Skip to main content

A Disintegrin and Metalloproteinase-12 as a New Target for Cancer Treatment

  • Chapter
  • First Online:
Role of Proteases in Cellular Dysfunction

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

  • 1259 Accesses

Abstract

Metastatic spread of cancer is a leading cause for the loss of life from this disease. In metastatic cascade, cells undergo multifaceted phenotypic transformations that include breakdown of extracellular matrix (ECM) encasing the tumor, cancer cell migration and invasion of surrounding tissues, and relocation of cancer cells in secondary organs. Recently a multitasking protein, A Disintegrin and Metalloprotease-12 (ADAM-12), has attracted particular interest because of its potential roles in tumor growth and development by facilitating remodeling of extracellular matrix and cell migration that are so essential for cancer growth and metastasis. ADAM-12 is an active metalloproteinase; it regulates release of growth factors and is capable of promoting cell–cell and cell–matrix adhesion and cell signaling as well. Overexpression of ADAM-12 is reported in many types of human cancers. Furthermore, a statistical correlation between the urinary levels of ADAM-12 in breast and bladder cancer patients and cancer progression has been found. These results suggested that ADAM-12 could be used as a diagnostic marker. In addition to cancers, increase of ADAM-12 expression is linked to the pathogenesis of osteoarthritis, cardiac hypertrophy, and Alzheimer’s disease, as well as during high-fat diet-induced obesity. This review is meant to provide a broad overview of the regulatory pathways by which ADAM-12 could be expressed to contribute towards tumor development, accelerate tumor progression, and metastasis. A better understanding of the regulation of this multifunctional protein that could well be used as a new therapeutic option.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kveiborg M, Albrechtsen R, Couchman JR et al (2008) Cellular roles of ADAM12 in health and disease. Int J Biochem Cell B 40:1685-702.

    Article  CAS  Google Scholar 

  2. Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Bio 6:32-43.

    Article  CAS  Google Scholar 

  3. White JM (2003) ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 15:598-606.

    Article  PubMed  CAS  Google Scholar 

  4. Wiesner S, Legate KR and Fassler R (2005) Integrin-actin interactions. Cell Mol Life Sci 62:1081-99.

    Article  PubMed  CAS  Google Scholar 

  5. Stocker W, Grams F, Baumann U, et al (1995) The metzincins–topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 4:823-40.

    Article  PubMed  CAS  Google Scholar 

  6. Roy R, Wewer UM, Zurakowski D, et al (2004) ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J Biol Chem 279:51323-30.

    Article  PubMed  CAS  Google Scholar 

  7. Asakura M, Kitakaze M, Takashima S, et al (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 8:35-40.

    Article  PubMed  CAS  Google Scholar 

  8. Eto K, Puzon-McLaughlin W, Sheppard D, et al (2000) RGD-independent binding of integrin alpha9beta1 to the ADAM-12 and -15 disintegrin domains mediates cell-cell interaction. J Biol Chem 275:34922-30.

    Article  PubMed  CAS  Google Scholar 

  9. Iba K, Albrechtsen R, Gilpin B, et al (2000) The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to β1 integrin-dependent cell spreading. J Cell Biol 149:1143-56.

    Article  PubMed  CAS  Google Scholar 

  10. Peduto L, Reuter VE, Sehara-Fujisawa A, et al (2006) ADAM12 is highly expressed in carcinoma-associated stroma and is required for mouse prostate tumor progression. Oncogene 25:5462-6.

    Article  PubMed  CAS  Google Scholar 

  11. Le Pabic H, Bonnier D, Wewer UM, et al (2003) ADAM12 in human liver cancers: TGF-β-regulated expression in stellate cells is associated with matrix remodeling. Hepatology 37:1056-66.

    Article  PubMed  Google Scholar 

  12. Frohlich C, Albrechtsen R, Dyrskjot L, et al (2006) Molecular profiling of ADAM12 in human bladder cancer. Clin Cancer Res 12:7359-68.

    Article  PubMed  Google Scholar 

  13. Kodama T, Ikeda E, Okada A, et al (2004) ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. Am J Pathology 165:1743-53.

    Article  CAS  Google Scholar 

  14. Tian BL, Wen JM, Zhang M, et al (2002) The expression of ADAM12 (meltrin alpha) in human giant cell tumours of bone. Mol Pathology 55:394-7.

    Article  CAS  Google Scholar 

  15. Lendeckel U, Kohl J, Arndt M, et al (2005) Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. J Cancer Res Clin 131:41-8.

    Article  CAS  Google Scholar 

  16. Carl-McGrath S, Lendeckel U, Ebert M, et al (2005) The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int J Oncol 26:17-24.

    PubMed  CAS  Google Scholar 

  17. Mino N, Miyahara R, Nakayama E, et al (2009) A disintegrin and metalloprotease 12 (ADAM12) is a prognostic factor in resected pathological stage I lung adenocarcinoma. J Surg Oncol 100:267-72.

    Article  PubMed  CAS  Google Scholar 

  18. Fedak PW, Moravec CS, McCarthy PM, et al (2006) Altered expression of disintegrin metalloproteinases and their inhibitor in human dilated cardiomyopathy. Circulation 113:238-45.

    Article  PubMed  CAS  Google Scholar 

  19. Wang X, Oka T, Chow FL, et al (2009) Tumor necrosis factor-alpha-converting enzyme is a key regulator of agonist-induced cardiac hypertrophy and fibrosis. Hypertension 54:575-82.

    Article  PubMed  CAS  Google Scholar 

  20. Wang X, Chow FL, Oka T, et al (2009) Matrix metalloproteinase-7 and ADAM-12 (a disintegrin and metalloproteinase-12) define a signaling axis in agonist-induced hypertension and cardiac hypertrophy. Circulation 119:2480-9.

    Article  PubMed  CAS  Google Scholar 

  21. Okada A, Mochizuki S, Yatabe T, et al (2008) ADAM-12 (meltrin alpha) is involved in chondrocyte proliferation via cleavage of insulin-like growth factor binding protein 5 in osteoarthritic cartilage. Arthritis Rheum 58:778-89.

    Article  PubMed  CAS  Google Scholar 

  22. Ma G, Ainola M, Liljestrom M, et al (2005) Increased expression and processing of ADAM 12 (meltrin-alpha) in osteolysis associated with aseptic loosening of total hip replacement implants. J Rheumatol 32:1943-50.

    PubMed  CAS  Google Scholar 

  23. Masaki M, Kurisaki T, Shirakawa K et al (2005) Role of meltrin α (ADAM12) in obesity induced by high-fat diet. Endocrinology 146:1752-63.

    Article  PubMed  CAS  Google Scholar 

  24. Malinin NL, Wright S, Seubert P, et al (2005) Amyloid-beta neurotoxicity is mediated by FISH adapter protein and ADAM12 metalloprotease activity. Proc Natl Acad Sci U S A 102:3058-63.

    Article  PubMed  CAS  Google Scholar 

  25. Yagami-Hiromasa T, Sato T, Kurisaki T, et al (1995) A metalloprotease-disintegrin participating in myoblast fusion. Nature 377:652-6.

    Article  PubMed  CAS  Google Scholar 

  26. Gilpin BJ, Loechel F, Mattei MG, et al (1998) A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. J Biol Chem 273:157-66.

    Article  PubMed  CAS  Google Scholar 

  27. Ray BK, Dhar S, Shakya A et al (2011) Z-DNA-forming silencer in the first exon regulates human ADAM-12 gene expression. Proc Natl Acad Sci U S A 108:103-8.

    Article  PubMed  CAS  Google Scholar 

  28. Taniguchi Y, Doronbekov K, Yamada T, et al (2008) Genomic organization and promoter analysis of the bovine ADAM12 gene. Anim Biotechnol 19:178-89.

    Article  PubMed  CAS  Google Scholar 

  29. Horiuchi K, Le Gall S, Schulte M, et al (2007) Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol Biol Cell 18:176-88.

    Article  PubMed  CAS  Google Scholar 

  30. Ito N, Nomura S, Iwase A, et al (2004) ADAMs, a disintegrin and metalloproteinases, mediate shedding of oxytocinase. Biochem Bioph Res Co 314:1008-13.

    Article  CAS  Google Scholar 

  31. Dyczynska E, Sun D, Yi H, et al (2007) Proteolytic processing of delta-like 1 by ADAM proteases. J Biol Chem 282:436-44.

    Article  PubMed  CAS  Google Scholar 

  32. Loechel F, Fox JW, Murphy G, et al (2000) ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. [erratum appears in Biochem Bioph Res Co 2001 Jan 12;280(1):421]. Biochem Bioph Res Co 278:511-5.

    Google Scholar 

  33. Borneman A, Kuschel R and Fujisawa-Sehara A (2000) Analysis for transcript expression of meltrin alpha in normal, regenerating, and denervated rat muscle. J Muscle Res Cell M 21:475-80.

    Article  CAS  Google Scholar 

  34. Galliano MF, Huet C, Frygelius J, et al (2000) Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, α -actinin-2, is required for myoblast fusion. J Biol Chem 275:13933-9.

    Article  PubMed  CAS  Google Scholar 

  35. Harsha A, Stojadinovic O, Brem H, et al (2008) ADAM12: a potential target for the treatment of chronic wounds. J Mol Med 86:961-9.

    Article  PubMed  CAS  Google Scholar 

  36. Verrier S, Hogan A, McKie N et al (2004) ADAM gene expression and regulation during human osteoclast formation. Bone 35:34-46.

    Article  PubMed  CAS  Google Scholar 

  37. Kveiborg M, Albrechtsen R, Rudkjaer L, et al (2006) ADAM12-S stimulates bone growth in transgenic mice by modulating chondrocyte proliferation and maturation. J Bone Miner Res 21:1288-96.

    Article  PubMed  CAS  Google Scholar 

  38. Kawaguchi N, Sundberg C, Kveiborg M, et al (2003) ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating beta1 integrin function. J Cell Sci 116:3893-904.

    Article  PubMed  CAS  Google Scholar 

  39. Loechel F, Overgaard MT, Oxvig C, et al (1999) Regulation of human ADAM 12 protease by the prodomain. Evidence for a functional cysteine switch. J Biol Chem 274:13427-33.

    Article  PubMed  CAS  Google Scholar 

  40. Cao Y, Kang Q, Zhao Z et al (2002) Intracellular processing of metalloprotease disintegrin ADAM12. J Biol Chem 277:26403-11.

    Article  PubMed  CAS  Google Scholar 

  41. Shi Z, Xu W, Loechel F, et al (2000) ADAM 12, a disintegrin metalloprotease, interacts with insulin-like growth factor-binding protein-3. J Biol Chem 275:18574-80.

    Article  PubMed  CAS  Google Scholar 

  42. Iba K, Albrechtsen R, Gilpin BJ, et al (1999) Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion. Am J Pathol 154:1489-501.

    Article  PubMed  CAS  Google Scholar 

  43. Zolkiewska A (1999) Disintegrin-like/cysteine-rich region of ADAM 12 is an active cell adhesion domain. Exp Cell Res 252:423-31.

    Article  PubMed  CAS  Google Scholar 

  44. Kang Q, Cao Y and Zolkiewska A (2001) Direct interaction between the cytoplasmic tail of ADAM 12 and the Src homology 3 domain of p85alpha activates phosphatidylinositol 3-kinase in C2C12 cells. Journal of Biological Chemistry 276:24466-72.

    Article  PubMed  CAS  Google Scholar 

  45. Suzuki A, Kadota N, Hara T, et al (2000) Meltrin alpha cytoplasmic domain interacts with SH3 domains of Src and Grb2 and is phosphorylated by v-Src. Oncogene 19:5842-50.

    Article  PubMed  CAS  Google Scholar 

  46. Bourd-Boittin K, Le Pabic H, Bonnier D, et al (2008) RACK1, a new ADAM12 interacting protein. Contribution to liver fibrogenesis. J Biol Chem 283:26000-9.

    Article  PubMed  CAS  Google Scholar 

  47. Ron D, Chen CH, Caldwell J, et al (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. [Erratum appears in Proc Natl Acad Sci U S A 1995 Feb 28;92(5):2016]. Proc Natl Acad Sci U S A 91:839-43.

    Google Scholar 

  48. Kveiborg M, Frohlich C, Albrechtsen R, et al (2005) A role for ADAM12 in breast tumor progression and stromal cell apoptosis. Cancer Res 65:4754-61.

    Article  PubMed  CAS  Google Scholar 

  49. Zhou Z, Ran YL, Hu H, et al (2008) TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clin Exp Metastasis 25:537-48.

    Article  PubMed  CAS  Google Scholar 

  50. Ray A, Dhar S and Ray BK (2010) Transforming growth factor-beta1-mediated activation of NF-κB contributes to enhanced ADAM-12 expression in mammary carcinoma cells. Mol Cancer Res 8:1261-70.

    Article  PubMed  CAS  Google Scholar 

  51. Solomon E, Li H, Muggy SD, et al (2010) The role of SnoN in transforming growth factor beta1-induced expression of metalloprotease-disintegrin ADAM12. J Biol Chem 285:21969-77.

    Article  PubMed  CAS  Google Scholar 

  52. Le Pabic H, L’Helgoualc’h A, Coutant A, et al (2005) Involvement of the serine/threonine p70S6 kinase in TGF-beta1-induced ADAM12 expression in cultured human hepatic stellate cells. J Hepatol 43:1038-44.

    Article  PubMed  Google Scholar 

  53. Barter MJ, Pybus L, Litherland GJ, et al (2010) HDAC-mediated control of ERK- and PI3K-dependent TGF-induced extracellular matrix-regulating genes. Matrix Biol 29:602-12.

    Article  PubMed  CAS  Google Scholar 

  54. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349-52.

    Article  PubMed  CAS  Google Scholar 

  55. Paranjape SM, Kamakaka RT and Kadonaga JT (1994) Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu Rev Biochem 63:265-97.

    Article  PubMed  CAS  Google Scholar 

  56. Marks PA, Richon VM, Breslow R et al (2001) Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 13:477-83.

    Article  PubMed  CAS  Google Scholar 

  57. Johnstone RW and Licht JD (2003) Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 4:13-8.

    Article  PubMed  CAS  Google Scholar 

  58. Rich A and Zhang S (2003) Timeline: Z-DNA: the long road to biological function. Nat Rev Genet 4:566-72.

    Article  PubMed  CAS  Google Scholar 

  59. Ray BK, Dhar, S., Henry, C., et al (2013) Epigenetic regulation by Z-DNA silencer function controls cancer-associated ADAM-12 expression in breast cancer: cross-talk between MeCP2 and NF1 transcription factor family. Cancer Res 73:736-744.

    Article  PubMed  CAS  Google Scholar 

  60. Wang AH, Quigley GJ, Kolpak FJ, et al (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680-6.

    Article  PubMed  CAS  Google Scholar 

  61. Nordheim A and Rich A (1983) Negatively supercoiled simian virus 40 DNA contains Z-DNA segments within transcriptional enhancer sequences. Nature 303:674-9.

    Article  PubMed  CAS  Google Scholar 

  62. Liu R, Liu H, Chen X, et al (2001) Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell 106:309-18.

    Article  PubMed  CAS  Google Scholar 

  63. Rothenburg S, Koch-Nolte F, Rich A et al (2001) A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity. Proc Natl Acad Sci U S A 98:8985-90.

    Article  PubMed  CAS  Google Scholar 

  64. Mori Y, Folco E and Koren G (1995) GH3 cell-specific expression of Kv1.5 gene. Regulation by a silencer containing a dinucleotide repetitive element. J Biol Chem 270:27788-96.

    Article  PubMed  CAS  Google Scholar 

  65. Hamada H and Kakunaga T (1982) Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature 298:396-8.

    Article  PubMed  CAS  Google Scholar 

  66. Khuu P, Sandor M, DeYoung J et al (2007) Phylogenomic analysis of the emergence of GC-rich transcription elements. Proc Natl Acad Sci U S A 104:16528-33.

    Article  PubMed  CAS  Google Scholar 

  67. Gebhardt F, Zanker KS and Brandt B (1999) Modulation of epidermal growth factor receptor gene transcription by a polymorphic dinucleotide repeat in intron 1. J Biol Chem 274:13176-80.

    Article  PubMed  CAS  Google Scholar 

  68. Buerger H, Gebhardt F, Schmidt H, et al (2000) Length and loss of heterozygosity of an intron 1 polymorphic sequence of egfr is related to cytogenetic alterations and epithelial growth factor receptor expression. Cancer Res 60:854-7.

    PubMed  CAS  Google Scholar 

  69. Brandt B, Meyer-Staeckling S, Schmidt H, et al (2006) Mechanisms of egfr gene transcription modulation: relationship to cancer risk and therapy response. Clin Cancer Res 12:7252-60.

    Article  PubMed  CAS  Google Scholar 

  70. Buerger H, Packeisen J, Boecker A, et al (2004) Allelic length of a CA dinucleotide repeat in the egfr gene correlates with the frequency of amplifications of this sequence – first results of an inter-ethnic breast cancer study. J Pathol 203:545-50.

    Article  PubMed  CAS  Google Scholar 

  71. Tidow N, Boecker A, Schmidt H, et al (2003) Distinct amplification of an untranslated regulatory sequence in the egfr gene contributes to early steps in breast cancer development. Cancer Res 63:1172-8.

    PubMed  CAS  Google Scholar 

  72. Wang B, Ren J, Ooi LL, et al (2005) Dinucleotide repeats negatively modulate the promoter activity of Cyr61 and is unstable in hepatocellular carcinoma patients. Oncogene 24:3999-4008.

    Article  PubMed  CAS  Google Scholar 

  73. Tae HJ, Luo X and Kim KH (1994) Roles of CCAAT/enhancer-binding protein and its binding site on repression and derepression of acetyl-CoA carboxylase gene. J Biol Chem 269:10475-84.

    PubMed  CAS  Google Scholar 

  74. Exner M, Schillinger M, Minar E, et al (2001) Heme oxygenase-1 gene promoter microsatellite polymorphism is associated with restenosis after percutaneous transluminal angioplasty. J Endovasc Ther 8:433-40.

    Article  PubMed  CAS  Google Scholar 

  75. Hill M, Pereira V, Chauveau C, et al (2005) Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase. [Erratum appears in FASEB J. 2006 Jul;20(9):1573 Note: Ashgar, Kashif [corrected to Asghar, Kashif]]. FASEB J 19:1957-68.

    Google Scholar 

  76. Akai J, Kimura A and Hata RI (1999) Transcriptional regulation of the human type I collagen alpha2 (COL1A2) gene by the combination of two dinucleotide repeats. Gene 239:65-73.

    Article  PubMed  CAS  Google Scholar 

  77. Huang TS, Lee CC, Chang AC, et al (2003) Shortening of microsatellite deoxy(CA) repeats involved in GL331-induced down-regulation of matrix metalloproteinase-9 gene expression. Biochem Biophy Res Co 300:901-7.

    Article  CAS  Google Scholar 

  78. Fiotti N, Altamura N, Fisicaro M, et al (2005) MMP-9 microsatellite polymorphism: association with the progression of intima-media thickening and constrictive remodeling of carotid atherosclerotic plaques. Atherosclerosis 182:287-92.

    Article  PubMed  CAS  Google Scholar 

  79. Fiotti N, Altamura N, Fisicaro M, et al (2006) MMP-9 microsatellite polymorphism and susceptibility to carotid arteries atherosclerosis. Arterioscl Throm Vas 26:1330-6.

    Article  CAS  Google Scholar 

  80. Fiotti N, Pedio M, Battaglia Parodi M, et al (2005) MMP-9 microsatellite polymorphism and susceptibility to exudative form of age-related macular degeneration. Genet Med 7:272-7.

    Article  PubMed  CAS  Google Scholar 

  81. Peters DG, Kassam A, St Jean PL, et al (1999) Functional polymorphism in the matrix metalloproteinase-9 promoter as a potential risk factor for intracranial aneurysm. Stroke 30:2612-6.

    Article  PubMed  CAS  Google Scholar 

  82. Liu H, Mulholland N, Fu H et al (2006) Cooperative activity of BRG1 and Z-DNA formation in chromatin remodeling. Mol Cell Biol 26:2550-9.

    Article  PubMed  CAS  Google Scholar 

  83. McIntyre MH, Kantoff PW, Stampfer MJ, et al (2007) Prostate cancer risk and ESR1 TA, ESR2 CA repeat polymorphisms. Cancer Epidem Biomar 16:2233-6.

    Article  CAS  Google Scholar 

  84. Cai Q, Gao YT, Wen W, et al (2003) Association of breast cancer risk with a GT dinucleotide repeat polymorphism upstream of the estrogen receptor-alpha gene. Cancer Res 63:5727-30.

    PubMed  CAS  Google Scholar 

  85. Borrmann L, Seebeck B, Rogalla P, et al (2003) Human HMGA2 promoter is coregulated by a polymorphic dinucleotide (TC)-repeat. Oncogene 22:756-60.

    Article  PubMed  CAS  Google Scholar 

  86. Langelotz C, Schmid P, Jakob C, et al (2003) Expression of high-mobility-group-protein HMGI-C mRNA in the peripheral blood is an independent poor prognostic indicator for survival in metastatic breast cancer. Brit J Cancer 88:1406-10.

    Article  PubMed  CAS  Google Scholar 

  87. Achary PM, Zhao H, Fan Z, et al (2003) A candidate metastasis-associated DNA marker for ductal mammary carcinoma. Breast Cancer Res 5:R52-8.

    Article  PubMed  CAS  Google Scholar 

  88. Mukherjee B, Zhao H, Parashar B, et al (2003) Microsatellite dinucleotide (T-G) repeat: a candidate DNA marker for breast metastasis. Cancer Detect Prev 27:19-23.

    Article  PubMed  CAS  Google Scholar 

  89. Reichardt JK, Makridakis N, Henderson BE, et al (1995) Genetic variability of the human SRD5A2 gene: implications for prostate cancer risk. Cancer Res 55:3973-5.

    PubMed  CAS  Google Scholar 

  90. Verreault H, Dufort I, Simard J, et al (1994) Dinucleotide repeat polymorphisms in the HSD3B2 gene. Hum Mol Genet 3:384.

    Article  PubMed  CAS  Google Scholar 

  91. Nowacka-Zawisza M, Brys M, Romanowicz-Makowska H, et al (2008) Dinucleotide repeat polymorphisms of RAD51, BRCA1, BRCA2 gene regions in breast cancer. Pathol Int 58:275-81.

    Article  PubMed  CAS  Google Scholar 

  92. Naylor LH and Clark EM (1990) d(TG)n.d(CA)n sequences upstream of the rat prolactin gene form Z-DNA and inhibit gene transcription. Nucleic Acids Res 18:1595-601.

    Article  PubMed  CAS  Google Scholar 

  93. Nouhi Z, Chughtai N, Hartley S et al (2006) Defining the role of prolactin as an invasion suppressor hormone in breast cancer cells. Cancer Res 66:1824-32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal K. Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ray, A., Ray, B.K. (2014). A Disintegrin and Metalloproteinase-12 as a New Target for Cancer Treatment. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_11

Download citation

Publish with us

Policies and ethics