization of lipid raft-associated proteins by mass spectroscopy. Methods Mol Biol 686:275–295

    Article  CAS  PubMed  Google Scholar 

  • Cording J, Berg J, Käding N, Bellmann C, Tscheik C, Westphal JK, Milatz S, Günzel D, Wolburg H, Piontek J, Huber O, Blasig IE (2013) In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization. J Cell Sci 26:554–564

    Article  Google Scholar 

  • Cristante E, McArthur S, Mauro C, Maggioli E, Romero IA, Wylezinska-Arridge M, Couraud PO, Lopez-Tremoleda J, Christian HC, Weksler BB, Malaspina A, Solito E (2013) Identification of an essential endogenous regulator of blood–brain barrier integrity, and its pathological and therapeutic implications. Proc Natl Acad Sci U S A 110:832–841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cserr HF, Cooper DN, Suri PK, Patlak CS (1981) Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol 240:F319–F328

    CAS  PubMed  Google Scholar 

  • Daneman R (2012) The blood–brain barrier in health and disease. Ann Neurol 72:648–672

    Article  CAS  PubMed  Google Scholar 

  • Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA (2009) Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A 106:641–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dean M, Annilo T (2005) Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet 6:123–142

    Article  CAS  PubMed  Google Scholar 

  • Declèves X, Jacob A, Yousif S, Shawahna R, Potin S, Scherrmann JM (2011) Interplay of drug metabolizing CYP450 enzymes and ABC transporters in the blood–brain barrier. Curr Drug Metab 12:732–741

    Article  PubMed  Google Scholar 

  • Demel MA, Krämer O, Ettmayer P, Haaksma EE, Ecker GF (2009) Predicting ligand interactions with ABC transporters in ADME. Chem Biodivers 6:1960–1969

    Article  CAS  PubMed  Google Scholar 

  • Dodelet-Devillers A, Cayrol R, van Horssen J, Haqqani AS, de Vries HE, Engelhardt B, Greenwood J, Prat A (2009) Functions of lipid raft membrane microdomains at the blood–brain barrier. J Mol Med (Berl) 87:765–774

    Article  CAS  Google Scholar 

  • Dolman D, Drndarski S, Abbott NJ, Rattray M (2005) Induction of aquaporin 1 but not aquaporin 4 messenger RNA in rat primary brain microvessel endothelial cells in culture. J Neurochem 93:825–833

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt B, Coisne C (2011) Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS 8:4. doi:10.1186/2045-8118-8-4

    Article  PubMed Central  PubMed  Google Scholar 

  • Fraser PA (2011) The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med 51:967–977

    Article  CAS  PubMed  Google Scholar 

  • Friedman A (2011) Blood–brain barrier dysfunction, status epilepticus, seizures, and epilepsy: a puzzle of a chicken and egg? Epilepsia 52(Suppl 8):19–20

    Article  PubMed Central  PubMed  Google Scholar 

  • Gatlik-Landwojtowicz E, Aänismaa P, Seelig A (2006) Quantification and characterization of P-glycoprotein-substrate interactions. Biochemistry 45:3020–3032

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Song L, Pachter JS (2005) Where is the blood–brain barrier … really? J Neurosci Res 79:421–427

    Article  CAS  PubMed  Google Scholar 

  • Greenwood J, Heasman SJ, Alvarez JI, Prat A, Lyck R, Engelhardt B (2011) Review: Leucocyte-endothelial cell crosstalk at the blood–brain barrier: a prerequisite for successful immune cell entry to the brain. Neuropathol Appl Neurobiol 37:24–39

    Article  CAS  PubMed  Google Scholar 

  • Groothuis DR, Vavra MW, Schlageter KE, Kang EW, Itskovich AC, Hertzler S, Allen CV, Lipton HL (2007) Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters. J Cereb Blood Flow Metab 27:43–56

    Article  CAS  PubMed  Google Scholar 

  • György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, Nagy G, Falus A, Buzás EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688

    Article  PubMed Central  PubMed  Google Scholar 

  • Hackel D, Krug SM, Sauer RS, Mousa SA, Böcker A, Pflücke D, Wrede EJ, Kistner K, Hoffmann T, Niedermirtl B, Sommer C, Bloch L, Huber O, Blasig IE, Amasheh S, Reeh PW, Fromm M, Brack A, Rittner HL (2012) Transient opening of the perineurial barrier for analgesic drug delivery. Proc Natl Acad Sci U S A 109:E2018–E2027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol 100:1059–1064

    Article  PubMed  Google Scholar 

  • Haqqani AS, Hill JJ, Mullen J, Stanimirovic DB (2011) Methods to study glycoproteins at the blood–brain barrier using mass spectrometry. Methods Mol Biol 686:337–353

    Article  CAS  PubMed  Google Scholar 

  • Haqqani AS, Delaney CE, Tremblay TL, Sodja C, Sandhu JK, Stanimirovic DB (2013) Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells. Fluids Barriers CNS 10:4. doi:10.1186/2045-8118-10-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartmann D, Thum T (2011) MicroRNAs and vascular (dys)function. Vascul Pharmacol 55:92–105

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111. doi:10.1126/scitranslmed.3003748

    Article  PubMed Central  PubMed  Google Scholar 

  • Janson C, Romanova L, Hansen E, Hubel A, Lam C (2011) Immortalization and functional characterization of rat arachnoid cell lines. Neuroscience 177:23–34

    Article  CAS  PubMed  Google Scholar 

  • Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10. doi:10.1186/1743-8454-5-10

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim SY, Buckwalter M, Soreq H, Vezzani A, Kaufer D (2013) Blood–brain barrier dysfunction-induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia 53(Suppl 6):37–44

    Google Scholar 

  • Kodaira H, Kusuhara H, Ushiki J, Fuse E, Sugiyama Y (2010) Kinetic analysis of the cooperation of P-glycoprotein (P-gp/Abcb1) and breast cancer resistance protein (Bcrp/Abcg2) in limiting the brain and testis penetration of erlotinib, flavopiridol, and mitoxantrone. J Pharmacol Exp Ther 333:788–796

    Article  CAS  PubMed  Google Scholar 

  • Krämer SD, Schütz YB, Wunderli-Allenspach H, Abbott NJ, Begley DJ (2002) Lipids in blood–brain barrier models in vitro II: influence of glial cells on lipid classes and lipid fatty acids. In Vitro Cell Dev Biol 38:566–571

    Article  Google Scholar 

  • Lam CH, Hansen EA, Hubel A (2011) Arachnoid cells on culture plates and collagen scaffolds: phenotype and transport properties. Tissue Eng Part A 17:1759–1766

    Article  CAS  PubMed  Google Scholar 

  • Lam CH, Hansen EA, Janson C, Bryan A, Hubel A (2012) The characterization of arachnoid cell transport II: paracellular transport and blood-cerebrospinal fluid barrier formation. Neuroscience 222:228–238

    Article  CAS  PubMed  Google Scholar 

  • Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo MM, von Melchner H, Plate KH, Gerhardt H, Dejana E (2008) Wnt/beta-catenin signaling controls development of the blood–brain barrier. J Cell Biol 183:409–417

    Article  CAS  PubMed  Google Scholar 

  • Liebner S, Czupalla CJ, Wolburg H (2011) Current concepts of blood–brain barrier development. Int J Dev Biol 55:467–476

    Article  CAS  PubMed  Google Scholar 

  • Liu DZ, Ander BP, Xu H, Shen Y, Kaur P, Deng W, Sharp FR (2010) Blood–brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol 67:526–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • MacAulay N, Zeuthen T (2010) Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience 168:941–956

    Article  CAS  PubMed  Google Scholar 

  • Mäe M, Armulik A, Betsholtz C (2011) Getting to know the cast–cellular interactions and signaling at the neurovascular unit. Curr Pharm Des 17:2750–2754

    Article  PubMed  Google Scholar 

  • Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103

    Article  PubMed  Google Scholar 

  • Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    Article  CAS  PubMed  Google Scholar 

  • McArthur S, Cristante E, Paterno M, Christian H, Roncaroli F, Gillies GE, Solito E (2010) Annexin A1: a central player in the anti-inflammatory and neuroprotective role of microglia. J Immunol 185:317–328

    Article  Google Scholar 

  • Miller DS (2010) Regulation of P-glycoprotein and other ABC drug transporters at the blood brain barrier. Trends Pharmacol Sci 31:246–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mishra R, Singh SK (2013) HIV-1 Tat C modulates expression of miRNA-101 to suppress VE-cadherin in human brain microvascular endothelial cells. J Neurosci 33:5992–6000

    Article  CAS  PubMed  Google Scholar 

  • Nabeshima S, Reese TS, Landis DMD, Brightman MW (1975) Junctions in the meninges and marginal glia. J Comp Neurol 164:127–169

    Article  CAS  PubMed  Google Scholar 

  • Neuwelt EA, Bauer B, Fahlke C, Fricker G, Iadecola C, Janigro D, Leybaert L, Molnár Z, O’Donnell ME, Povlishock JT, Saunders NR, Sharp F, Stanimirovic D, Watts RJ, Drewes LR (2011) Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 12:169–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paolinelli R, Corada M, Orsenigo F, Dejana E (2011) The molecular basis of the blood brain barrier differentiation and maintenance. Is it still a mystery? Pharmacol Res 63:165–171

    Article  CAS  PubMed  Google Scholar 

  • Parkinson FE, Damaraju VL, Graham K, Yao SY, Baldwin SA, Cass CE, Young JD (2011) Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr Top Med Chem 11:948–972

    Article  CAS  PubMed  Google Scholar 

  • Patabendige A, Skinner RA, Morgan L, Abbott NJ (2013) A detailed method for preparation of a functional and flexible blood–brain barrier model using porcine brain endothelial cells. Brain Res 1521:16–30, doi:pii: S0006-8993(13)00519-2. 10.1016/j.brainres.2013.04.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potschka H (2012) Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv Drug Deliv Rev 64:943–952

    Article  CAS  PubMed  Google Scholar 

  • Pottiez G, Duban-Deweer S, Deracinois B, Gosselet F, Camoin L, Hachani J, Couraud PO, Cecchelli R, Dehouck MP, Fenart L, Karamanos Y, Flahaut C (2011) A differential proteomic approach identifies structural and functional components that contribute to the differentiation of brain capillary endothelial cells. J Proteomics 75:628–641

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122:1164–1171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12:623–635

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  CAS  PubMed  Google Scholar 

  • Redzic Z (2011) Molecular biology of the blood–brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8:3. doi:10.1186/2045-8118-8-3

    Article  PubMed Central  PubMed  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 34:207–217

    Article  CAS  PubMed  Google Scholar 

  • Reijerkerk A, Lopez-Ramirez MA, van Het Hof B, Drexhage JA, Kamphuis WW, Kooij G, Vos JB, van der Pouw Kraan TC, van Zonneveld AJ, Horrevoets AJ, Prat A, Romero IA, de Vries HE (2013) MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for Multiple Sclerosis. J Neurosci 33:6857–6863

    Article  CAS  PubMed  Google Scholar 

  • Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11:775–787

    Article  CAS  PubMed  Google Scholar 

  • Saunders NR, Daneman R, Dziegielewska KM, Liddelow SA (2013) Transporters of the blood–brain and blood-CSF interfaces in development and in the adult. Mol Aspects Med 34:742–752

    Article  CAS  PubMed  Google Scholar 

  • Seelig A (2007) The role of size and charge for blood–brain barrier permeation of drugs and fatty acids. J Mol Neurosci 33:32–41

    Article  CAS  PubMed  Google Scholar 

  • Serot JM, Zmudka J, Jouanny P (2012) A possible role for CSF turnover and choroid plexus in the pathogenesis of late onset alzheimer’s disease. J Alzheimers Dis 30:17–26

    CAS  PubMed  Google Scholar 

  • Shawahna R, Uchida Y, Declèves X, Ohtsuki S, Yousif S, Dauchy S, Jacob A, Chassoux F, Daumas-Duport C, Couraud PO, Terasaki T, Scherrmann JM (2011) Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 8:1332–1341

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Weber CR, Turner JR (2008) The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol 181:683–695

    Article  CAS  PubMed  Google Scholar 

  • Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6:393–403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2:506–511

    Article  PubMed  Google Scholar 

  • Smith JA, Das A, Ray SK, Banik NL (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87:10–20

    Article  CAS  PubMed  Google Scholar 

  • Somjen GG (2004) Ions in the brain: normal function, seizures and stroke. Oxford University Press, Oxford

    Google Scholar 

  • Stanimirovic DB, Friedman A (2012) Pathophysiology of the neurovascular unit: disease cause or consequence? J Cereb Blood Flow Metab 32:1207–1221

    Article  CAS  PubMed  Google Scholar 

  • Strazielle N, Ghersi-Egea JF (2013) Physiology of blood–brain interfaces in relation to brain disposition of small compounds and macromolecules. Mol Pharm 10:1473–1491

    Article  CAS  PubMed  Google Scholar 

  • Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88:1277–1340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A 103:5567–5572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tian W, Sawyer A, Kocaoglu FB, Kyriakides TR (2011) Astrocyte-derived thrombospondin-2 is critical for the repair of the blood–brain barrier. Am J Pathol 179:860–868

    Article  CAS  PubMed  Google Scholar 

  • Weerasuriya A, Spangler RA, Rapoport SI, Taylor RE (1984) AC impedance of the perineurium of the frog sciatic nerve. Biophys J 46:167–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–266

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Djuanda E, Yow HY, Carare RO (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wolak DJ, Thorne RG (2013) Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm 10:1492–1504

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Kress BT, Weber HJ, Thiyagarajan M, Wang B, Deane R, Benveniste H, Iliff JJ, Nedergaard M (2013) Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med 11:107, [Epub ahead of print] PubMed PMID: 23635358

    Article  PubMed Central  PubMed  Google Scholar 

  • Yasuda K, Cline C, Vogel P, Onciu M, Fatima S, Sorrentino BP, Thirumaran RK, Ekins S, Urade Y, Fujimori K, Schuetz EG (2013) Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier. Drug Metab Dispos 41:923–931

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Dr Siti R. Yusof for help with artwork and many colleagues for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Joan Abbott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Abbott, N.J. (2014). Anatomy and Physiology of the Blood–Brain Barriers. In: Hammarlund-Udenaes, M., de Lange, E., Thorne, R. (eds) Drug Delivery to the Brain. AAPS Advances in the Pharmaceutical Sciences Series, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9105-7_1

Download citation

Publish with us

Policies and ethics