Skip to main content

Proteases as Potential Targets in Left Ventricular Remodeling After Myocardial Infarction

  • Chapter
  • First Online:
  • 1248 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

Abstract

Left ventricular (LV) remodeling plays a key role in the march to heart failure after myocardial infarction (MI). The remodeling process involves a complex series of changes that occur at structural and extracellular as well as cellular, subcellular, and molecular levels. Typically, the changes are time dependent, occur in tandem sequence, and span the healing/repair process after MI and extend well beyond. Proteases play a major role in the remodeling that occurs at the extracellular as well as cellular, subcellular, and molecular levels. Evidence since the mid-1970s has established the critical roles of the extracellular matrix (ECM) for maintaining normal cardiac shape and function and the dramatic adverse remodeling post-MI, with LV shape deformation and dysfunction that results from disruption of the ECM driven primarily by an imbalance between the class of proteases known as matrix metalloproteinases (MMPs) and the endogenous tissue inhibitors of the MMPs or TIMPs. Evidence since the 1990s has implicated several other classes of proteases in adverse LV remodeling and dysfunction after MI and the march to HF, disability, and death. Experimental studies have shown that pharmacologic inhibition or genetic deletion of key MMPs can effectively prevent or limit post-MI LV remodeling, and some clinical studies have tested MMP inhibitors. Proteases are therefore attractive as potential targets to limit, prevent, or reverse remodeling and dysfunction after MI. However, further studies are needed to identify the optimal strategy to maximize the benefits of protease inhibitors after MI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jugdutt BI, Michorowski B (1987) Role of infarction expansion in rupture of the ventricular septum after acute myocardial infarction. A two-dimensional echocardiography study. Clin Cardiol 10:641-652

    PubMed  CAS  Google Scholar 

  2. Jugdutt BI, Warnica JW (1988) Intravenous nitroglycerin therapy to limit myocardial infarct size, expansion and complications: effect of timing, dosage and infarct location. Circulation 78:906-919

    PubMed  CAS  Google Scholar 

  3. Jugdutt BI, Basualdo CA (1989) Myocardial infarct expansion during indomethacin and ibuprofen therapy for symptomatic post-infarction pericarditis: Effect of other pharmacologic agents during early remodelling. Can J Cardiol 5:211-221

    PubMed  CAS  Google Scholar 

  4. Jugdutt BI (1990) Identification of patients prone to infarct expansion by the degree of regional shape distortion on an early two-dimensional echocardiogram after myocardial infarction. Clin Cardiol 13:28-40

    PubMed  CAS  Google Scholar 

  5. Pfeffer MA, Braunwald E (1990) Ventricular remodelling after myocardial infarction. Circulation 81:1161-1172

    PubMed  CAS  Google Scholar 

  6. Jugdutt BI, Khan MI (1992) Impact of increased infarct transmurality on remodeling and function during healing after anterior myocardial infarction in the dog. Can J Physiol Pharmacol. 70:949-958

    PubMed  CAS  Google Scholar 

  7. Jugdutt BI, Tang SB, Khan MI et al (1992) Functional impact on remodeling during healing after non-Q-wave versus Q-wave anterior myocardial infarction in the dog. J Am Coll Cardiol 20:722-731

    PubMed  CAS  Google Scholar 

  8. Jugdutt BI, Michorowski BL, Khan MI (1992) Effect of long-term captopril on left ventricular remodeling and function during healing of canine myocardial infarction. J Am Coll Cardiol 19:713-723

    PubMed  CAS  Google Scholar 

  9. Jugdutt BI (1993) Prevention of ventricular remodelling post myocardial infarction: Timing and duration of therapy. Can J Cardiol 9:103-114

    PubMed  CAS  Google Scholar 

  10. Gaudron P, Eilles C, Kugler I, et al (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation 87:755-763

    PubMed  CAS  Google Scholar 

  11. Jugdutt BI (1996) Prevention of ventricular remodeling after myocardial infarction and in congestive heart failure. Heart Failure Reviews 1:115-129

    Google Scholar 

  12. Jugdutt BI (2003) Ventricular remodeling post-infarction and the extracellular collagen matrix. When is enough enough? Circulation 108:1395-1403

    PubMed  Google Scholar 

  13. Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Current Drug Targets, Cardiovasc & Haemat Disorders 3:1-30.

    CAS  Google Scholar 

  14. Jugdutt BI (2008) Aging and remodeling during healing of the wounded heart: current therapies and novel drug targets. Curr Drug Targets 9:325-344

    PubMed  CAS  Google Scholar 

  15. Jugdutt BI, Jelani A, Palaniyappan A et al (2010) Aging-related changes in markers of ventricular and matrix remodelling after reperfused ST-segment elevation myocardial infarction in the canine model. Effect of early therapy with an angiotensin II type 1 receptor blocker. Circulation 122:341-351

    PubMed  CAS  Google Scholar 

  16. Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31-47

    PubMed  CAS  Google Scholar 

  17. Jugdutt BI, Amy RW (1986) Healing after myocardial infarction in the dog: Changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91-102

    PubMed  CAS  Google Scholar 

  18. Jugdutt BI, Joljart MJ, Khan MI (1996) Rate of collagen deposition during healing after myocardial infarction in the rat and dog models: mechanistic insights into ventricular remodeling. Circulation 94:94-101

    PubMed  CAS  Google Scholar 

  19. Cleutjens JP, Kandala JC, Guarda E et al (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281-1292

    PubMed  CAS  Google Scholar 

  20. Kim HE, Dalal SS, Young E et al (2000) Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 106:857-866

    PubMed  CAS  Google Scholar 

  21. Spinale FG, Coker M, Bond BR, Zellner JL (2000) Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res 46:225-238

    PubMed  CAS  Google Scholar 

  22. Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90:520-530

    PubMed  CAS  Google Scholar 

  23. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285-1342

    PubMed  CAS  Google Scholar 

  24. Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13:1637-1652

    PubMed  CAS  Google Scholar 

  25. Weber KT (1997) Extracellular matrix remodeling in heart failure. A role for de novo angiotensin II generation. Circulation 96:4065-4082

    PubMed  CAS  Google Scholar 

  26. Creemers, EE,Davis, JN et al (2003) Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 284:H364-371

    PubMed  CAS  Google Scholar 

  27. Cavusoglu E, Ruwende C et al (2006) Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an independent predictor of all-cause mortality, cardiac mortality, and myocardial infarction. Am Heart J 151:1101: e1101-1108

    Google Scholar 

  28. Foronjy RF, Sun J, Lemaitre V, D’Armiento J M (2008) Transgenic expression of matrix metalloproteinase-1 inhibits myocardial fibrosis and prevents the transition to heart failure in a pressure overload mouse model. Hypertens Res 31:725-735

    PubMed  CAS  Google Scholar 

  29. Leger AJ, Covic L, Kuliopulos A (2006) Protease-activated receptors in cardiovascular disease. Circulation 114:1070-1077

    PubMed  CAS  Google Scholar 

  30. Lutgens SP, Cleutjens KB, Daemen MJ, Heeneman S (2007) Cathepsin cysteine proteases in cardiovascular disease. FASEB J 21:3029-3041

    PubMed  CAS  Google Scholar 

  31. Muller AL, Dhalla AL (2012) Role of various proteases in cardiac remodeling and progression of heart failure. Heart Fail Rev 17:395-409

    PubMed  CAS  Google Scholar 

  32. Jugdutt BI (2011) Modulators of remodeling after myocardial infarction. In, Molecular Defects in Cardiovascular Disease. Dhalla NS, Nagano M, Ostadal B, eds. Springer media, Inc. New York, 2011, pp 231-242

    Google Scholar 

  33. Jugdutt BI, Jelani A (2013) Aging and markers of adverse remodeling after myocardial infarction. In, Cardiac remodeling. Molecular mechanisms. Ed Jugdutt BI, Dhalla NS. Springer, New York, 2013, pp 487-512

    Google Scholar 

  34. Heymans S, Luttun A et al (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135-1142

    PubMed  CAS  Google Scholar 

  35. Ducharme A, Frantz S, Aikawa M et al (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106:55-62

    PubMed  CAS  Google Scholar 

  36. Hayashidani S, Tsutsui H, Ikeuchi M et al (2003) Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol 285: H1229-H1235

    CAS  Google Scholar 

  37. Matsumura S, Iwanaga S, Moshizuki S et al (2005) Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Invest;115:599-609

    PubMed  CAS  Google Scholar 

  38. Lindsey ML, Escobar GP, Dobrucki LW et al (2006) Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Heart Circ Physiol 290:H232-239

    PubMed  CAS  Google Scholar 

  39. Spinale FG, Coker ML, Krombach SR et al (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure : effects on left ventricular dimensions and function. Circ Res 85:364-376

    PubMed  CAS  Google Scholar 

  40. Rohde LE, Ducharme A, Arroyo LH et al (1999) Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 99:3063-3070

    PubMed  CAS  Google Scholar 

  41. Chancey AL, Brower GL, Peterson JT, Janicki JS (2002) Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation 105:1983-1988

    PubMed  CAS  Google Scholar 

  42. Mukherjee R, Brinsa TA, Dowdy KB et al (2003) Myocardial infarct expansion and matrix metalloproteinase inhibition. Circulation 107:618-625

    PubMed  CAS  Google Scholar 

  43. Bidouard JP, Duval N, Kapui Z et al (2003) SSR69071, an elastase inhibitor, reduces myocardial infarct size following ischemia-reperfusion injury. Eur J Pharmacol 461:49-52

    PubMed  CAS  Google Scholar 

  44. King MK, Coker ML, Goldberg A et al (2003) Selective matrix metalloproteinase inhibition with developing heart failure: effects on left ventricular function and structure. Circ Res 92:177-185

    PubMed  CAS  Google Scholar 

  45. Hudson MP, Armstrong PW, Ruzyllo W et al (2006) Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J Am Coll Cardiol. 48:15-20

    PubMed  CAS  Google Scholar 

  46. Lloyd-Jones D, Adams RJ, Brown TM, et al (2010) Heart Disease and Stroke Statistics - 2010 Update: A Report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 121:e46-e215

    PubMed  Google Scholar 

  47. Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation 125:e2-e220.

    PubMed  Google Scholar 

  48. Hunt SA, Abraham WT, Chin MH et al (2009) 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119:e391-479

    PubMed  Google Scholar 

  49. Jessup M, Abraham WT, Casey DE, et al (2009) focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 119:1977-2016

    PubMed  Google Scholar 

  50. McMurray J, Adamopoulos S, Anker S et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012- The task force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Failure;14:803-869

    Google Scholar 

  51. Jugdutt BI (2010) Aging and Heart Failure: changing demographics and implications for therapy in the elderly. Heart Failure Rev;15:401-405

    Google Scholar 

  52. Jugdutt BI (2010) Heart Failure in the elderly: advances and challenges. Expert Rev Cardiovasc Ther 8:695-715

    PubMed  Google Scholar 

  53. Jugdutt BI (2006) Valsartan in the treatment of heart attack survivors. Vasc Health Risk Manag 2:125-138

    PubMed  CAS  Google Scholar 

  54. Jugdutt BI (2007) Cyclooxygenase inhibition and ventricular remodeling after acute myocardial infarction. Circulation 115:288-289

    PubMed  Google Scholar 

  55. Jugdutt BI (2008) Pleiotropic effects of cardiac drugs on healing post MI. The good, bad and ugly. Heart Fail Rev 13:439-452

    PubMed  Google Scholar 

  56. Man J, Tymchak W, Jugdutt BI (2010) Chapter 13 Adjunctive pharmacologic treatment for acute myocardial infarction. In, Textbook of Cardiac Intensive Care, 2nd edition. Brown DL, Jeremias A (eds). Philadelphia, Elsevier, pp 145-182

    Google Scholar 

  57. Protein structure and function (2008). Chapter 3, In, Molecular Cell Biology, 6th edition. Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaira P (eds). New York, WH Freeman and Company, pp 63-110

    Google Scholar 

  58. Rodriguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 1803:39-54

    PubMed  CAS  Google Scholar 

  59. Yang D, Ma S, Tan Y et al (2010) Increased expression of calpain and elevated activity of calcineurin in the myocardium of patients with congestive heart failure. Int J Mol Med 26:159-164

    PubMed  CAS  Google Scholar 

  60. Jin D, Takai S, Sakagushi M et al (2004) An antiarrhythmic effect of chymase inhibitor after myocardial infarction. J Pharmacol Exp Ther 309:490-497

    PubMed  CAS  Google Scholar 

  61. Jahanyar J, Youker KA, Loebe M et al (2007) Mast cell-derived cathepsin G: a possible role in adverse remodeling of the failing human heart. J Surg Res 140:199-203

    PubMed  CAS  Google Scholar 

  62. Zidar N, Jera J, Maja J, Dusan S (2007) Caspases in myocardial infarction. Adv Clin Chem 44:1-33

    PubMed  CAS  Google Scholar 

  63. Marques AJ, Palanimurugan R, Matias AC, Ramos PC, Dohmen RJ (2009) Catalytic mechanism and assembly of the proteasome. Chem Rev 109:1509-1536

    PubMed  CAS  Google Scholar 

  64. Lopez B, Gonzalez A, Querejeta R, Larman M, Diez J (2006) Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol 48:89-96

    PubMed  CAS  Google Scholar 

  65. Kandasamy AD, Chow AK, Ali MA, Schulz R (2010) Matrix metallo-proteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardivasc Res 85:413-423

    CAS  Google Scholar 

  66. Rodriguez WE, Tyagi N, Deng AY et al (2008) Congenic expression of tissue inhibitor of metalloproteinase in Dahl-salt sensitive hypertensive rats is associated with reduced LV hypertrophy. Arch Physiol Biochem 114:340-348

    PubMed  CAS  Google Scholar 

  67. Dai E, Guan H, Liu L et al (2003) Serp-1, a viral anti-inflammatory serpin, regulates cellular serine proteinase and serpin responses to vascular injury. J Biol Chem 278: 18563-18572

    PubMed  CAS  Google Scholar 

  68. Bolognese L, Neskovic AN, Parodi G et al (2002) Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106:2351-2357

    PubMed  Google Scholar 

  69. Alexander KP, Newby LK, Armstrong PW et al, American Heart Association Council on Clinical Cardiology; Society of Geriatric Cardiology (2007) Acute coronary care in the elderly, Part II. ST-segment-elevation myocardial infarction. A scientific statement for healthcare professionals from the American Heart Association Council for Clinical Cardiology. Circulation 115:2570-2589

    Google Scholar 

  70. Jelani A, Jugdutt BI (2010) STEMI and heart failure in the elderly: role of adverse remodeling. Heart Fail Rev 15:513-521

    PubMed  Google Scholar 

  71. Orn S, Manhenke C, Anand IS et al (2007) Effect of left ventricular scar size, location, and transmurality on left ventricular remodeling with healed myocardial infarction. Am J Cardiol 99:1109-1114

    PubMed  Google Scholar 

  72. Orn S, Manhenke C, Greve OJ et al (2009) Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur Heart J 30:1978-1985

    PubMed  Google Scholar 

  73. Ørn S, Manhenke C, Ueland T et al (2009) C-reactive protein, infarct size, microvascular obstruction, and left-ventricular remodelling following acute myocardial infarction. Eur Heart J 30:1180-1186

    PubMed  Google Scholar 

  74. Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: Protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437-2445

    PubMed  Google Scholar 

  75. Palaniyappan A, Uweira RRE, Idikio H et al (2013) Attenuation of increased leukocyte protease inhibitor, matricellular proteins and angiotensin II and left ventricular remodeling by candesartan and omapatrilat during healing after reperfused myocardial infarction. Mol Cell Biochem 376:175-188

    PubMed  CAS  Google Scholar 

  76. Kanekar S, Hirozanne T, Terracio L, Borg T (1998) Cardiac fibroblasts: form and function. Cardiovasc Pathol 7:127-133

    Google Scholar 

  77. Nagase H, Visse R, Murphy G (2006) Structure and function of Matrix metalloproteinases and TIMPs. Cardiovasc Research 69:562-573

    CAS  Google Scholar 

  78. Nagase H, Woessner Jr JF (1999) Matrix metalloproteinases. J Biol Chem 274:5578-5582

    Google Scholar 

  79. Cao J, Drews M, Lee HM et al (1998) The propeptide domain of membrane type 1 matrix metalloproteinase is required for binding of tissue inhibitor of metalloproteinases and for activation of pro-gelatinase a. J Biol Chem 273:34745-34752

    PubMed  CAS  Google Scholar 

  80. Jugdutt BI (1985) Delayed effects of early infarct-limiting therapies on healing after myocardial infarction. Circulation 72:907-914

    PubMed  CAS  Google Scholar 

  81. Lopez B, Gonzalez A et al (2006) Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol 48:89-96

    PubMed  CAS  Google Scholar 

  82. Ahmed SH, Clark, LL et al (2006) Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation 113:2089-2096

    PubMed  CAS  Google Scholar 

  83. Romanic AM, Burns-Kurtis CL, Gout B et al (2001) Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life sciences 68:799-814

    PubMed  CAS  Google Scholar 

  84. Tao, ZY,Cavasin, MA, Yang F, Liu YH, Yang XP (2004) Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice. Life Sci 74:1561-1572

    PubMed  CAS  Google Scholar 

  85. Kawakami R, Saito Y, Kishimoto I et al (2004) Overexpression of brain natriuretic peptide facilitates neutrophil infiltration and cardiac matrix metalloproteinase-9 expression after acute myocardial infarction. Circulation;110:3306-3312

    PubMed  CAS  Google Scholar 

  86. Lindsey M, Wedin K, Brown MD et al (2001) Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation 103:2181-2187

    PubMed  CAS  Google Scholar 

  87. Itoh Y, Nagase H. (1995) Preferential inactivation of tissue inhibitor of metalloproteinases-1 that is bound to the precursor of matrix metalloproteinase 9 (progelatinase B) by human neutrophil elastase. J Biol Chem 270:16518-16521

    PubMed  CAS  Google Scholar 

  88. Lindsey ML, Zamilpa R (2012) Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 30:31-41

    PubMed  CAS  Google Scholar 

  89. Fedak PWM, Smookler DS, Kassiri Z et al (2004) TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation. 110:2401-2409

    PubMed  CAS  Google Scholar 

  90. Fedak PW, Maravec CS, McCarthy PM et al (2006) Altered expression of disintegrin metalloproteinases and their inhibitor in human dilated cardiomyopathy. Circulation 113: 238-245

    PubMed  CAS  Google Scholar 

  91. Smookler DS, Mohammed FF, Kassiri Z et al (2006) Tissue inhibitor of metalloproteinase 3 regulates TNF-dependent systemic inflammation. J Immunol 176:721-725

    PubMed  CAS  Google Scholar 

  92. Sengelov H, Follin P et al (1995) Mobilization of granules and secretory vesicles during in vivo exudation of human neutrophils. J Immunol 154:4157-4165

    PubMed  CAS  Google Scholar 

  93. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503-3521

    PubMed  CAS  Google Scholar 

  94. Mollinedo F, Nakajima M et al (1997) Major co-localization of the extracellular-matrix degradative enzymes heparanase and gelatinase in tertiary granules of human neutrophils. Biochem J 327 :917-923

    PubMed  CAS  Google Scholar 

  95. Bidouard JP, Duval N et al (2003) SSR69071, an elastase inhibitor, reduces myocardial infarct size following ischemia-reperfusion injury. Eur J Pharmacol 461:49-52

    PubMed  CAS  Google Scholar 

  96. Lindsey ML, Zamilpa R (2012) Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 30:31-41

    PubMed  CAS  Google Scholar 

  97. Sahinarslan A, Kocaman SA et al (2011) Plasma neutrophil gelatinase-associated lipocalin levels in acute myocardial infarction and stable coronary artery disease. Coron Artery Dis 22:333-338

    PubMed  Google Scholar 

  98. Yndestad A, Landro L et al (2009) Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J 30:1229-1236

    PubMed  CAS  Google Scholar 

  99. Palaniyappan A, Uwiera RER, Idikio H, Jugdutt BI (2009) Comparison of vasopeptidase inhibitor omapatrilat and angiotensin II type 1 receptor blocker candesartan on extracellular matrix, myeloperoxidase, cytokines and ventricular remodeling during healing after reperfused myocardial infarction. Mol Cell Biochem 321:9-22

    PubMed  CAS  Google Scholar 

  100. Askari AT, Brennan ML et al (2003) Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction. J Exp Med 197:615-624

    PubMed  CAS  Google Scholar 

  101. Brennan ML, Penn MS et al (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349:1595-1604

    PubMed  CAS  Google Scholar 

  102. Owen CA, Campbell EJ (1999) The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol 65:137-150

    PubMed  CAS  Google Scholar 

  103. Massberg S, Grahl L et al (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16:887-896

    PubMed  CAS  Google Scholar 

  104. Libby P, Lee RT (2000) Matrix matters. Circulation 102:1874-1876

    PubMed  CAS  Google Scholar 

  105. Pendergraft WF 3rd, Rudolph EH et al (2004) Proteinase 3 sidesteps caspases and cleaves p21(Waf1/Cip1/Sdi1) to induce endothelial cell apoptosis. Kidney Int 65:75-84

    PubMed  CAS  Google Scholar 

  106. Bank U, Kupper B et al (1999) Evidence for a crucial role of neutrophil-derived serine proteases in the inactivation of interleukin-6 at sites of inflammation. FEBS Lett 461:235-240

    PubMed  CAS  Google Scholar 

  107. Larosa CA, Rohrer MJ et al (1994) Human neutrophil cathepsin G is a potent platelet activator. J Vasc Surg 19:306-318

    PubMed  CAS  Google Scholar 

  108. Reilly CF, Schechter NB et al (1985) Inactivation of bradykinin and kallidin by cathepsin G and mast cell chymase. Biochem Biophys Res Commun 127:443-449

    PubMed  CAS  Google Scholar 

  109. Nahrendorf M, Swirski FK et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037-3047

    PubMed  CAS  Google Scholar 

  110. Lambert JM, Lopez EF et al (2008) Macrophage roles following myocardial infarction. Int J Cardiol 130:147-158

    PubMed  Google Scholar 

  111. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958-969

    PubMed  CAS  Google Scholar 

  112. Troidl C, Mollmann H et al (2009) Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med 13:3485-3496

    PubMed  CAS  Google Scholar 

  113. Hu Y,Zhang H et al (2011) Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization. Basic Res Cardiol 106:1311-1328

    PubMed  CAS  Google Scholar 

  114. Leuschner F, Rauch PJ et al (2012) Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 209:123-137

    PubMed  CAS  Google Scholar 

  115. Yang Z, Zingarelli B et al (2000) Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury. Circulation 101:1019-1026

    PubMed  CAS  Google Scholar 

  116. Timmers L, Sluijter JP et al (2008) Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circ Res 102:257-264

    PubMed  CAS  Google Scholar 

  117. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23-35

    PubMed  CAS  Google Scholar 

  118. Martinez FO, Helming L et al (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451-483

    PubMed  CAS  Google Scholar 

  119. Song E, Ouyang N, Horbelt M et al (2000) Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 204:19-28

    PubMed  CAS  Google Scholar 

  120. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593-604

    PubMed  CAS  Google Scholar 

  121. Camelliti P, Borg TK, Kohl P et al (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40-51

    PubMed  CAS  Google Scholar 

  122. Van Den Borne SW, Diez J, Blankesteijn WM et al (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7:30-37

    PubMed  Google Scholar 

  123. Janicki JS, Brower GL (2002) The role of myocardial fibrillar collagen in ventricular remodeling and function. J Card Fail 8:S319-325

    PubMed  CAS  Google Scholar 

  124. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199-221

    PubMed  CAS  Google Scholar 

  125. Lopez B, Gonzalez A et al (2001) Biochemical assessment of myocardial fibrosis in hypertensive heart disease. Hypertension 38:1222-1226

    PubMed  CAS  Google Scholar 

  126. Jugdutt BI (2013) Regulation of fibrosis after myocardial infarction: Implications for ventricular remodeling. In: Jugdutt BI, Dhalla NS, ed. Cardiac Remodeling. Molecular Mechanisms. New York, NY: Springer. pp 525-545, 2013

    Google Scholar 

  127. Takino T, Nakamura M, Hiramori K (1999) Circulating levels of carboxyterminal propeptide of type I procollagen and left ventricular remodeling after myocardial infarction. Cardiology 91:81-86

    PubMed  CAS  Google Scholar 

  128. Radovan J, Vaclav P, Petr W et al (2006) Changes of collagen metabolism predict the left ventricular remodeling after myocardial infarction. Mol Cell Biochem 293:71-78

    PubMed  CAS  Google Scholar 

  129. Risteli J, Risteli L (1995) Analysing connective tissue metabolites in human serum. Biochemical, physiological and methodological aspects. J Hepatol 22:77-81

    PubMed  CAS  Google Scholar 

  130. Barthelemy O, Beygui F, Vicaut E et al (2009) Relation of high concentrations of plasma carboxy-terminal telopeptide of collagen type I with outcome in acute myocardial infarction. Am J Cardiol 104:904-909

    PubMed  CAS  Google Scholar 

  131. Sharma UC, Pokharel S, van Brakel JJ et al (2004) Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110:3121-3128

    PubMed  CAS  Google Scholar 

  132. Li X, Mikhalkova D, Gao E et al (2011) Myocardial injury after ischemia-reperfusion in mice deficient in Akt2 is associated with increased cardiac macrophage density. Am J Physiol Heart Circ Physiol 301:H1932-1940

    PubMed  CAS  Google Scholar 

  133. Liu YH, D’ambrosio M, Liao TD et al (2009) N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol 296:H404-H412

    PubMed  CAS  Google Scholar 

  134. Psarras S, Mavroidis M, Sanoudou D et al (2011) Regulation of adverse remodelling by osteopontin in a genetic heart failure model. Eur Heart J 33:1954-1963

    PubMed  Google Scholar 

  135. de Boer RA, Voors AA, Muntendam P et al (2009) Galectin-3: a novel mediator of heart failure development and progression. Eur J Heart Fail 11:811-817

    PubMed  Google Scholar 

  136. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255-278

    PubMed  CAS  Google Scholar 

  137. Brown RD, Ambler SK et al (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657-687

    PubMed  CAS  Google Scholar 

  138. Paulus WJ, Tschöpe C, Sanderson JE et al (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28:2539-2550

    PubMed  Google Scholar 

  139. Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Part I. Aging arteries: a “set up” for vascular disease. Circulation 107:139-146

    PubMed  Google Scholar 

  140. Bujak M, Kweon HJ, Chatila K et al (2008) Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction. J Am Coll Cardiol 51:1384-1392

    PubMed  Google Scholar 

  141. Jugdutt BI (2009) Limiting fibrosis after myocardial infarction. New Eng J Med 360:1567-1569

    PubMed  CAS  Google Scholar 

  142. Kobayashi K, Luo M, Zhang Y, et al. (2009) Secreted frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 11:46-55

    PubMed  CAS  Google Scholar 

  143. He W, Zhang L, Zhang Z et al (2010) Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc Natl Acad Sci U S A 107:21110-21115

    PubMed  CAS  Google Scholar 

  144. Mirotsou M, Zhang Z, Deb A et al (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 104:1643-1648

    PubMed  CAS  Google Scholar 

  145. Alfaro MP, Pagni M, Vincent A, et al (2008) The Wnt modulator Sfrp2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci U S A 105:18366-18371

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grant # IAP99003 from the Canadian Institutes of Health Research, Ottawa, Ontario. I thank Catherine Jugdutt for her assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodh I. Jugdutt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jugdutt, B.I. (2014). Proteases as Potential Targets in Left Ventricular Remodeling After Myocardial Infarction. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_21

Download citation

Publish with us

Policies and ethics