Skip to main content

Matrix Metalloproteinases in Cancer Metastasis: An Unsolved Mystery

  • Chapter
  • First Online:
Role of Proteases in Cellular Dysfunction

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

Abstract

Tumor progression is a complex, multistage process by which a normal cell undergoes genetic changes that result in phenotypic alterations and acquisition of the ability to spread and colonization to distant sites in the human body. Understanding the molecular mechanisms of metastasis is crucial for developing novel therapeutic strategies to combat metastatic cancers. Early studies established the importance of the extracellular matrix on tumor cell growth and differentiation. With time, the role of the extracellular matrix and matrix metalloproteinases (MMPs), a family of degradative enzymes, in the regulation of tumor invasion, metastasis, and angiogenesis was recognized. Initially, it was believed that the major role of MMPs in metastasis was to facilitate the breakdown of physical barriers to metastasis, thus promoting invasion and entry into and out of blood or lymphatic vessels (intravasation, extravasation). However, recent evidence suggests that MMPs may have a more complex and divergent role in metastasis as well as in cancer stem cell maintenance. In the present review, the role of MMPs and their functional contribution in metastasis have been revisited and discussed. Upcoming approaches target MMPs and their inhibitors, e.g., tissue inhibitors of metalloproteinases (TIMPs), genetically or pharmacologically, suggesting that MMPs are key regulators of growth of tumors, both at primary and metastatic sites. These evidences present MMPs as the important candidates in creating and maintaining an environment that supports the initiation and maintenance of growth of primary and metastatic tumors. Future endeavors to target matrix metalloproteinases would be important in the development of novel therapeutic strategies against metastatic cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renee T (2005) Cancer Surpasses Heart Disease as Leading Cause of Death for All But the Very Elderly. J Natl Cancer Inst 97: 330-331

    Google Scholar 

  2. Joyce JA, Jeffrey W (2009) Pollard Microenvironmental regulation of metastasis. Nat Rev Cancer 9: 239-252

    PubMed  CAS  Google Scholar 

  3. Saha B, Adhikary A, Ray P et al (2012) Restoration of tumor suppressor p53 by differentially regulating pro and anti p53 networks in HPV 18 infected cervical cancer cells. Oncogene 31: 178–186

    Google Scholar 

  4. Mazumdar M, Adhikary A, Chakraborty S et al (2013) Targeting RET to induce medullary thyroid cancer cell apoptosis in antagonistic interplay between PI3K/Akt and P38MAPK/caspase 8 pathways. Apoptosis 18: 587-604

    Google Scholar 

  5. Sen GS, Mohanty S, Bhattacharyya S et al (2011) Curcumin enhances the efficacy of chemotherapy by tailoring p65NFkB-p300 cross-talk in favor of p53-p300 in breast cancer. J Biol Chem 286: 42232–42247

    Google Scholar 

  6. Das T, Sa G, Saha B et al (2010) Multifocal signal modulation therapy of cancer: Ancient weapon, modern targets. Mol Cell Biochem 336: 85–95

    PubMed  CAS  Google Scholar 

  7. Lahiry L, Saha B, Chakraborty J et al (2010) Theaflavin targets Fas/Caspase 8 and Akt/pBad pathways to induce apoptosis in p53 mutated human breast cancer cells. Carcinogenesis 31: 259-268

    PubMed  CAS  Google Scholar 

  8. Lahiry L, Saha B, Chakraborty J et al (2008) Contribution of p53 mediated Bax transactivation in theaflavin induced mammary epithelial carcinoma cell apoptosis. Apoptosis 13: 771-781

    PubMed  CAS  Google Scholar 

  9. Kinzler K W, Vogelstein B. The genetic basis of human cancer, 2nd edition, New York: McGraw-Hill, Medical Pub, 3-7, 2002

    Google Scholar 

  10. Katherine N, Weilbaecher T A, McCauley K. (2011) “Cancer to Bone” A fatal attraction. Nat Rev Cancer 11: 411-425

    Google Scholar 

  11. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123: 4195-4200

    PubMed  CAS  Google Scholar 

  12. Stetler-Stevenson WG, Aznavoorian S, Liotta LA (1993) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9: 541-573

    PubMed  CAS  Google Scholar 

  13. Wolf K, Wu YI, Liu Y et al (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9: 893-904

    PubMed  CAS  Google Scholar 

  14. Kenneth A Iczkowski (2011) Cell adhesion molecule CD44: its functional roles in prostate cancer Am J Transl Res 3: 1-7

    Google Scholar 

  15. Rundhaug JE (2003) Matrix Metalloproteinases, Angiogenesis, and Cancer. Clin Cancer Res 9 (2): 551-554

    PubMed  Google Scholar 

  16. Cavallo-Medved D, Rudy D, Blum G et al (2009) Live-cell imaging demonstrates extracellular matrix degradation in association with active cathepsin B in caveolae of endothelial cells during tube formation. Exp Cell Res 315: 1234-1246

    PubMed  CAS  Google Scholar 

  17. Chua KN, Poon KL, Lim J et al (2011) Target cell movement in tumor and cardiovascular diseases based on the epithelial–mesenchymal transition concept. Adv Drug Deliv Rev 63: 558-567

    PubMed  CAS  Google Scholar 

  18. Kimura YN, Watari K, Fotovati A, et al (2007) Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis. Cancer Sci 98: 2009-2018

    PubMed  CAS  Google Scholar 

  19. Albert R. Davalos, Jean-Philippe Coppe, Judith Campisi (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Meta Rev 29: 273-283

    Google Scholar 

  20. Ram M, Sherer Y, Shoenfeld Y (2006) Matrix metalloproteinase-9 and autoimmune diseases. J Clin Immunol 26: 299-307

    PubMed  CAS  Google Scholar 

  21. Adhikary A, Mohanty S, Lahiry L et al (2009) Theaflavins retards human breast cancer cell migration by inhibiting NFƙB via p53-ROS crosstalk. FEBS L 584: 7-14

    Google Scholar 

  22. Sewon N, Jung Joon J, Jung M et al (2012) Body fluid MMP-2 as a putative biomarker in metastatic breast cancer. Onco Lett 3: 699-703

    Google Scholar 

  23. Opdenakker G, Philippe E. Van den Steen et al (2001) Gelatinase B functions as regulator and effector in leukocyte biology. J Leuko Biol 69: 851-859

    Google Scholar 

  24. Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes & Dev 14: 2123-2133

    CAS  Google Scholar 

  25. Audic Y, Hartley RS (2004) Post-transcriptional regulation in cancer. Biol Cell 96: 479-498

    PubMed  CAS  Google Scholar 

  26. Lochter A, Srebrow A, Sympson CJ et al (1997) Misregulation of Stromelysin-1 Expression in Mouse Mammary Tumor Cells Accompanies Acquisition of Stromelysin-1-dependent Invasive Properties. J Biol Chem 272: 5007-5015

    PubMed  CAS  Google Scholar 

  27. Wysocki AB, Staiano-Coico L, Grinnell F (1993) Wound Fluid from Chronic Leg Ulcers Contains Elevated Levels of Metalloproteinases MMP-2 and MMP-9. J Invest Dermatol 101: 64-68

    PubMed  CAS  Google Scholar 

  28. Malemud CJ (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front in Biosc 11: 1696-1701

    CAS  Google Scholar 

  29. Fingleton B (2007) Matrix Metalloproteinases as Valid Clinical Targets. Curr Pharmac Des 13: 333-346

    CAS  Google Scholar 

  30. Gomis-Rüth FX (2003) Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotech 24:157-202

    Google Scholar 

  31. Gomis-Rüth FX (2009) Catalytic Domain Architecture of Metzincin Metalloproteases. J Biol Chem 284: 15353-15357

    PubMed  Google Scholar 

  32. Overall CM, López-Otín C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2: 657-672

    PubMed  CAS  Google Scholar 

  33. Eisen A, Jeffrey J, Gross J (1968) Human skin collagenase. Isolation and mechanism of attack on the collagen molecule. Biochim Biophys Acta 151: 637–645

    PubMed  CAS  Google Scholar 

  34. Fontana V, Coll TA, Sobarzo CM et al (2012) Matrix metalloproteinase expression and activity in trophoblast-decidual tissues at organogenesis in CF-1 mouse. J Mol Histol 43(5): 487-496

    PubMed  CAS  Google Scholar 

  35. Parks WC, Wilson CL, López-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4: 617-629

    PubMed  CAS  Google Scholar 

  36. Fridman R (2006) Metalloproteinases and cancer. Cancer Metastasis Rev 25: 7-8

    Google Scholar 

  37. Van Wart H, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87: 5578–5582

    PubMed  Google Scholar 

  38. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161-174

    PubMed  CAS  Google Scholar 

  39. Pei D, Kang T, Qi H (2000) Cysteine array matrix metalloproteinase (CA-MMP)/MMP-23 is a type II transmembrane matrix metalloproteinase regulated by a single cleavage for both secretion and activation. J Biol Chem 275: 33988–33997

    PubMed  CAS  Google Scholar 

  40. Morgunova E, Tuuttila A, Bergmann U et al (1999) Structure of Human Pro-Matrix Metalloproteinase-2: activation mechanism revealed. Sci 284: 1667-1670

    Google Scholar 

  41. Bode W (1995) A helping hand for collagenases: the haemopexin-like domain. Struct 3(6): 527–30

    CAS  Google Scholar 

  42. Kojima K, Ogawa H, Matsumoto I, Yoneda A (1998) Characterization of the ligand binding activities of vitronectin: interaction of vitronectin with lipids and identification of the binding domains for various ligands using recombinant domains. Biochem 37: 6351–6360

    Google Scholar 

  43. Massova I, Kotra LP, Fridman R, Mobashery S (1998) Matrix metalloproteinases: structures, evolution, and diversification. FASEB J 12: 1075–1095

    PubMed  CAS  Google Scholar 

  44. Kojima S, Itoh Y, Matsumoto S (2000) Membrane-type 6 matrix metalloproteinase (MT6-MMP, MMP-25) is the second glycosyl-phosphatidyl inositol (GPI)-anchored MMP. FEBS Letter 480: 142-146

    CAS  Google Scholar 

  45. Monea S, Lehti K, Keski-Oja J, Mignatti P et al (2002) Plasmin activates pro-matrix metalloproteinase-2 with a membrane-type 1 matrix metalloproteinase-dependent mechanism. J Cell Physiol 192: 160-170

    PubMed  CAS  Google Scholar 

  46. Park BC, Thapa D, Lee YS et al (2007)1-furan-2-yl-3-pyridin-2-yl-propenone inhibits the invasion and migration of HT1080 human fibrosarcoma cells through the inhibition of proMMP-2 activation and down regulation of MMP-9 and MT1-MMP. Eur J Pharmacol. 587: 193-197

    Google Scholar 

  47. Brooke C. Henderson, Suresh C. Tyagi (2006) Oxidative mechanism and homeostasis of proteinase/antiproteinase in congestive heart failure. J Mol and Cell Cardiol 41: 959-962

    CAS  Google Scholar 

  48. Fu X, Kassim SY, Parks WC (2003) Hypochlorous Acid Generated by Myeloperoxidase Modifies Adjacent Tryptophan and Glycine Residues in the Catalytic Domain of Matrix Metalloproteinase-7: An Oxidative: Mechanism for Restraining Proteolytic Activity during Inflammation. J Biol Chem 278: 28403-28409

    PubMed  CAS  Google Scholar 

  49. Visse R, Nagase H (2003) Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases :Structure, Function, and Biochemistry. Circul Res 92: 827-839

    CAS  Google Scholar 

  50. Rupp PA, Visconti RP, Czirók A et al (2008) Matrix Metalloproteinase 2-Integrin αvβ3 Binding Is Required for Mesenchymal Cell Invasive Activity but Not Epithelial Locomotion: A Computational Time-Lapse Study. Mol Biol Cell 19: 5529–5540

    PubMed  CAS  Google Scholar 

  51. Zarrabi K, Dufour A, Li J, Kuscu C et al (2011)Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. J Biol Chem. 286: 33167-33177

    PubMed  CAS  Google Scholar 

  52. Levental KR, Yu H, Kass L et al (2009) Matrix Crosslinking Forces Tumor Progression by Enhancing Integrin Signaling. Cell: 891–906

    Google Scholar 

  53. Smith ML, Gourdon D, Little WC, Kubow KE, Eguiluz RA et al (2007) Force-Induced Unfolding of Fibronectin in the Extracellular Matrix of Living Cells. PLoS Biol 5: e268

    PubMed  Google Scholar 

  54. Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11: 512-522

    PubMed  CAS  Google Scholar 

  55. Würtz SØ , Schrohl AS, Sørensen NM (2005) Tissue inhibitor of metalloproteinases-1 in breast cancer. Endocr Relat Cancer 12: 215-227

    PubMed  Google Scholar 

  56. Ogata Y, Itoh Y, Nagase H (1995) Steps Involved in Activation of the Pro-matrix Metalloproteinase 9 (Progelatinase B)-Tissue Inhibitor of Metalloproteinases-1 Complex by 4-Aminophenylmercuric Acetate and Proteinases. J Biol Chem 270: 18506-18511

    PubMed  CAS  Google Scholar 

  57. Seo DW, Li H, Guedez L et al (2003) TIMP-2 Mediated Inhibition of Angiogenesis: An MMP-Independent Mechanism. Cell 114: 171-180

    PubMed  CAS  Google Scholar 

  58. Basu R, Fan D, Kandalam V et al (2012) Loss of Timp3 leads to abdominal aortic aneurysm formation in response to angiotensin II. J Biol Chem 287: 44083-44096

    PubMed  CAS  Google Scholar 

  59. Tummalapalli CM, Heath BJ, Tyagi SC (2001) Tissue inhibitor of metalloproteinase-4 instigates apoptosis in transformed cardiac fibroblasts. J Cell Biochem 80: 512-521

    PubMed  CAS  Google Scholar 

  60. DeBerardinis RJ. (2012) Good neighbours in the tumour stroma reduce oxidative stress. Nat Cell Biol 14: 235-236

    PubMed  CAS  Google Scholar 

  61. Mishra P, Banerjee D, Baruch AB (2011) Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol 89: 31-39

    PubMed  CAS  Google Scholar 

  62. Bekes EM, Schweighofer B, Kupriyanova TA (2011) Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol 179: 1455-1470

    PubMed  CAS  Google Scholar 

  63. Schmalfeldt B, Prechtel D, Härting K et al (2001) Increased Expression of Matrix Metalloproteinases (MMP)-2, MMP-9, and the Urokinase-Type Plasminogen Activator Is Associated with Progression from Benign to Advanced Ovarian Cancer. Clin Cancer Res 7: 2396-2404

    PubMed  CAS  Google Scholar 

  64. Kuittinen O, Apaja-Sarkkinen M, Turpeenniemi-Hujanen T (2003) Gelatinases (MMP-2 and MMP-9), TIMP-1 expression and the extent of neovascularization in aggressive non-Hodgkin’s lymphomas. Eur J Haematol 71: 91-109

    PubMed  CAS  Google Scholar 

  65. Koshiba T, Hosotani R, Wada M (1998) Involvement of matrix metalloproteinase-2 activity in invasion and metastasis of pancreatic carcinoma. Cancer 82: 642-650

    PubMed  CAS  Google Scholar 

  66. Choi JY, Jang YS, Min SY (2011) Overexpression of MMP-9 and HIF-1α in Breast Cancer Cells under Hypoxic Conditions. J Breast Cancer 14: 88–95

    PubMed  Google Scholar 

  67. Kedrin D, Gligorijevic B, Wyckoff J et al (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Meth 5: 1019-1021

    CAS  Google Scholar 

  68. Koop S, Khokha R, Schmidt EE et al (1994) Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth. Cancer Res 54: 4791-4797

    PubMed  CAS  Google Scholar 

  69. Royer C, Lu X (2011) Epithelial cell polarity: a major gatekeeper against cancer? Cell Death Differ 18:1470-1477

    PubMed  CAS  Google Scholar 

  70. Vernon AE, LaBonne C et al (2004)Tumor Metastasis: A New Twist on Epithelial–Mesenchymal Transitions. Current Biol 14: 719-721

    Google Scholar 

  71. Brabletz T, Herrmann K, Jung A et al (2000)Expression of Nuclear β-Catenin and c-myc Is Correlated with Tumor Size but Not with Proliferative Activity of Colorectal Adenomas. Am J Pathol 156: 865–870

    PubMed  CAS  Google Scholar 

  72. Lynch CC, Vargo-Gogola T, Matrisian LM et al (2010) Cleavage of E-Cadherin by Matrix Metalloproteinase-7 Promotes Cellular Proliferation in Nontransformed Cell Lines via Activation of RhoA. J of Oncol 2010: 530745

    Google Scholar 

  73. Liu P, Yang J, Pei J, Pei D, Wilson MJ (2010) Regulation of MT1-MMP activity by β-catenin in MDCK non-cancer and HT1080 cancer cells. J Cell Physiol 225: 810-821

    PubMed  CAS  Google Scholar 

  74. Frittoli E, Palamidessi A, Disanza A (2012) Secretory and endo/exocytic trafficking in invadopodia formation: the MT1-MMP paradigm. Eur J Cell Biol 90(2-3): 108-114

    Google Scholar 

  75. Nascimento CF, Gama-De-Souza LN, Freitas VM (2010) Role of MMP9 on invadopodia formation in cells from adenoid cystic carcinoma. Study by laser scanning confocal microscopy. Microsc Res Tech 73: 99-108

    PubMed  CAS  Google Scholar 

  76. Mizutani K, Kofuji K, Shirouzu K (2000) The significance of MMP-1 and MMP-2 in peritoneal disseminated metastasis of gastric cancer. Surg Today 30: 614-621

    PubMed  CAS  Google Scholar 

  77. Yang EV, Sood AK, Chen M (2006 ) Norepinephrine Up-regulates the Expression of Vascular Endothelial Growth Factor, Matrix Metalloproteinase (MMP)-2, and MMP-9 in Nasopharyngeal Carcinoma Tumor Cells. Cancer Res 66: 10357-10364

    PubMed  CAS  Google Scholar 

  78. Szabova L, Chrysovergis K, Yamada S (2008) MT1-MMP is required for efficient tumor dissemination in experimental metastatic disease. Oncogene 27: 3274-3281

    PubMed  CAS  Google Scholar 

  79. Davies B, Miles DW, Happerfield LC (1993) Activity of type IV collagenases in benign and malignant breast disease. Br J Cancer 67: 1126-1131

    PubMed  CAS  Google Scholar 

  80. DeClerck YA, Imren S (1994) Protease inhibitors: role and potential therapeutic use in human cancer. Eur J Cancer 30A: 2170-2180

    PubMed  CAS  Google Scholar 

  81. Lu XQ, Levy M, Weinstein IB et al (1991) Immunological quantitation of levels of tissue inhibitor of metalloproteinase-1 in human colon cancer. Cancer Res 51: 6231-6235

    PubMed  CAS  Google Scholar 

  82. L Guedez, W G Stetler-Stevenson, L Wolff et al (1998) In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest 102: 2002–2010

    PubMed  CAS  Google Scholar 

  83. Zucker S, Lysik RM, Malik M et al (1992) Secretion of Gelatinases and Tissue Inhibitors of Metalloproteinases by Human Lung-Cancer Cell-Lines and Revertant Cell-Lines - Not an Invariant Correlation with Metastasis. Int J Cancer 52: 366-371

    PubMed  CAS  Google Scholar 

  84. Parks WC (1999) Matrix metalloproteinases in repair. Wound Rep Regen 7: 423-432

    CAS  Google Scholar 

  85. Packard BZ, Artym VV, Komoriya A, Yamada KM (2009) Direct visualization of protease activity on cells migrating in three-dimensions. Matrix Biol 28: 3-10

    PubMed  CAS  Google Scholar 

  86. Giannelli G, Pozzi A, Stetler-Stevenson WG et al (1999)Expression of matrix metalloprotease-2-cleaved laminin-5 in breast remodeling stimulated by sex steroids. Am J Pathol 154: 1193-1201

    PubMed  CAS  Google Scholar 

  87. Xu J, Rodriguez D, Petitclerc E et al (2001) Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154: 1069-1080

    PubMed  CAS  Google Scholar 

  88. Okamoto I, Tsuiki H, Kenyon CL et al (2002) Proteolytic Cleavage of the CD44 Adhesion Molecule in Multiple Human Tumors. Am J Pathol 160: 441-447

    PubMed  CAS  Google Scholar 

  89. Jaime G. de la Garza-Salazar, Abelardo Meneses García, Claudia Arce-Salinas. Inflammatory Breast Cancer, 1st edition, Springer, 29-50, 2012

    Google Scholar 

  90. Paiva De CS, Yoon KC, Pangelinan BS (2009) Cleavage of functional IL-2 receptor alpha chain (CD25) from murine corneal and conjunctival epithelia by MMP-9. J Inflamm 6: 31-42

    Google Scholar 

  91. Becker C, Fantini MC, Neurath MF (2006) TGF-beta as a T cell regulator in colitis and colon cancer. Cytokine and growth factor reviews 17: 97-106

    PubMed  CAS  Google Scholar 

  92. Kataoka H, Uchino H, Iwamura T (1999) Enhanced Tumor Growth and Invasiveness in Vivo by a Carboxyl-Terminal Fragment of α1-Proteinase Inhibitor Generated by Matrix Metalloproteinases. Am J Pathol 154: 457–468

    PubMed  CAS  Google Scholar 

  93. Webster NL, Crowe SM (2006) Matrix metalloproteinases, their production by monocytes and macrophages and their potential role in HIV-related diseases. J Leukoc Biol 80: 1052-1066

    PubMed  CAS  Google Scholar 

  94. Stephanie J. Mail G, Kurschat N, Drenckhan A (2012) Involvement of CXCR4 Chemokine Receptor in Metastastic HER2-Positive Esophageal Cancer. PLOS One 7: e47287

    Google Scholar 

  95. Davalos AR, Coppe JP, Campisi J et al (2010)Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metast Rev 29: 273-283

    Google Scholar 

  96. Pengfei L, Weaver MV, Werb Z (2012) The extracellular matrix: A dynamic niche in cancer progression. J Cell Biol 196: 395-406

    Google Scholar 

  97. Huang Y, Song N, Ding Y et al (2009) Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res 69: 7529-7537

    PubMed  CAS  Google Scholar 

  98. Song N, Sung H, Choi JY et al (2012) Preoperative serum levels of matrix metalloproteinase-2 (MMP-2) and survival of breast cancer among Korean women. Cancer Epidemiol Biomarkers Prev 21(8):1371-1380

    PubMed  CAS  Google Scholar 

  99. Demeter A, Sziller I, Csapo Z et al (2005) Molecular Prognostic Markers in Recurrent and in Non-recurrent Epithelial Ovarian Cancer. Antican Res 25: 2885-2890

    CAS  Google Scholar 

  100. Kuniyasu H, Lee ME, Douglas B et al (1999) Relative Expression of E-Cadherin and Type IV Collagenase Genes Predicts Disease Outcome in Patients with Resectable Pancreatic Carcinoma. Clin Cancer Res 5: 25-33

    PubMed  CAS  Google Scholar 

  101. Yamamoto H, Itoh F, Shouhei I et al (2001) Expression of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Human Pancreatic Adenocarcinomas: Clinicopathologic and Prognostic Significance of Matrilysin Expression. J Clin Oncol 19: 1118-1127

    PubMed  CAS  Google Scholar 

  102. Moser PL, Kieback DG, Hefler L et al (1999)Immunohistochemical detection of matrix metalloproteinases (MMP) 1 and 2 and tissue inhibitor of metalloproteinase 2 (TIMP 2) in stage IB cervical cancer. Anticancer Res.19: 4391–4393

    PubMed  CAS  Google Scholar 

  103. Inoue T, Yashiro M, Nishimura S et al (1999) Matrix metalloproteinase-1 expression is a prognostic factor for patients with advanced gastric cancer. Int J Mol Med 4: 73-80

    PubMed  CAS  Google Scholar 

  104. Yoshizaki T, Maruyama Y, Sato H et al (2001) Expression of tissue inhibitor of matrix metalloproteinase-2 correlates with activation of matrix metalloproteinase-2 and predicts poor prognosis in tongue squamous cell carcinoma. Int J Cancer 95: 44–50

    PubMed  CAS  Google Scholar 

  105. Zeng ZS, Huang Y, Cohen AM et al (1996) Prediction of colorectal cancer relapse and survival via tissue RNA levels of matrix metalloproteinase-9. J Clin Oncol 14: 3133–3140

    PubMed  CAS  Google Scholar 

  106. Gokaslan ZL, Chintala SK, York JE et al (1998) Expression and role of matrix metalloproteinases MMP-2 and MMP-9 in human spinal column tumours. Clin Exp Metastasis 16: 721-728

    PubMed  CAS  Google Scholar 

  107. Gojhi K, Fujimoto N, Hara I (1998) Serum matrix metalloproteinase-2 and its density in men with prostate cancer as a new predictor of disease extension. Int J Cancer 79: 96-101

    Google Scholar 

  108. Slaton JW, Inoue K, Perrotte P et al (2001) Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol 158: 735–743

    PubMed  CAS  Google Scholar 

  109. Verline J, Regala RP, Tseng CI (2012)Matrix Metalloproteinase-10 Is Required for Lung Cancer Stem Cell Maintenance, Tumor Initiation and Metastatic Potential. PLoS one 7: e35040

    Google Scholar 

  110. Coussens LM, Fingleton B, Matrisian LM (2012) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Sci. 295: 2387–2392

    Google Scholar 

  111. Talbot DC, Brown P (1996) Experimental and clinical studies on the use of matrix metallo proteinases inhibitor for the treatment of cancer. Eur J Cancer 32A: 2528-2533

    PubMed  CAS  Google Scholar 

  112. Nemunaitis J, Poole C, Primrose J et al (1998) Combined analysis of studies of the effects of the matrix metalloproteinase inhibitor marimastat on serum tumor markers in advanced cancer: Selection of a biologically active and tolerable dose for longer-term studies. Clin Cancer Res 4: 1101-1109

    PubMed  CAS  Google Scholar 

  113. Sparano JA, Bernardo P, Stephenson P et al (2004)Randomized phase III trial of marimastat versus placebo in patients with metastatic breast cancer who have responding or stable disease after first-line chemotherapy: Eastern Cooperative Oncology Group trial E2 196. J Clin Oncol 22: 4683–4690

    PubMed  CAS  Google Scholar 

  114. Miller KD, Saphner TJ, Waterhouse DM et al (2004)A randomized phase II feasibility trial of BMS-275291 in patients with early stage breast cancer. Clin Cancer Res 10: 1971–1975

    Google Scholar 

  115. Overall CM, Kleifeld O (2006) Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 6: 227–239

    PubMed  CAS  Google Scholar 

  116. Montel V, Kleeman J, Agarwal D et al (2004) Altered metastatic behavior of human breast cancer cells after experimental manipulation of matrix metalloproteinase 8 gene expression. Cancer Res 64: 1687–1694

    PubMed  CAS  Google Scholar 

  117. Gutierrez-Fernandez A, Fueyo A, Folgueras AR et al (2008) Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res 68: 2755–2763

    PubMed  CAS  Google Scholar 

  118. Sternlicht MD, Lochter A, Sympson CJ et al (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis Cell 98: 137–146

    PubMed  CAS  Google Scholar 

  119. Moy FJ, Chanda PK, Chen J et al (2002) Impact of mobility on structure-based drug design for the MMPs. J Am Chem Soc 124: 12658–12659

    PubMed  CAS  Google Scholar 

  120. Jacobsen JA, Major Jourden JL, Miller MT et al (2010) To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta 1803: 72–94

    PubMed  CAS  Google Scholar 

  121. Ikejiri M, Bernardo MM, Meroueh SO et al (2005) Design, synthesis, and evaluation of a mechanism-based inhibitor for gelatinase A. J Org Chem 70: 5709–5712

    PubMed  CAS  Google Scholar 

  122. Sela-Passwell N, Rosenblum G, Shoham T, et al (2009) Structural and functional bases for allosteric control of MMP activities: Can it pave the path for selective inhibition? Biochim Biophys Acta 1803: 29-38

    PubMed  Google Scholar 

  123. Williamson RA, Hutton M, Vogt G et al (2001) Tyrosine 36 plays a critical role in the interaction of the AB loop of tissue inhibitor of metalloproteinases-2 with matrix metalloproteinase-14. J Biol Chem 276: 32966–32970

    PubMed  CAS  Google Scholar 

  124. Lee MH, Atkinson S, Rapti M et al (2009) The activity of a designer tissue inhibitor of metalloproteinases (TIMP)-1 against native membrane type 1 matrix metalloproteinase (MT1-MMP) in a cell-based environment. Cancer Lett 290: 114-122

    PubMed  Google Scholar 

Download references

Acknowledgment

Authors acknowledge the financial supports from CSIR and DST, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mukherjee, S., Manna, A., Mazumdar, M., Das, T. (2014). Matrix Metalloproteinases in Cancer Metastasis: An Unsolved Mystery. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_10

Download citation

Publish with us

Policies and ethics