Skip to main content

Implications of Intracellular Proteolytic Activation of MMP-2 in the Heart

  • Chapter
  • First Online:
Role of Proteases in Cellular Dysfunction

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

  • 1288 Accesses

Abstract

Matrix metalloproteinases (MMPs) are a family of metalloproteases comprised of 25 related members, of which 24 are found in mammals. By cleaving their target proteins, MMPs play regulatory roles in signaling events, control the cellular environment, and modulate many bioactive molecules at the cell surface to influence cell behavior. However, MMPs are also localized inside the cell and can cleave intracellular substrates. In the heart, MMP-2 is widely expressed in nearly all cells and plays important roles in a variety of physiological and pathological processes, ranging from heart development to ischemia–reperfusion (I/R) injury that triggers an acute loss in heart contractile function. MMP-2 is abundantly expressed in cardiac myocytes and is directly activated by oxidative stress. This results in the S-glutathiolation of a critical cysteine in the prodomain which removes its coordination to the catalytic zinc and allows access of substrates to its catalytic domain, resulting in the proteolysis of specific sarcomeric and cytoskeletal intracellular proteins. MMP-2 activity is also regulated by its phosphorylation. Intracellular substrates of MMP-2 include troponin I, titin, myosin light chain 1, α-actinin, and glycogen synthase kinase-3β. The hydrolysis of specific sarcomeric and cytoskeletal proteins by MMP-2 contributes to contractile dysfunction after I/R injury pointing towards inhibition of MMP-2 as a possible therapy for the treatment of heart diseases associated with enhanced oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40:343-350.

    Article  Google Scholar 

  2. Drag M, Salvesen GS (2010) Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9:690-701.

    Article  PubMed  CAS  Google Scholar 

  3. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785-799.

    Article  PubMed  CAS  Google Scholar 

  4. Craik CS, Page MJ, Madison EL (2011) Proteases as therapeutics. Biochem J 435:1-16.

    Article  PubMed  CAS  Google Scholar 

  5. Chakraborti S, Mandal M, Das S, et al (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253:269-285.

    Article  PubMed  CAS  Google Scholar 

  6. Singh RB, Dandekar SP, Elimban V, et al (2004) Role of proteases in the pathophysiology of cardiac disease. Mol Cell Biochem 263:241-256.

    Article  PubMed  CAS  Google Scholar 

  7. Muller AL, Freed D, Hryshko L, et al (2012) Implications of protease activation in cardiac dysfunction and development of genetic cardiomyopathy in hamsters. Can J Physiol Pharmacol 90:995-1004.

    Article  PubMed  CAS  Google Scholar 

  8. Gross J, Lapiere CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. PNAS 48:1014-1022.

    Article  PubMed  CAS  Google Scholar 

  9. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463-516.

    Article  PubMed  CAS  Google Scholar 

  10. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161-174.

    Article  PubMed  CAS  Google Scholar 

  11. Krampert M, Bloch W, Sasaki T, et al (2004) Activities of the matrix metalloproteinase stromelysin-2 (MMP-10) in matrix degradation and keratinocyte organization in wounded skin. Mol Biol Cell 15:5242-5254.

    Article  PubMed  CAS  Google Scholar 

  12. Milner JM, Cawston TE (2005) Matrix metalloproteinase knockout studies and the potential use of matrix metalloproteinase inhibitors in the rheumatic diseases. Curr Drug Targets Inflamm Allergy 4:363-375.

    Article  PubMed  CAS  Google Scholar 

  13. Hu J, Van den Steen PE, Sang QX, et al (2007) Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat rev Drug Discov 6:480-498.

    Article  PubMed  CAS  Google Scholar 

  14. Manicone AM, McGuire JK (2008) Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 19:34-41.

    Article  PubMed  CAS  Google Scholar 

  15. Candelario-Jalil E, Yang Y, Rosenberg GA (2009) Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158:983-994.

    Article  PubMed  CAS  Google Scholar 

  16. McCawley LJ, Matrisian LM (2001) Tumor progression: defining the soil round the tumor seed. Curr Biol 11:25-27.

    Article  Google Scholar 

  17. Schulz R (2007) Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu Rev Pharmacol Toxicol 47:211-242.

    Article  PubMed  CAS  Google Scholar 

  18. Cauwe B, Opdenakker G (2010) Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 45:351-423.

    Article  PubMed  CAS  Google Scholar 

  19. Murphy G, Nagase H (2008) Progress in matrix metalloproteinase research. Mol Aspects Med 29:290-308.

    Article  PubMed  CAS  Google Scholar 

  20. Ali MA, Chow AK, Kandasamy AD, et al (2012) Mechanisms of cytosolic targeting of matrix metalloproteinase-2. J Cell Physiol 227:3397-3404.

    Article  PubMed  CAS  Google Scholar 

  21. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491-21494.

    Article  PubMed  CAS  Google Scholar 

  22. Bode W, Reinemer P, Huber R, et al (1994) The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO 13:1263-1269.

    CAS  Google Scholar 

  23. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562-573.

    Article  PubMed  CAS  Google Scholar 

  24. Castro MM, Kandasamy AD, Youssef N et al (2011) Matrix metalloproteinase inhibitor properties of tetracyclines: therapeutic potential in cardiovascular diseases. Pharmacol Res 64:551-560.

    Article  PubMed  CAS  Google Scholar 

  25. Chow AK, Daniel EE, Schulz R (2010) Cardiac function is not significantly diminished in hearts isolated from young caveolin-1 knockout mice. Am J Physiol Heart Circ Physiol 299:1183-1189.

    Article  Google Scholar 

  26. Tyagi SC, Matsubara L, Weber KT (1993) Direct extraction and estimation of collagenase(s) activity by zymography in microquantities of rat myocardium and uterus. Clin Biochem 26:191-198.

    Article  PubMed  CAS  Google Scholar 

  27. Linask KK, Han M, Cai DH, et al (2005) Cardiac morphogenesis: matrix metalloproteinase coordination of cellular mechanisms underlying heart tube formation and directionality of looping. Dev Dyn 233:739-753.

    Article  PubMed  CAS  Google Scholar 

  28. Cai W, Vosschulte R, Afsah-Hedjri A, et al (2000) Altered balance between extracellular proteolysis and antiproteolysis is associated with adaptive coronary arteriogenesis. J Mol Cell Cardiol 32:997-1011.

    Article  PubMed  CAS  Google Scholar 

  29. Alexander SM, Jackson KJ, Bushnell KM, et al (1997) Spatial and temporal expression of the 72-kDa type IV collagenase (MMP-2) correlates with development and differentiation of valves in the embryonic avian heart. Dev Dyn 209:261-268.

    Article  PubMed  CAS  Google Scholar 

  30. Lindsey ML, Zamilpa R (2012) Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 30:31-41.

    Article  PubMed  CAS  Google Scholar 

  31. Cheung PY, Sawicki G, Wozniak M, et al (2000) Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 101:1833-1839.

    Article  PubMed  CAS  Google Scholar 

  32. Nuttall RK, Sampieri CL, Pennington CJ, et al (2004) Expression analysis of the entire MMP and TIMP gene families during mouse tissue development. FEBS Letters 563:129-134.

    Article  PubMed  CAS  Google Scholar 

  33. Heymans S, Luttun A, Nuyens D, et al (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135-1142.

    Article  PubMed  CAS  Google Scholar 

  34. Wang W, Schulze CJ, Suarez-Pinzon WL, et al (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106:1543-1549.

    Article  PubMed  CAS  Google Scholar 

  35. Coker ML, Zellner JL, Crumbley AJ et al (1999) Defects in matrix metalloproteinase inhibitory stoichiometry and selective MMP induction in patients with nonischemic or ischemic dilated cardiomyopathy. Ann N Y Acad Sci 878:559-562.

    Article  PubMed  CAS  Google Scholar 

  36. Strongin AY, Collier I, Bannikov G, et al (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331-5338.

    Article  PubMed  CAS  Google Scholar 

  37. Viappiani S, Nicolescu AC, Holt A, et al (2009) Activation and modulation of 72kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochem Pharmacol 77: 826-834.

    Article  PubMed  CAS  Google Scholar 

  38. Okamoto T, Akaike T, Sawa T, et al (2001) Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem 276:29596-29602.

    Article  PubMed  CAS  Google Scholar 

  39. Sariahmetoglu M, Crawford BD, Leon H, et al (2007) Regulation of matrix metalloproteinase-2 (MMP-2) activity by phosphorylation. FASEB J 21:2486-2495.

    Article  PubMed  CAS  Google Scholar 

  40. Kandasamy AD, Chow AK, Ali MA, et al (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85:413-423.

    Article  PubMed  CAS  Google Scholar 

  41. Itoh T, Ikeda T, Gomi H, et al (1997) Unaltered secretion of beta-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J Biol Chem 272:22389-22392.

    Article  PubMed  CAS  Google Scholar 

  42. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285-1342.

    Article  PubMed  CAS  Google Scholar 

  43. Mujumdar VS, Smiley LM. Tyagi SC (2001) Activation of matrix metalloproteinase dilates and decreases cardiac tensile strength. Int J Cardiol 79:277-286.

    Google Scholar 

  44. Gutierrez FR, Lalu MM, Mariano FS, et al (2008) Increased activities of cardiac matrix metalloproteinases matrix metalloproteinase (MMP)-2 and MMP-9 are associated with mortality during the acute phase of experimental Trypanosoma cruzi infection. J !nfect Dis 197:1468-1476.

    Google Scholar 

  45. Cheung C, Luo H, Yanagawa B, et al (2006) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in coxsackievirus-induced myocarditis. Cardiovasc Pathol 15:63-74.

    Article  PubMed  CAS  Google Scholar 

  46. Avkiran M, Cook AR, Cuello F (2008) Targeting Na+/H+ exchanger regulation for cardiac protection: a RSKy approach? Curr Opin Pharmacol 8:133-140.

    Article  PubMed  CAS  Google Scholar 

  47. Andreadou I, Iliodromitis EK, Koufaki M, et al (2008) Pharmacological pre- and post- conditioning agents: reperfusion-injury of the heart revisited. Mini Rev Med Chem 8:952-959.

    Article  PubMed  CAS  Google Scholar 

  48. Ostadal B (2009) The past, the present and the future of experimental research on myocardial ischemia and protection. Pharmacol Reports 61:3-12.

    Google Scholar 

  49. Yasmin W, Strynadka KD, Schulz R (1997) Generation of peroxynitrite contributes to ischemia-reperfusion injury in isolated rat hearts. Cardiovasc Res 33:422-432.

    Article  PubMed  CAS  Google Scholar 

  50. Ali MA, Fan X, Schulz R (2011) Cardiac sarcomeric proteins: novel intracellular targets of matrix metalloproteinase-2 in heart disease. Trends Cardiovasc Med 21:112-118.

    Article  PubMed  CAS  Google Scholar 

  51. Gao CQ, Sawicki G, Suarez-Pinzon WL, et al (2003) Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovasc Res 57:426-433.

    Article  PubMed  CAS  Google Scholar 

  52. Sawicki G, Leon H, Sawicka J et al (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112:544-552.

    Article  PubMed  CAS  Google Scholar 

  53. Sung MM, Schulz CG, Wang W (2007) Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J Mol Cell Cardiol 43:429-436.

    Article  PubMed  CAS  Google Scholar 

  54. Kandasamy AD, Schulz R (2009) Glycogen synthase kinase-3beta is activated by matrix metalloproteinase-2 mediated proteolysis in cardiomyoblasts. Cardiovasc Res 83:698-706.

    Article  PubMed  CAS  Google Scholar 

  55. Ali MA, Cho WJ, Hudson B, et al (2010) Titin is a target of matrix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury. Circulation 122:2039-2047.

    Article  PubMed  CAS  Google Scholar 

  56. Lovett DH, Mahimkar R, Raffai RL, et al (2012) A novel intracellular isoform of matrix metalloproteinase-2 induced by oxidative stress activates innate immunity. PLOS ONE 7:e34177.

    Article  PubMed  CAS  Google Scholar 

  57. Strongin AY (2006) Mislocalization and unconventional functions of cellular MMPs in cancer. Cancer Metastasis Rev 25:87-98.

    Article  PubMed  CAS  Google Scholar 

  58. Miller JP, Holcomb J, Al-Ramahi I, et al (2010) Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron 67:199-212.

    Article  PubMed  CAS  Google Scholar 

  59. Si-Tayeb K, Monvoisin A, Mazzocco C, et al (2006) Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis. Am J Pathol 169:1390-1401.

    Article  PubMed  CAS  Google Scholar 

  60. Van Eyk JE, Powers F, Law W et al (1998) Breakdown and release of myofilament proteins during ischemia and ischemia/reperfusion in rat hearts: identification of degradation products and effects on the pCa-force relation. Circ Res 82:261-271.

    Article  PubMed  Google Scholar 

  61. Granzier HL, Labeit S (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94:284-295.

    Article  PubMed  CAS  Google Scholar 

  62. Fukuda N, Granzier HL, Ishiwata S et al Physiological functions of the giant elastic protein titin in mammalian striated muscle. J Physiol Sci 58:151-159.

    Google Scholar 

  63. Matsumura Y, Saeki E, Inoue M et al (1996) Inhomogeneous disappearance of myofilament-related cytoskeletal proteins in stunned myocardium of guinea pig. Circ Res 79: 447-454.

    Article  PubMed  CAS  Google Scholar 

  64. Jackson DA, Cook PR (1995) The structural basis of nuclear function. Int Rev Cytol 162A:125-149.

    PubMed  CAS  Google Scholar 

  65. Martelli AM, Bareggi R, Bortul R, et al (1997) The nuclear matrix and apoptosis. Histochem Cell Biol 108:1-10.

    Article  PubMed  CAS  Google Scholar 

  66. Georgi AB, Stukenberg PT, Kirschner MW (2002) Timing of events in mitosis. Curr Biol 12:105-114.

    Article  PubMed  CAS  Google Scholar 

  67. Kwan JA, Schulze CJ, Wang W, et al (2004) Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J 18:690-692.

    PubMed  CAS  Google Scholar 

  68. Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65:391-426.

    Article  PubMed  CAS  Google Scholar 

  69. Bukowska A, Lendeckel U, Bode-Boger SM, et al (2012) Physiologic and pathophysiologic role of calpain: implications for the occurrence of atrial fibrillation. Cardiovasc Ther 30:e115-127.

    Article  PubMed  CAS  Google Scholar 

  70. Muller AL, Hryshko LV, Dhalla NS (2012) Extracellular and intracellular proteases in cardiac dysfunction due to ischemia-reperfusion injury. Int J Cardiol 164:39-47

    Article  PubMed  Google Scholar 

  71. Huang Y, Wang KK (2001) The calpain family and human disease. Trends Mol Med 7:355-362.

    Article  PubMed  CAS  Google Scholar 

  72. Dhalla NS, Elmoselhi AB, Hata T, et al (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47:446-456.

    Article  PubMed  CAS  Google Scholar 

  73. Bolli R, Marban E (1999) Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79:609-634.

    PubMed  CAS  Google Scholar 

  74. Ali MA, Stepanko A, Fan X, et al (2012) Calpain inhibitors exhibit matrix metalloproteinase-2 inhibitory activity. Biochem Biophys Res Commun 423:1-5.

    Article  PubMed  CAS  Google Scholar 

  75. Dorman G, Kocsis-Szommer K, Spadoni C, et al (2007) MMP inhibitors in cardiac diseases: an update. Recent Pat Cardiovasc Drug Discov 2:186-194.

    Article  PubMed  CAS  Google Scholar 

  76. Golub LM, Lee HM, Ryan ME, et al (1998) Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res 12:12-26.

    Article  PubMed  CAS  Google Scholar 

  77. Meier CR, Derby LE, Jick SS, et al (1999) Antibiotics and risk of subsequent first-time acute myocardial infarction. JAMA 281:427-431.

    Article  PubMed  CAS  Google Scholar 

  78. Lalu MM, Gao CQ, Schulz R (2003) Matrix metalloproteinase inhibitors attenuate endotoxemia induced cardiac dysfunction: a potential role for MMP-9. Mol Cell Biochem 251:61-66.

    Article  PubMed  CAS  Google Scholar 

  79. Yaras N, Sariahmetoglu M, Bilginoglu A, et al (2008) Protective action of doxycycline against diabetic cardiomyopathy in rats. Br J Pharmacol 155:1174-1184.

    Article  PubMed  CAS  Google Scholar 

  80. Ferdinandy P, Danial H, Ambrus I, et al (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87:241-247.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

My Kondo was a fellow of the Heart and Stroke Foundation of Canada. Research in the Schulz laboratory is supported by the Canadian Institutes of Health Research, the Heart and Stroke Foundation of Alberta NWT and Nunavut, and the National Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Schulz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kondo, M.Y., Schulz, R. (2014). Implications of Intracellular Proteolytic Activation of MMP-2 in the Heart. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_18

Download citation

Publish with us

Policies and ethics