Cochlear Mechanics, Otoacoustic Emissions, and Medial Olivocochlear Efferents: Twenty Years of Advances and Controversies Along with Areas Ripe for New Work

Part of the Springer Handbook of Auditory Research book series (SHAR, volume 50)


Reviewed are progress, exciting new developments, and areas that need work. Topics considered are: Cochlear amplification is from energy injected into the traveling wave by outer-hair-cell somatic motility. Calcium-activated stereocilia motility does not work at high frequencies because of the slowness of calcium binding and unbinding. Cochlear mechanics and micromechanics in the apical half of the cochlea are different from in the base. Cochlear micromechanics and the multiple fluid drives to inner hair cell (IHC) stereocilia. Interaction of the multiple IHC fluid drives can explain phase reversals in auditory nerve fiber responses without phase reversals in basilar membrane responses. The mechanisms by which medial olivocochlear (MOC) efferents change cochlear mechanics and micromechanics. The generation mechanisms for otoacoustic emissions (OAEs). Distortion product OAEs (DPOAEs) travel backward by slow traveling waves. Stimulus frequency OAEs (SFOAEs) arise mainly from near the peak of the traveling wave. Using OAEs to reveal cochlear properties. Cochlear tuning is sharper in humans than in cats, guinea pigs, and chinchillas. Measuring MOC effects using changes in OAEs and the need for high OAE signal-to-noise ratios. MOC effects in humans. The role of MOC efferents in hearing. MOC activity makes it easier to hear signals in noise. MOC activity and selective attention. MOC activity reduces acoustic trauma.


Basilar Membrane Acoustic Trauma Inner Hair Cell Reticular Lamina DPOAE Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by NIH NIDCD RO1 000235 and RO1 005977.


  1. Backus, B. C., & Guinan, J. J., Jr. (2007). Measurement of the distribution of medial olivocochlear acoustic reflex strengths across normal-hearing individuals via otoacoustic emissions. Journal of the Association for Research in Otolaryngology, 8(4), 484–496.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Choi, Y. S., Lee, S. Y., Parham, K., Neely, S. T., & Kim, D. O. (2008). Stimulus-frequency otoacoustic emission: Measurements in humans and simulations with an active cochlear model. Journal of the Acoustical Society of America, 123(5), 2651–2669.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Cooper, N. P., & Guinan, J. J., Jr. (2003). Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity. Journal of Physiology, 548(1), 307–312.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cooper, N. P., & Guinan, J. J., Jr. (2011). Efferent insights into cochlear mechanics. In C. A. Shera & E. S. Olson (Eds.), What fire is in mine ears: Progress in auditory biomechanics (Vol. 1403, pp. 396–402). Melville, NY: American Institute of Physics.Google Scholar
  5. de Boer, E., & Nuttall, A. L. (2000). The mechanical waveform of the basilar membrane. II. From data to models—and back. Journal of the Acoustical Society of America, 107(3), 1487–1496.PubMedCrossRefGoogle Scholar
  6. Guinan, J. J., Jr. (1990). Changes in stimulus frequency otoacoustic emissions produced by two-tone suppression and efferent stimulation in cats. In P. Dallos, C. D. Geisler, J. W. Matthews & C. R. Steele (Eds.), Mechanics and biophysics of hearing (pp. 170–177). New York: Springer-Verlag.CrossRefGoogle Scholar
  7. Guinan, J. J., Jr. (1996). The physiology of olivocochlear efferents. In P. J. Dallos, A. N. Popper & R. R. Fay (Eds.), The cochlea (pp. 435–502). New York: Springer-Verlag.Google Scholar
  8. Guinan, J. J., Jr. (2006). Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans. Ear and Hearing, 27(6), 589–607.PubMedCrossRefGoogle Scholar
  9. Guinan, J. J., Jr. (2011). Physiology of the medial and lateral olivocochlear systems. In D. K. Ryugo, R. R. Fay, & A. N. Popper (Eds.), Auditory and vestibular efferents (pp. 39–81). New York: Springer Science+Business Media, LLC.CrossRefGoogle Scholar
  10. Guinan, J. J., Jr. (2012). How are inner hair cells stimulated? Evidence for multiple mechanical drives. Hearing Research, 292(1–2), 35–50.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Johnson, S. L., Beurg, M., Marcotti, W., & Fettiplace, R. (2011). Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant. Neuron, 70(6), 1143–1154.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Joris, P. X., Bergevin, C., Kalluri, R., Mc Laughlin, M., Michelet, P., van der Heijden, M., & Shera, C. A. (2011). Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans. Proceedings of the National Academy of Sciences of the USA, 108(42), 17516–17520.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. Journal of Neuroscience, 29(45), 14077–14085.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Liberman, M. C., & Kiang, N. Y. S. (1984). Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hearing Research, 16, 75–90.PubMedCrossRefGoogle Scholar
  15. Lichtenhan, J. T. (2011). Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave. Journal of the Association for Research in Otolaryngology, 13, 17–28.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Lichtenhan, J. T., Cooper, N. P., & Guinan, J. J., Jr. (2013). A new auditory threshold estimation technique for low frequencies: Proof of concept. Ear and Hearing, 34(1), 42–51.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Lilaonitkul, W., & Guinan, J. J., Jr. (2012). Frequency tuning of medial-olivocochlear-efferent acoustic reflexes in humans as functions of probe frequency. Journal of Neurophysiology, 107(6), 1598–1611.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Lopez-Poveda, E. A., Plack, C. J., & Meddis, R. (2003). Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing. Journal of the Acoustical Society of America, 113(2), 951–960.PubMedCrossRefGoogle Scholar
  19. Lu, T. K., Zhak, S., Dallos, P., & Sarpeshkar, R. (2006). Fast cochlear amplification with slow outer hair cells. Hearing Research, 214(1–2), 45–67.PubMedCrossRefGoogle Scholar
  20. Nowotny, M., & Gummer, A. W. (2006). Nanomechanics of the subtectorial space caused by electromechanics of cochlear outer hair cells. Proceedings of the National Academy of Sciences of the USA, 103(7), 2120–2125.7–Google Scholar
  21. Ren, T. (2004). Reverse propagation of sound in the gerbil cochlea. Nature Neuroscience, 7(4), 333–334.PubMedCrossRefGoogle Scholar
  22. Ruggero, M. A., & Temchin, A. N. (2005). Unexceptional sharpness of frequency tuning in the human cochlea. Proceedings of the National Academy of Sciences of the USA, 102(51), 18614–18619.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Ruggero, M. A., & Temchin, A. N. (2007). Similarity of traveling-wave delays in the hearing organs of humans and other tetrapods. Journal of the Association for Research in Otolaryngology, 8(2), 153–166.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ruggero, M. A., Rich, N. C., Shivapuja, B. G., & Temchin, A. N. (1996). Auditory-nerve responses to low-frequency tones: Intensity dependence. Auditory Neuroscience, 2, 159–185.Google Scholar
  25. Shera, C. A. (2003). Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. Journal of the Acoustical Society of America, 114(1), 244–262.PubMedCrossRefGoogle Scholar
  26. Shera, C. A., & Guinan, J. J., Jr. (1999). Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs. Journal of the Acoustical Society of America, 105(2), 782–798.PubMedCrossRefGoogle Scholar
  27. Shera, C. A., & Guinan, J. J., Jr. (2003). Stimulus-frequency-emission group delay: A test of coherent reflection filtering and a window on cochlear tuning. Journal of the Acoustical Society of America, 113(5), 2762–2772.PubMedCrossRefGoogle Scholar
  28. Shera, C. A., & Guinan, J. J., Jr. (2007). Mechanisms of mammalian otoacoustic emission. In G. A. Manley, B. L. Lonsbury-Martin, A. N. Popper, & R. Fay (Eds.), Active processes and otoacoustic emissions (pp. 305–342). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  29. Shera, C. A., Guinan, J. J., Jr., & Oxenham, A. J. (2002). Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proceedings of the National Academy of Sciences of the USA, 99(5), 3318–3323.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Shera, C. A., Tubis, A., Talmadge, C. L., & Guinan, J. J., Jr. (2004). The dual effect of “suppressor” tones on stimulus-frequency otoacoustic emissions. Association for Research in Otolaryngology Abstracts, 27, Abs. 776.Google Scholar
  31. Shera, C. A., Guinan, J. J., Jr., & Oxenham, A. J. (2010). Otoacoustic estimation of cochlear tuning: Validation in the chinchilla. Journal of the Association for Research in Otolaryngology, 11(3), 343–365.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Siegel, J. H., Temchin, A. N., & Ruggero, M. (2003). Empirical estimates of the spatial origin of stimulus-frequency otoacoustic emissions. Association for Research in Otolaryngology Abstracts, 26, Abstract 679.Google Scholar
  33. Siegel, J. H., Cerka, A. J., Recio-Spinoso, A., Temchin, A. N., van Dijk, P., & Ruggero, M. (2005). Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. Journal of the Acoustical Society of America, 118(4), 2434–2443.PubMedCrossRefGoogle Scholar
  34. Sisto, R., Moleti, A., Botti, T., Bertaccini, D., & Shera, C. A. (2011). Distortion products and backward-traveling waves in nonlinear active models of the cochlea. Journal of the Acoustical Society of America, 129(5), 3141–3152.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Steele, C. R., & Puria, S. (2005). Force on inner hair cell cilia. International Journal of Solids and Structures, 42, 5887–5904.CrossRefGoogle Scholar
  36. Warren, E. H., III, & Liberman, M. C. (1989). Effects of contralateral sound on auditory-nerve responses. II. Dependence on stimulus variables. Hearing Research, 37, 105–122.PubMedCrossRefGoogle Scholar
  37. Zweig, G., & Shera, C. A. (1995). The origin of periodicity in the spectrum of evoked otoacoustic emissions. Journal of the Acoustical Society of America, 98(4), 2018–2047.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Eaton Peabody LabMassachusetts Eye and Ear InfirmaryBostonUSA
  2. 2.Department of Otology and LaryngologyHarvard Medical SchoolBostonUSA

Personalised recommendations