Human Auditory Cortex: In Search of the Flying Dutchman

Part of the Springer Handbook of Auditory Research book series (SHAR, volume 50)


Understanding the roles played by auditory areas of human cerebral cortex in enabling us to perceive and respond to sounds in our environment continues to elude us. This is surely not because of lack of trying on the part of auditory neuroscientists. Systematic anatomical studies of the auditory areas that make up cortex began in the late 19th century, and to this day have profound impact on the way we think about fundamental questions of high-level auditory processing including that uniquely human capacity of speech. Modern electrophysiological and functional imaging methodologies, all made possible by the evolution of digital computers, have revolutionized functional study of human auditory cortex. Parallel studies in laboratory animals, including nonhuman primates, raise questions regarding the extent to which their results can be applied to humans. We are now on the threshold of seeing new experimental approaches to brain function being applied by a new generation of neuroscientists, holding promise that the human auditory cortex may finally give up its secrets.


Auditory Cortex Superior Temporal Gyrus Core Field Auditory Field Human Auditory Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adrian, E. D. (1928). Basis of sensation: The action of sense organs. London: Christophers.Google Scholar
  2. Aitkin, L. M. (1990). Auditory cortex: Structural and functional bases of auditory perception. London: Chapman and Hall.Google Scholar
  3. Berra, Y. (2010). The Yogi book. New York: Workman.Google Scholar
  4. Broca, P. (1861). Sur le volume et la forme du cerveau suivant les individus et suivant les races. Bulletin Société d’ Anthropologie Paris, 2, 139–207. Taken from Gould, S. J. (1996). The Mismeasure of Man. New York: W. W. Norton.Google Scholar
  5. Brodmann, K. (2006). Localization of the brain. This work appeared originally in 1909 in German under the title Vergleichende Localisationslehre der Grosshirnrinde. Leipzig: Barth. English translation by L. J. Garey. New York: Springer.Google Scholar
  6. Cajal, S. R. (1995). Histology of the nervous system of man and vertebrates, Vol. II, Chapter 26. This work appeared originally in 1904 in Spanish under the title Textura del sistema nervioso del hombre y de los vertebrados. Madrid: Moya. English translation from the 1995 French edition by N. Swanson & L. W. Swanson. New York: Oxford.Google Scholar
  7. Cajal, S. R. (1999). Advice for a young Investigator. This work was first published in 1897 and later appeared in 1923 under the title Reglas y consejos sobre investigación científica: Los tónicos de la voluntad. Madrid: CSIC. English translation by N. Swanson and L. W. Swanson. Cambridge, MA: MIT Press.Google Scholar
  8. Campbell, A. W. (1905). Histological studies of the localization of cerebral function. Cambridge, UK: Cambridge University Press.Google Scholar
  9. Celesia, G. G., & Puletti, F. (1969). Auditory cortical areas of man. Neurology, 19, 211–220.PubMedCrossRefGoogle Scholar
  10. Creutzfeldt, O., Ojemann, G., & Lettich, E. (1989). Neuronal activity in the human lateral temporal lobe. I. Responses to speech. Experimental Brain Research, 77, 451–475.PubMedCrossRefGoogle Scholar
  11. Davis, P. A. (1939). Effects of acoustic stimuli on the waking human brain. Journal of Neurophysiology, 2, 494–499.Google Scholar
  12. Dowben, R. M., & Rose, J. E. (1953). A metal-filled microelectrode. Science, 118, 22–24.PubMedCrossRefGoogle Scholar
  13. Eggert, G. H. (1973). Wernicke’s work on aphasia: A sourcebook and review. The Hague: Mouton. (This work includes a detailed review of Wernicke’s contributions to aphasia and translation of his major works on the subject including Der aphasische Symptomencomplex: Eine psychologiische Studie auf anatomisher Basis).Google Scholar
  14. Flechsig, P. (1898). Neue Untersuchengen über die Markbildung in den menschlichen Grosshirnlappen. Neurologisches Centralblatt, 17, 977–996.Google Scholar
  15. Geisler, C. D., Frishkopf, L. S., & Rosenblith, W. A. (1958). Extracranial responses to acoustic clicks in man. Science, 128, 1210–1211.PubMedCrossRefGoogle Scholar
  16. Green, J. D. (1958). A simple microelectrode for recording from the centeral nervous system. Nature, 182, 962–962.PubMedCrossRefGoogle Scholar
  17. Hackett, T. A. (2003). Comparative anatomy of the primate auditory cortex. In A. A. Ghazanfar (Ed.), Primate audition: Ethology and neurobiology (pp. 199–219). Boca Raton, FL: CRC Press.Google Scholar
  18. Hamilton, A. (1949). Brains that click. Popular Mechanics, 91, 162.Google Scholar
  19. Hubel, D. H. (1957). Microelectrode for recording from single units. Science, 125, 549–550.PubMedCrossRefGoogle Scholar
  20. Kaas, J. H., & Hackett, T. A. (2005). Subdivisions and connections of auditory cortex in primates: A working model. In R. Konig, P. Heil, E. Budinger, & H. Scheich (Eds.), Auditory cortex: A synthesis of human and animal research (pp. 7–25). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  21. LeGuin, U. K. (2001). The farthest shore. New York: Simon and Schuster.Google Scholar
  22. Merzenich, M. M., & Brugge, J. F. (1973). Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Research, 50, 275–296.Google Scholar
  23. Meynert, T. (1872). Vom Gehirne der Säugethiere. In S. Stricker (Ed.), Handbuck der Lehre von den Geweben des Menschen und der Thiere, Vol. II. Leipzig: Engelmann.Google Scholar
  24. Morel, A., Garraghty, P. E., & Kaas, J. H. (1993). Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. Journal of Comparative Neurology, 335, 437–459.PubMedCrossRefGoogle Scholar
  25. Nauta, W. J., & Gygax, P. A. (1951). Silver impregnation of degenerating axon terminals in the central nervous system: (1) Technic, (2) Chemical notes. Stain Technology, 26, 5–11.Google Scholar
  26. Peters, A., & Jones, E. G., Eds. (1985). Cerebral cortex: Association and auditory cortices, Vol. 4. New York: Plenum.Google Scholar
  27. Poeppel, D., Overath, T., Popper, A., & Fay, R., Eds. (2012). The human auditory cortex. New York: Springer Science+Business Media.Google Scholar
  28. Rose, J. E., & Woolsey, C. N. (1949). The relations of thalamic connections, cellular structure and evocable electrical activity in the auditory region of the cat. Journal of Comparative Neurology, 91, 441–466.Google Scholar
  29. Rosenfeld, S. A. (1983). LINC: The genesis of a technological revolution. Seminar in Celebration of the Twentieth Anniversary of the LINC Computer. ACRE Amphitheater, National Institutes of Health, Bethesda, MD (for more on the history of the LINC go to
  30. Thomas, L. (1995). Late night thoughts on listening to Mahler’s Ninth Symphony. Middlesex: Penguin Books.Google Scholar
  31. Thoreau, H. D. (1854). Walden; or, life in the woods. Boston: Ticknor and Fields.Google Scholar
  32. Trollope, A. (1882). The fixed period: A novel. Edinburgh: William Blackwood.Google Scholar
  33. Vogt, C., & Vogt, O. (1903). Zur anatomischen Gliederung des Cortex cerebri. Journal für Psychologie und Neurologie, 2, 160–180.Google Scholar
  34. von Economo, C. (2009). Cellular structure of the human cerebral cortex. This work appeared originally in 1927 in French under the title L'architecture cellulaire normale de l'ecorce cerebral. Paris: Masson et Cie, and in German under the title Zellaufbau der Grosshernrinde des Menschen. Zehn Vorlesungen mit 61 Abbildungen. Berlin: Verlag Julius Springer. English translation by L. C. Triarhou. Basel: Karger.Google Scholar
  35. Walter, W. G. (1964). The convergence and interaction of visual, auditory, and tactile responses in human nonspecific cortex. Annals of the New York Academy of Sciences, 112, 320–361.PubMedCrossRefGoogle Scholar
  36. Winer, J. A., & Schreiner, C. E., Eds. (2011). The auditory cortex. New York: Springer.Google Scholar
  37. Wolbarsht, M. L., MacNichol, E. F., & Wagner, H. G. (1960). Glass insulated platinum microelectrode. Science, 132, 1309–1310.PubMedCrossRefGoogle Scholar
  38. Woldring, S., & Dirken, M. N. J. (1950). Spontaneous unit activity in the superficial cortical layers. Acta Physiologica et Pharmacologica Neerlandica, 1, 369–379.PubMedGoogle Scholar
  39. Woolsey, C. N., & Walzl, E. M. (1942). Topical projection of nerve fibers from local regions of the cochlea to the cerebral cortex of the cat. Bulletin of the Johns Hopkins Hospital, 71, 315–344.Google Scholar
  40. Woolsey, C. N., & Walzl, E. M. (1982). Cortical auditory area of Macaca mulatta and its relation to the second somatic sensory area (Sm II). Determination by electrical excitation of auditory nerve fibers in the spiral ossious lamina and by click stimulation. In C. N. Woolsey (Ed.), Cortical organization: Auditory areas, Vol. 3 (pp. 231–256). Clifton, NJ: Humana Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of NeuroscienceUniversity of Wisconsin–MadisonMadisonUSA
  2. 2.Department of NeurosurgeryUniversity of IowaIowa CityUSA

Personalised recommendations