Skip to main content

Role of Calpain in Immunobiology of Neurodegenerative Diseases

  • Chapter
  • First Online:
Book cover Role of Proteases in Cellular Dysfunction

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 8))

  • 1307 Accesses

Abstract

Calpain is a Ca2+-dependent protease that significantly contributes to the pathogenesis of demyelinative and neurodegenerative diseases and injuries of the central nervous system (CNS). Studies from our laboratory and other laboratories clearly indicate that calpain plays crucial roles in pro-inflammatory immune responses to perpetuate inflammation in multiple sclerosis (MS), which is a demyelinative and neurodegenerative disease of the CNS, and experimental autoimmune encephalomyelitis (EAE), the animal model of MS. Calpain mediates its pro-inflammatory roles with activation of nuclear factor-kappa B (NF-κB), promotion of synthesis of cytokines and chemokines, maintenance of Th1/Th2 imbalances, and reactive astrogliosis and microgliosis in MS and EAE. Besides, calpain is known to take part in promoting activation of caspases for neurodegeneration in a wide range of diseases and injuries of the CNS. Recently, there is a great interest in developing water-soluble and cell-permeable small molecule inhibitors of calpain for treatment of MS and other neurodegenerative diseases. Although exciting results are being reported showing efficacy of experimental calpain inhibitors in preclinical models, these inhibitors have not yet been successfully used for treatment of MS and other neurodegenerative diseases in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banay-Schwartz M, DeGuzman T, Palkovits M, et al. (1994) Calpain activity in adult and aged human brain regions. Neurochem Res 19: 563-567

    Article  PubMed  CAS  Google Scholar 

  2. Nixon RA (2003) The calpains in aging and aging-related diseases. Ageing Res Rev 2: 407-418

    Article  PubMed  CAS  Google Scholar 

  3. Sen A, Thom M, Martinian L, et al. (2006) Deregulation of cdk5 in Hippocampal sclerosis. J Neuropathol Exp Neurol 65: 55-66

    Article  PubMed  CAS  Google Scholar 

  4. Guroff G (1964) A Neutral, Calcium-Activated Proteinase from the Soluble Fraction of Rat Brain. J Biol Chem 239: 149-155

    PubMed  CAS  Google Scholar 

  5. Guroff G (1964) A Neutral, Calcium-activated Proteinase from the Soluble Fraction of Rat Brain. Journal of Biological Chemistry 239: 149-155

    PubMed  CAS  Google Scholar 

  6. Suzuki K, Sorimachi H, Yoshizawa T, et al. (1995) Calpain: novel family members, activation, and physiologic function. Biol Chem Hoppe Seyler 376: 523-529

    Article  PubMed  CAS  Google Scholar 

  7. Goll DE, Thompson VF, Li H, et al. (2003) The Calpain System. Physiol. Rev. 83: 731-801

    PubMed  CAS  Google Scholar 

  8. Ma H, Fukiage C, Kim YH, et al. (2001) Characterization and Expression of Calpain 10. J. Biol. Chem. 276: 28525-28531

    Article  PubMed  CAS  Google Scholar 

  9. Matena K, Boehm T and Dear TN (1998) Genomic Organization of MouseCapn5andCapn6Genes Confirms That They Are a Distinct Calpain Subfamily. Genomics 48: 117-120

    Article  PubMed  CAS  Google Scholar 

  10. Sorimachi H, Imajoh-Ohmi S, Emori Y, et al. (1989) Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle. J Biol Chem 264: 20106-20111

    PubMed  CAS  Google Scholar 

  11. Futai E, Kubo T, Sorimachi H, et al. (2001) Molecular cloning of PalBH, a mammalian homologue of the Aspergillus atypical calpain PalB. Biochim Biophys Acta 1517: 316-319

    Article  PubMed  CAS  Google Scholar 

  12. Lee HJ, Tomioka S, Kinbara K, et al. (1999) Characterization of a human digestive tract-specific calpain, nCL-4, expressed in the baculovirus system. Arch Biochem Biophys 362: 22-31

    Article  PubMed  CAS  Google Scholar 

  13. Liu K, Li L and Cohen SN (2000) Antisense RNA-mediated Deficiency of the Calpain Protease, nCL-4, in NIH3T3 Cells Is Associated with Neoplastic Transformation and Tumorigenesis. Journal of Biological Chemistry 275: 31093-31098

    Article  PubMed  CAS  Google Scholar 

  14. Dear N, Matena K, Vingron M, et al. (1997) A New Subfamily of Vertebrate Calpains Lacking a Calmodulin-Like Domain: Implications for Calpain Regulation and Evolution. Genomics 45: 175-184

    Article  PubMed  CAS  Google Scholar 

  15. Sorimachi H, Ishiura S and Suzuki K (1993) A novel tissue-specific calpain species expressed predominantly in the stomach comprises two alternative splicing products with and without Ca(2+)-binding domain. J Biol Chem 268: 19476-19482

    PubMed  CAS  Google Scholar 

  16. Dear T and Boehm T (2001) Identification and characterization of two novel calpain large subunit genes. Gene 274: 245 - 252

    Article  PubMed  CAS  Google Scholar 

  17. Dear TN, Moller A and Boehm T (1999) CAPN11: A calpain with high mRNA levels in testis and located on chromosome 6. Genomics 59: 243-247

    Article  PubMed  CAS  Google Scholar 

  18. Dear TN, Meier NT, Hunn M, et al. (2000) Gene structure, chromosomal localization, and expression pattern of Capn12, a new member of the calpain large subunit gene family. Genomics 68: 152-160

    Article  PubMed  CAS  Google Scholar 

  19. Neumar RW, Xu YA, Gada H, et al. (2003) Cross-talk between Calpain and Caspase Proteolytic Systems During Neuronal Apoptosis. Journal of Biological Chemistry 278: 14162-14167

    Article  PubMed  CAS  Google Scholar 

  20. Yadavalli R, Guttmann RP, Seward T, et al. (2004) Calpain-dependent endoproteolytic cleavage of PrPSc modulates scrapie prion propagation. J Biol Chem 279: 21948-21956

    Article  PubMed  CAS  Google Scholar 

  21. Yang L, Sugama S, Mischak RP, et al. (2004) A novel systemically active caspase inhibitor attenuates the toxicities of MPTP, malonate, and 3NP in vivo. Neurobiol Dis 17: 250-259

    Article  PubMed  CAS  Google Scholar 

  22. Polster BM, Basanez G, Etxebarria A, et al. (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280: 6447-6454

    Article  PubMed  CAS  Google Scholar 

  23. Liou AK, Zhou Z, Pei W, et al. (2005) BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP. FASEB J 19: 1350-1352

    PubMed  CAS  Google Scholar 

  24. Lindeman RD and Goldman R (1986) Anatomic and physiologic age changes in the kidney. Experimental Gerontology 21: 379-406

    Article  PubMed  CAS  Google Scholar 

  25. Todd B, Moore D, Deivanayagam CCS, et al. (2003) A Structural Model for the Inhibition of Calpain by Calpastatin: Crystal Structures of the Native Domain VI of Calpain and its Complexes with Calpastatin Peptide and a Small Molecule Inhibitor. Journal of Molecular Biology 328: 131-146

    Article  PubMed  CAS  Google Scholar 

  26. Posmantur R, Hayes RL, Dixon CE, et al. (1994) Neurofilament 68 and neurofilament 200 protein levels decrease after traumatic brain injury. J Neurotrauma 11: 533-545

    Article  PubMed  CAS  Google Scholar 

  27. Ray SK and Banik NL (2003) Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord 2: 173-189

    Article  PubMed  CAS  Google Scholar 

  28. Bartus RT, Baker KL, Heiser AD, et al. (1994) Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage. J Cereb Blood Flow Metab 14: 537-544

    Article  PubMed  CAS  Google Scholar 

  29. Rabbani N, Moses L and Anandaraj MP (1987) Calcium-activated neutral protease and its endogenous inhibitor in tissues of dystrophic and normal mice. Biochem Med Metab Biol 37: 282-286

    Article  PubMed  CAS  Google Scholar 

  30. Kar NC and Pearson CM (1978) Muscular dystrophy and activation of proteinases. Muscle Nerve 1: 308-313

    Article  PubMed  CAS  Google Scholar 

  31. Samantaray S, Ray SK and Banik NL (2008) Calpain as a potential therapeutic target in Parkinson’s disease. CNS Neurol Disord Drug Targets 7: 305-312

    Article  PubMed  CAS  Google Scholar 

  32. Iwamoto N, Thangnipon W, Crawford C, et al. (1991) Localization of calpain immunoreactivity in senile plaques and in neurones undergoing neurofibrillary degeneration in Alzheimer’s disease. Brain Res 561: 177-180

    Article  PubMed  CAS  Google Scholar 

  33. Saito K, Elce JS, Hamos JE, et al. (1993) Widespread activation of calcium-activated neutral proteinase (calpain) in the brain in Alzheimer disease: a potential molecular basis for neuronal degeneration. Proc Natl Acad Sci U S A 90: 2628-2632

    Article  PubMed  CAS  Google Scholar 

  34. Shields DC, Schaecher KE, Saido TC, et al. (1999) A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc Natl Acad Sci U S A 96: 11486-11491

    Article  PubMed  CAS  Google Scholar 

  35. Shields DC and Banik NL (1998) Upregulation of calpain activity and expression in experimental allergic encephalomyelitis: a putative role for calpain in demyelination. Brain Res 794: 68-74

    Article  PubMed  CAS  Google Scholar 

  36. Wootz H, Hansson I, Korhonen L, et al. (2006) XIAP decreases caspase-12 cleavage and calpain activity in spinal cord of ALS transgenic mice. Exp Cell Res 312: 1890-1898

    Article  PubMed  CAS  Google Scholar 

  37. Gladding CM, Sepers MD, Xu J, et al. (2012) Calpain and STriatal-Enriched Protein Tyrosine Phosphatase (STEP) Activation Contribute to Extrasynaptic NMDA Receptor Localization in a Huntington’s Disease Mouse Model. Hum Mol Genet 21: 3739-3752

    Article  PubMed  CAS  Google Scholar 

  38. Hogan EL, Banik NL, Goust JM, et al. (1987) Enzymes in Cerebrospinal Fluid: Evidence for a Calcium-Activated Neutral Proteinase in CSF. In: Cellular and Humoral Components of Cerebrospinal Fluid in Multiple Sclerosis. Plenum Press, London and New York p. 479-87.

    Google Scholar 

  39. Lee E, Eom JE, Kim HL, et al. (2013) Effect of conjugated linoleic acid, mu-calpain inhibitor, on pathogenesis of Alzheimer’s disease. Biochim Biophys Acta 1831: 709-718

    Article  PubMed  CAS  Google Scholar 

  40. Yoon SY, Choi JE, Ham JH, et al. (2012) zVLL-CHO at low concentrations acts as a calpain inhibitor to protect neurons against okadaic acid-induced neurodegeneration. Neurosci Lett 509: 33-38

    Article  PubMed  CAS  Google Scholar 

  41. Schaecher KE, Goust JM and Banik NL (2001) The effects of calpain inhibition upon IL-2 and CD25 expression in human peripheral blood mononuclear cells. J Neuroimmunol 119: 333-342

    Article  PubMed  CAS  Google Scholar 

  42. Carragher NO and Frame MC (2002) Calpain: a role in cell transformation and migration. Int J Biochem Cell Biol 34: 1539-1543

    Article  PubMed  CAS  Google Scholar 

  43. Glading A, Lauffenburger DA and A. W (2002) Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol 12: 46-54

    Google Scholar 

  44. Butler JT, Samantaray S, Beeson CC, et al. (2009) Involvement of calpain in the process of Jurkat T cell chemotaxis. J Neurosci Res 87: 626-635

    Article  PubMed  CAS  Google Scholar 

  45. Schaecher K, Goust JM and Banik NL (2004) The effects of calpain inhibition on IkB alpha degradation after activation of PBMCs: identification of the calpain cleavage sites. Neurochem Res 29: 1443-1451

    Article  PubMed  CAS  Google Scholar 

  46. Imam SA, Guyton MK, Haque A, et al. (2007) Increased calpain correlates with Th1 cytokine profile in PBMCs from MS patients. J Neuroimmunol 190: 139-145

    Article  PubMed  CAS  Google Scholar 

  47. Zamorano J, Rivas MD, Setien F, et al. (2005) Proteolytic regulation of activated STAT6 by calpains. J Immunol 174: 2843-2848

    PubMed  CAS  Google Scholar 

  48. Chan SL and Mattson MP (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 58: 167-190

    Article  PubMed  CAS  Google Scholar 

  49. Chitnis T and Khoury SJ (2003) Cytokine shifts and tolerance in experimental autoimmune encephalomyelitis. Immunol Res 28: 223-239

    Article  PubMed  CAS  Google Scholar 

  50. Land KJ, Moll JS, Kaplan MH, et al. (2004) Signal transducer and activator of transcription (Stat)-6-dependent, but not Stat4-dependent, immunity is required for the development of autoimmunity in Graves’ hyperthyroidism. Endocrinology 145:

    Google Scholar 

  51. Hendry L and John S (2004) Regulation of STAT signalling by proteolytic processing. Eur J Biochem 271: 4613-4620

    Article  PubMed  CAS  Google Scholar 

  52. Kaplan MH, Wurster AL and Grusby MJ (1998) A signal transducer and activator of transcription (Stat)4-independent pathway for the development of T helper type 1 cells. J Exp Med 188: 1191-1196

    Article  PubMed  CAS  Google Scholar 

  53. Kaplan MH, Sun YL, Hoey T, et al. (1996) Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382: 174-177

    Article  PubMed  CAS  Google Scholar 

  54. Wurster AL, Tanaka T and Grusby MJ (2000) The biology of Stat4 and Stat6. Oncogene 2577-2584

    Google Scholar 

  55. Zhu J, Guo L, Watson CJ, et al. (2001) Stat6 is necessary and sufficient for IL-4’s role in Th2 differentiation and cell expansion. J Immunol 7276-7281

    Google Scholar 

  56. Wei S, Wang MW, Teitelbaum SL, et al. (2002) Interleukin-4 reversibly inhibits osteoclastogenesis via inhibition of NF-kappa B and mitogen-activated protein kinase signaling. J Biol Chem 6622-6630

    Google Scholar 

  57. Murphy KM and Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2: 933-944

    Article  PubMed  CAS  Google Scholar 

  58. Hollifield RD, Harbige LS, Pham-Dinh D, et al. (2003) Evidence for cytokine dysregulation in multiple sclerosis: peripheral blood mononuclear cell production of pro-inflammatory and anti-inflammatory cytokines during relapse and remission. Autoimmunity 36: 133-141

    Article  PubMed  CAS  Google Scholar 

  59. Smith AW, Doonan BP, Tyor WR, et al. (2011) Regulation of Th1/Th17 cytokines and IDO gene expression by inhibition of calpain in PBMCs from MS patients. J Neuroimmunol 232: 179-185

    Article  PubMed  CAS  Google Scholar 

  60. Trager NT, Smith AW, Haque A, et al. (2013) Water Soluble Calpain Inhibitor Treatment Ameliorates EAE in Mice. 24th Biennial International Society for Neurochemistry, PSM11–12,10361

    Google Scholar 

  61. Thome M and Acuto O (1995) Molecular mechanism of T-cell activation: role of protein tyrosine kinases in antigen receptor-mediated signal transduction. Res Immunol 146: 291-307

    Article  PubMed  CAS  Google Scholar 

  62. Rudd CE, Janssen O, Cai YC, et al. (1994) Two-step TCR zeta/CD3-CD4 and CD28 signaling in T cells: SH2/SH3 domains, protein-tyrosine and lipid kinases. Immunol Today 15: 225-234

    Article  PubMed  CAS  Google Scholar 

  63. Zhang W, Sloan-Lancaster J, Kitchen J, et al. (1998) LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92: 83-92

    Article  PubMed  CAS  Google Scholar 

  64. Rhee SG and Choi KD (1992) Regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 267: 12393-12396

    PubMed  CAS  Google Scholar 

  65. Weiss A, Koretzky G, Schatzman RC, et al. (1991) Functional activation of the T-cell antigen receptor induces tyrosine phosphorylation of phospholipase C-gamma 1. Proc Natl Acad Sci U S A 88: 5484-5488

    Article  PubMed  CAS  Google Scholar 

  66. Christman JW, Lancaster LH and Blackwell TS (1998) Nuclear factor kappa B: a pivotal role in the systemic inflammatory response syndrome and new target for therapy. Intensive Care Med 24: 1131-1138

    Article  PubMed  CAS  Google Scholar 

  67. Badou A, Basavappa S, Desai R, et al. (2005) Requirement of voltage-gated calcium channel beta4 subunit for T lymphocyte functions. Science 307: 117-121

    Article  PubMed  CAS  Google Scholar 

  68. Timmerman LA, Clipstone NA, Ho SN, et al. (1996) Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383: 837-840

    Article  PubMed  CAS  Google Scholar 

  69. Loh C, Shaw KT, Carew J, et al. (1996) Calcineurin binds the transcription factor NFAT1 and reversibly regulates its activity. J Biol Chem 271: 10884-10891

    Article  PubMed  CAS  Google Scholar 

  70. Shibasaki F, Hallin U and H. U (2002) Calcineurin as a multifunctional regulator. J Biochem 131: 1-15

    Google Scholar 

  71. Noseworthy JH, Lucchinetti C, Rodriguez M, et al. (2000) Multiple sclerosis. N Engl J Med 343: 938-952

    Article  PubMed  CAS  Google Scholar 

  72. Huttenlocher A, Palecek SP, Lu Q, et al. (1997) Regulation of cell migration by the calcium-dependent protease calpain. J Biol Chem 272: 32719-32722

    Article  PubMed  CAS  Google Scholar 

  73. Castellino F, Huang AY, Altan-Bonnet G, et al. (2006) Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440: 890-895

    Article  PubMed  CAS  Google Scholar 

  74. Mikhak Z, Fleming CM, Medoff BD, et al. (2006) STAT1 in peripheral tissue differentially regulates homing of antigen-specific Th1 and Th2 cells. J Immunol 176: 4959-4967

    PubMed  CAS  Google Scholar 

  75. Pharoah DS, Varsani H, Tatham RW, et al. (2006) Expression of the inflammatory chemokines CCL5, CCL3 and CXCL10 in juvenile idiopathic arthritis, and demonstration of CCL5 production by an atypical subset of CD8+ T cells. Arthritis Res Ther R50

    Google Scholar 

  76. Schroder JM, Gregory H, Young J, et al. (1992) Neutrophil-activating proteins in psoriasis. J Invest Dermatol 98: 241-247

    Article  PubMed  CAS  Google Scholar 

  77. Romagnani P, Maggi L, Mazzinghi B, et al. (2005) CXCR3-mediated opposite effects of CXCL10 and CXCL4 on TH1 or TH2 cytokine production. J Allergy Clin Immunol 116: 1372-1379

    Article  PubMed  CAS  Google Scholar 

  78. Bonecchi R, Bianchi G, Bordignon PP, et al. (1998) Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187: 129-134

    Article  PubMed  CAS  Google Scholar 

  79. Sallusto F, Mackay CR and Lanzavecchia A (1997) Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277: 2005-2007

    Article  PubMed  CAS  Google Scholar 

  80. Zingoni A, Soto H, Hedrick JA, et al. (1998) The chemokine receptor CCR8 is preferentially expressed in Th2 but not Th1 cells. J Immunol 161: 547-551

    PubMed  CAS  Google Scholar 

  81. Sallusto F, Lenig D, Mackay CR, et al. (1998) Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187: 875-883

    Article  PubMed  CAS  Google Scholar 

  82. Siveke JT and Hamann A (1998) T helper 1 and T helper 2 cells respond differentially to chemokines. J Immunol 160: 550-554

    PubMed  CAS  Google Scholar 

  83. Kim SH, Gunst KV and Sarvetnick N (2006) STAT4/6-dependent differential regulation of chemokine receptors. Clin Immunol 118: 250-257

    Article  PubMed  CAS  Google Scholar 

  84. Di Pucchio T, Danese S, De Cristofaro R, et al. (2010) Inhibitors of indoleamine 2,3-dioxygenase: a review of novel patented lead compounds. Expert Opin Ther Pat 20: 229-250

    Article  PubMed  Google Scholar 

  85. Puccetti P and Grohmann U (2007) IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-kappaB activation. Nat Rev Immunol 7: 817-823

    Article  PubMed  CAS  Google Scholar 

  86. Azuma M and Shearer TR (2008) The role of calcium-activated protease calpain in experimental retinal pathology. Surv Ophthalmol 53: 150-163

    Article  PubMed  CAS  Google Scholar 

  87. Nixon R, Mohan P. (1999) Calpains in the pathogenesis of Alzheimer’s disease. IN: Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease. Taylor & Francis, Philadelphia, p. 267-91.

    Google Scholar 

  88. Ma H, Tochigi A, Shearer TR, et al. (2009) Calpain Inhibitor SNJ-1945 Attenuates Events Prior to Angiogenesis in Cultured Human Retinal Endothelial Cells. Journal of Ocular Pharmacology and Therapeutics 25: 409-414

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naren L. Banik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trager, N., Haque, A., Ray, S.K., Das, A., Banik, N.L. (2014). Role of Calpain in Immunobiology of Neurodegenerative Diseases. In: Dhalla, N., Chakraborti, S. (eds) Role of Proteases in Cellular Dysfunction. Advances in Biochemistry in Health and Disease, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9099-9_1

Download citation

Publish with us

Policies and ethics