Skip to main content

Feedback and Control Systems

  • Chapter
  • First Online:
Mathematics as a Laboratory Tool
  • 1814 Accesses

Abstract

One of the most important regulatory mechanisms is feedback [18, 29]. Virtually every physiological variable has a feedback control loop associated with it. Indeed, some would even say that every such variable has multiple feedback loops [120, 202]. Examples arise in the nervous system (e.g., pupil light reflex, recurrent inhibition, stretch reflex), protein synthesis and gene regulation, endocrine systems, respiration, blood cell production, and the control of blood pressure. Of course, the importance of feedback is not limited to physiology. Feedback mechanisms regulate population size, control climate, and even help us operate our automobiles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Arthur Clifton Guyton (1919–2003), American physiologist.

  2. 2.

    Ludwig Edinger (1855–1918), German anatomist and neurologist; Carl Friedrich Otto Westphal (1833–1890), German neurologist and psychiatrist.

  3. 3.

    In the human iris, the dilator muscle is a poorly developed myoepithelial cell and likely does not exert much force. In contrast, the pigeon pupillary dilator is striated, and hence pigeon pupillary movements are faster than those of humans [349].

  4. 4.

    Edward Maitland Wright (1906–2005), English mathematician.

  5. 5.

    Ken-Ichi Naka (d. 2006), Japanese-American retinal physiologist; William Albert Hugh Rushton (1901–1980), English physiologist.

  6. 6.

    Brian Carey Goodwin (1931–2009), Canadian mathematician and biologist.

  7. 7.

    A more complete discussion of stability and characteristic functions for DDEs is given in [151, 593]. However, since the methodology in those works is more advanced than that used in this introductory discussion, we recommend these texts only as reference sources.

  8. 8.

    John Cheyne (1777–1836), British physician; William Stokes (1804–1878), Irish physician.

  9. 9.

    Ian Loram (PhD 2003), English professor of biomechanics.

  10. 10.

    Carl Pulfrich (1858–1927), German physicist.

  11. 11.

    John J. Tyson (b. 1947), American biologist.

  12. 12.

    Hugh R. Wilson (b. 1943), American-born, Canadian computational and experimental visual neuroscientist.

References

  1. U. an der Heiden. Delays in physiological systems. J. Math. Biol., 8:345–364, 1979.

    Google Scholar 

  2. U. an der Heiden and M. C. Mackey. The dynamics of production–destruction: Analytic insight into complex behavior. J. Math. Biol., 16:75–101, 1982.

    Google Scholar 

  3. A. P. Arkin and J. Ross. Computational functions in biochemical reaction networks. Biophys. J., 67:560–578, 1994.

    Google Scholar 

  4. K. J. Astrom and R. M. Murray. Feedback systems: An introduction for scientists and engineers. Princeton University Press, Princeton, N.J., 2008.

    Google Scholar 

  5. J. Bechhoefer. Feedback for physicists: a tutorial essay on control. Rev. Mod. Physics, 77:783–836, 2005.

    Google Scholar 

  6. R. D. Berger, J. P. Saul, and R. J. Cohen. Transfer function analysis of autonomic regulation. I. Canine atrial rate function. Am. J. Physiol., 256:H142–H152, 1989.

    Google Scholar 

  7. C. Bernard. Leçons sur les Phénomènes de la Vie Commun aux Animaux et aux Végétaux. Ballière, Paris, 1878.

    Google Scholar 

  8. S. Bowles, S. N. Durlauf, and K. Hoft. Poverty traps. Princeton University Press, Princeton, New Jersey, 2006.

    Google Scholar 

  9. P. C. Bressloff and C. V. Wood. Spontaneous oscillation in a nonlinear delayed-feedback shunting model of the pupil light reflex. Physical Review E, 58:3597–3606, 1997.

    Google Scholar 

  10. P. C. Bressloff, C. V. Wood, and P. A. Howarth. Nonlinear shunting model of the pupil light reflex. Proceedings of the Royal Society, Series B, 263:953–960, 1996.

    Google Scholar 

  11. M. I. Budyko. The effect of solar radiation variations on the climate of the earth. Tellus, 21:611–619, 1969.

    Google Scholar 

  12. O. Buse, R. Pérez, and A. Kuznetsov. Dynamical properties of the repressilator model. Phys. Rev. E, 81:066206, 2010.

    MathSciNet  Google Scholar 

  13. J. L. Cabrera, R. Bormann, C. Eurich, T. Ohira, and J. Milton. State-dependent noise and human balance control. Fluctuations Noise Letters, 4:L107–L118, 2004.

    Google Scholar 

  14. W. B. Cannon. Organization for physiological homeostasis. Physiol. Rev., 36:399–431, 1929.

    Google Scholar 

  15. D. W. Carley and D. C. Shannon. A minimal mathematical model of human periodic breathing. J. Appl. Physiol., 65:1389–1399, 1988.

    Google Scholar 

  16. N. S. Cherniack and G. S. Longobardo. Cheyne–Stokes breathing, an instability in physiologic control. New Engl. J. Med., 288:952–957, 1973.

    Google Scholar 

  17. N. S. Cherniack and G. S. Longobardo. Mathematical models of periodic breathing and their usefulness in understanding cardiovascular and respiratory disorders. Exp. Physiol., 91.2:295–305, 2006.

    Google Scholar 

  18. W. L. Clarke, S. Anderson, M. Breton, S. Patek, L. Kashmer, and B. Kovatchev. Closed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithms: The Virginia experience. J. Diabetes Sci. Tech., 3:1031–1038, 2009.

    Google Scholar 

  19. J. C. Bastos de Figueiredo, L. Diambra, L. Glass, and C. P. Malta. Chaos in two-loop negative feedback system. Phys. Rev. E, 65:051905, 2002.

    MathSciNet  Google Scholar 

  20. N. El-Samad, J. P. Goff, and M. Khammash. Calcium homeostasis and parturient hypercalcemia: An integral feedback perspective. J. theoret. Biol., 214:17–29, 2002.

    MathSciNet  Google Scholar 

  21. M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators. Nature, 403:335–338, 2000.

    Google Scholar 

  22. B. Ermentrout. Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. SIAM, Philadelphia, 2002.

    Google Scholar 

  23. T. Erneux. Applied delay differential equations. Springer, New York, 2009.

    MATH  Google Scholar 

  24. C. W. Eurich and J. G. Milton. Noise–induced transitions in human postural sway. Phys. Rev. E, 54:6681–6684, 1996.

    Google Scholar 

  25. I. Flügge-Lotz. Discontinuous and Optimal Control. McGraw–Hill, New York, 1968.

    Google Scholar 

  26. J. Foss and J. Milton. Multistability in recurrent neural loops arising from delay. J. Neurophysiol., 84:975–985, 2000.

    Google Scholar 

  27. T. S. Gardner, C. R. Cantor, and J. J. Collins. Construction of a genetic toggle switch in Escherichia coli. Nature, 403:339–342, 2000.

    Google Scholar 

  28. P. J. Gawthrop and L. Wang. Intermittent model prediction control. Proc. Int. Mech. Eng. part I. Mech. Eng. I-J Syst., 211:1007–1018, 2007.

    Google Scholar 

  29. L. Glass and M. C. Mackey. Pathological conditions resulting from instabilities in physiological control systems. Ann. N. Y. Acad. Sci., 316:214–235, 1979.

    Google Scholar 

  30. L. Glass and M. C. Mackey. From Clocks to chaos: The rhythms of life. Princeton University Press, Princeton, New Jersey, 1988.

    MATH  Google Scholar 

  31. L. Glass and C. P. Malta. Chaos in multi-looped negative feedback systems. J. theoret. Biol., 145:217–223, 1990.

    MathSciNet  Google Scholar 

  32. B. C. Goodwin. Temporal organization in cells. Academic Press, New York, 1963.

    Google Scholar 

  33. J. S. Griffith. Mathematics of cellular control processes. I. Negative feedback to one gene. Journal of theoretical Biology, 20:202–216, 1968.

    Google Scholar 

  34. J. Guckenheimer. A robust hybrid stabilization strategy for equilibria. IEEE Trans. Automatic Control, 40:321–326, 1995.

    MathSciNet  MATH  Google Scholar 

  35. A. C. Guyton, J. W. Crowell, and J. W. Moore. Basic oscillating mechanism of Cheyne–Stokes breathing. Am. J. Physiol., 187:395–398, 1956.

    Google Scholar 

  36. A. Haidar, L. Legault, M. Dallaire, et al. Glucose-responsive insulin and glucagon delivery (dual-hormone artificial pancreas) in adults with type 1 diabetes: a randomized crossover trial. Can. Med. Assoc. J., 185:297–305, 2013.

    Google Scholar 

  37. J. K. Hale. Theory of functional differential equations. Springer-Verlag, New York, 1977.

    MATH  Google Scholar 

  38. S. P. Hastings, J. J. Tyson, and D. Webster. Existence of periodic solutions for negative feedback control systems. J. Diff. Equ., 25:39–64, 1977.

    MathSciNet  MATH  Google Scholar 

  39. N. G. Hatsopoulos and J. P. Donoghue. The science of brain–machine interface technology. Ann. Rev. Neurosci., 32:229–266, 2009.

    Google Scholar 

  40. N. D. Hayes. Roots of the transcendental equation associated with a certain difference–differential equation. J. Lond. Math. Soc., 25:226–232, 1950.

    MathSciNet  MATH  Google Scholar 

  41. A. Huxley. From overshoot to voltage clamp. Trends Neurosci., 25:553–558, 2002.

    Google Scholar 

  42. T. Insperger. Act-and-wait concept for continuous-time control systems with feedback delay. IEEE Trans. Control Sys. Technol., 14:974–977, 2007.

    Google Scholar 

  43. J. Jalife. Mathematical approaches to cardiac arrhythmias. Ann. N. Y. Acad. Sci., 591:1–417, 1990.

    Google Scholar 

  44. J. Kofránek and J. Rusz. Restoration of Guyton’s diagram for regulation of the circulation as a basis for quantitative physiological model development. Physiol. Rev., 59:897–908, 2010.

    Google Scholar 

  45. V. B. Kolmanovski and V. R. Nosov. Stability of functional differential equations. Academic Press, London, 1986.

    Google Scholar 

  46. Y. Kuang. Delay differential equations with application in population dynamics. Academic Press, San Diego, 1989.

    Google Scholar 

  47. T. A. Kuiken, L. A. Miller, R. D. Lipschutz, B. A. Lock, K. Stubblefield, P. D. Marasso, P. Zhou, and G. Dumanian. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study. Lancet, 369:371–380, 2007.

    Google Scholar 

  48. A. Kuznetsov and V. Afraimovich. Heteroclinic cycles in the repressilator model. Chaos, Solitons Fractals, 45:660–665, 2012.

    Google Scholar 

  49. C. J. Limb and J. T. Robinson. Current research on music perception in cochlear implant users. Otolaryngologic Clinics North America, 45:129–140, 2012.

    Google Scholar 

  50. A. Lit. The magnitude of the Pulfrich stereo-phenomenon as a function of target velocity. J. Exp. Psychol., 59:165–175, 1960.

    Google Scholar 

  51. I. E. Loewenfeld. The Pupil: Anatomy, physiology, and clinical applications, vol. I. Iowa State University Press, Ames, Iowa, 1993.

    Google Scholar 

  52. A. Longtin and J. G. Milton. Complex oscillations in the human pupil light reflex with “mixed” and delayed feedback. Math. Biosci., 90:183–199, 1988.

    MathSciNet  Google Scholar 

  53. A. Longtin and J. G. Milton. Insight into the transfer function, gain and oscillation onset for the pupil light reflex using delay-differential equations. Biol. Cybern., 61:51–58, 1989.

    MathSciNet  MATH  Google Scholar 

  54. A. Longtin and J. G. Milton. Modelling autonomous oscillations in the human pupil light reflex using nonlinear delay-differential equations. Bull. Math. Biol., 51:605–624, 1989.

    MATH  Google Scholar 

  55. A. Longtin, J. G. Milton, J. E. Bos, and M. C. Mackey. Noise and critical behavior of the pupil light reflex at oscillation onset. Phys. Rev. A, 41:6992–7005, 1990.

    Google Scholar 

  56. I. D. Loram, H. Gollee, M. Lakie, and P. J. Gawthrop. Human control of an inverted pendulum: Is continuous control necessary? Is intermittent control effective? Is intermittent control physiological? J. Physiol., 589.2:307–324, 2011.

    Google Scholar 

  57. N. MacDonald. Biological delay systems: linear stability theory. Cambridge University Press, New York, 1989.

    MATH  Google Scholar 

  58. M. C. Mackey. Periodic auto-immune hemolytic anemia: An induced dynamical disease. Bull. Math. Biol., 41:829–834, 1979.

    MathSciNet  MATH  Google Scholar 

  59. M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science, 197:287–289, 1977.

    Google Scholar 

  60. M. C. Mackey and J. G. Milton. Dynamical diseases. Ann. New York Acad. Sci., 504:16–32, 1987.

    Google Scholar 

  61. J. M. Mahaffy and C. V. Pao. Models of genetic control by repression with time delays and spatial effects. J. Math. Biol., 20:39–57, 1984.

    MathSciNet  MATH  Google Scholar 

  62. J. M. Mahaffy and E. S. Savev. Stability analysis for mathematical models of the lac operon. Quart. Appl. Math., 57:37–53, 1999.

    MathSciNet  MATH  Google Scholar 

  63. O. D. Martinez and J. P. Segundo. Behavior of a single neuron in a recurrent excitatory loop. Biol. Cybern., 47:33–41, 1983.

    Google Scholar 

  64. B. Mehta and S. Schaal. Forward models in visuomotor control. J. Neurophysiol., 88:942–953, 2002.

    Google Scholar 

  65. J. Milton and D. Black. Dynamic diseases in neurology and psychiatry. Chaos, pp. 8–13, 1995.

    Google Scholar 

  66. J. G. Milton, A. Fuerte, C. Bélair, J. Lippai, A. Kamimura, and T. Ohira. Delayed pursuit–escape as a model for virtual stick balancing. Nonlinear Theory and Its Applications, IEICE, 4:129–137, 2013.

    Google Scholar 

  67. J. Milton and P. Jung. Epilepsy as a dynamic disease. Springer, New York, 2003.

    MATH  Google Scholar 

  68. J. G. Milton. The delayed and noisy nervous system: Implications for neural control. J. Neural Eng., 8:065005, 2011.

    Google Scholar 

  69. J. G. Milton, J. L. Cabrera, and T. Ohira. Unstable dynamical systems: Delays, noise and control. Europhys. Lett., 83:48001, 2008.

    MathSciNet  Google Scholar 

  70. J. G. Milton and J. Foss. Oscillations and multistability in delayed feedback control. In H. G. Othmer, F. R. Adler, M. A. Lewis, and J. C. Dallon, editors, The art of mathematical modeling: Case studies in ecology, physiology and cell biology, pp. 179–198, New York, 1997. Prentice Hall.

    Google Scholar 

  71. J. G. Milton and A. Longtin. Evaluation of pupil constriction and dilation from cycling measurements. Vision Research, 30:515–525, 1990.

    Google Scholar 

  72. J. G. Milton, T. Ohira T, J. L. Cabrera, R. M. Fraiser, J. B. Gyorffy, F. K. Ruiz, M. A. Strauss, E. C. Balch, P. J. Marin, and J. L. Alexander. Balancing with vibration: A prelude for “drift and act” balance control. PLoS ONE, 4:e7427, 2009.

    Google Scholar 

  73. J. G. Milton, J. L. Townsend, M. A. King, and T. Ohira. Balancing with positive feedback: the case for discontinuous control. Phil. Trans. R. Soc. A, 367:1181–1193, 2009.

    MathSciNet  MATH  Google Scholar 

  74. J Mitlon, J. L. Cabrera, T. Ohira, S. Tajima, Y. Tonosaki, C. W. Eurich, and S. A. Campbell. The time–delayed inverted pendulum: Implications for human balance control. Chaos, 19:026110, 2009.

    Google Scholar 

  75. J. Monod and F. Jacob. General conclusions: teleonomic mechanisms in cellular metabolism, growth and differentiation. Cold Spring Harbor Symp. Quant. Biol., 26:389–401, 1961.

    Google Scholar 

  76. J. D. Murray. Mathematical biology: I: An introduction, third edition. Springer, New York, 2002.

    Google Scholar 

  77. K. I. Naka and W. A. Rushton. S-potentials from color units in the retina of fish. J. Physiol., 185:584–599, 1966.

    Google Scholar 

  78. A. Novich and M. Wiener. Enzyme induction as an all-or-none phenomenon. Proc. Natl. Acad. Sci. USA, 43:553–566, 1957.

    Google Scholar 

  79. P. L. Nunez. Electric Fields of the brain: The neurophysics of EEG. Oxford University Press, New York, 1981.

    Google Scholar 

  80. J. S. Orr, J. Kirk, K. G. Gary, and J. R. Anderson. A study of the interdependence of red cell and bone marrow stem cell populations. Brit. J. Haematol., 15:23–34, 1968.

    Google Scholar 

  81. I. Osorio and M. G. Frei. Seizure abatement with single DC pulses: Is phase resetting at play? Int. J. Neural Sys., 19:1–8, 2009.

    Google Scholar 

  82. F. Patzelt and K. Pawelzik. Criticality of adaptive control dynamics. Phys. Rev. Lett., 107:238103, 2011.

    Google Scholar 

  83. A. Rapoport. “Ignition” phenomena in random nets. Bull. Math. Biophysics, 14:35–44, 1952.

    MathSciNet  Google Scholar 

  84. J. P. H. Reulen, J. T. Marcus, M. J. van Gilst, D. Koops, J. E. Bos, G. Tiesinga, F. R. de Vries, and K. Boshuizen. Stimulation and recording of dynamic pupillary reflex: the iris technique. Med. Bio. Eng. Comp., 26:27–32, 1988.

    Google Scholar 

  85. E. Ronco, T. Arsan, and P. J. Gawthrop. Open-loop intermittent feedback control: practical continuous GPC. IEE Proc. Part D: Control. Theor. Appl., 146:426–436, 1999.

    Google Scholar 

  86. M. Santillan and M. C. Mackey. Dynamic regulation of the tryptophan operon: A modeling study and comparison with experimental data. Proc. Natl. Acad. Sci. USA, 98:1364–1369, 2001.

    Google Scholar 

  87. M. Scheffer. Critical transitions in nature and society. Princeton University Press, Princeton, NJ, 2009.

    Google Scholar 

  88. A. A. Sharp, L. F. Abbott, and E. Marder. Artificial electrical synapses in oscillatory networks. J. Neurophysiol., 67:1691–1694, 1992.

    Google Scholar 

  89. A. A. Sharp, M. B. O’Neil, L. Abbott, and E. Marder. Dynamic clamp: Computer-generated conductances in real neurons. J. Neurophysiol., 69:992–995, 1993.

    Google Scholar 

  90. H. Smith. An introduction to delay differential equations with applications to the life sciences. Springer, New York, 2010.

    Google Scholar 

  91. S. Sokol. The Pulfrich stero-illusion as an index of optic nerve dysfunction. Surv. Opthalmol., 20:432–434, 1976.

    Google Scholar 

  92. L. Stark. Environmental clamping of biological systems: Pupil servomechanism. J. Opt. Soc. Amer. A, 52:925–930, 1962.

    Google Scholar 

  93. L. Stark. Neurological control systems: Studies in bioengineering. Plenum Press, New York, 1968.

    Google Scholar 

  94. L. Stark. The pupil as a paradigm example of a neurological control systems. IEEE Trans. Biomed. Eng., 31:919–930, 1984.

    Google Scholar 

  95. L. Stark and T. N. Cornsweet. Testing a servoanalytic hypothesis for pupil oscillations. Science, 127:588, 1958.

    Google Scholar 

  96. L. Stark and P. M. Sherman. A servoanalytic study of consensual pupil reflex to light. J. Neurophysiol., 20:17–26, 1957.

    Google Scholar 

  97. G. Stepan. Retarded dynamical systems: Stability and characteristic functions. Wiley & Sons, New York, 1989.

    MATH  Google Scholar 

  98. G. Stepan. Delay effects in the human sensory system during balancing. Phil. Trans. Roy. Soc. A, 367:1195–1212, 2009.

    MathSciNet  MATH  Google Scholar 

  99. G. Stépán and T. Insperger. Stability of time-periodic and delayed systems: a route to act-and-wait control. Ann. Rev. Control, 30:159–168, 2006.

    Google Scholar 

  100. H. J. Stern. A simple method for the early diagnosis of abnormality of the pupillary reaction. Brit. J. Opthalmol., 28:275–276, 1944.

    Google Scholar 

  101. Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, and A. Nakayama. Traffic jams without bottle necks: experimental evidence for the physical mechanism of the formation of a jam. New J. Phys., 10:033001, 2008.

    Google Scholar 

  102. J. E. Toettcher, D. Gong, W. A. Lim, and O. D. Weiner. Light-based feedback for controlling intracellular signaling dynamics. Nature Meth., 8:837–839, 2011.

    Google Scholar 

  103. J. E. Toettcher, C. A. Voigt, O. D. Weiner, and W. A. Lim. The promise of optogenetics in cell biology: Interrogating molecular circuits in space and time. Nature Meth., 8:35–38, 2011.

    Google Scholar 

  104. E. Trucco. The smallest value of the axon density for which “ignition” can occur in a random net. Bull. Math. Biophysics, 14:365–374, 1952.

    MathSciNet  Google Scholar 

  105. W. M. Tsang, A. L. Stone, Z. N. Aldworth, J. G. Hildebrand, T. L. Daniel, A. I. Akinwande, and J. Voldman. Flexible split-ring electrode for insect flight biasing using multisite neural stimulation. IEEE Trans. Biomed. Eng., 57:1757–1764, 2010.

    Google Scholar 

  106. J. J. Tyson and H. G. Othmer. The dynamics of feedback control circuits in biochemical pathways. In Progress in Biophysics, vol. 5, pp. 1–62. New York, Academic Press, 1978.

    Google Scholar 

  107. D. T. Westwick and R. E. Kearney. Identification of nonlinear physiological systems. Wiley–Interscience, New York, 2003.

    Google Scholar 

  108. H. R. Wilson. Spikes, decisions and actions: dynamical foundations of neurosciences. Oxford University Press, New York, 1999.

    MATH  Google Scholar 

  109. H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J., 12:1–224, 1972.

    Google Scholar 

  110. J. R. Wolpaw and D. J. McFarland. Control of a two-dimensional movement signal by a noninvasive brain–computer interface in humans. Proc. Natl. Acad. Sci. USA, 101:17849–17854, 2004.

    Google Scholar 

  111. H. Wu and P. A. Robinson. Modeling and investigation of neural activity in the thalamus. J. theoret. Biol., 244:1–14, 2007.

    MathSciNet  Google Scholar 

  112. Y. Yarom. Rhythmogenesis in a hybrid system interconnecting an olivary neuron to an analog network of coupled oscillators. Neurosci., 44:263–275, 1991.

    Google Scholar 

  113. N. Yildirim and M. C. Mackey. Feedback regulation in the lactose operon: A mathematical modeling study and comparison with experimental data. Biophys. J, 84:2841–2851, 2003.

    Google Scholar 

  114. N. Yildrim, M. Santilan, D. Horike, and M. C. Mackey. Dynamics and stability in a reduced model of the lac operon. Chaos, 14:1279–292, 2004.

    Google Scholar 

  115. F-G. Zeng, Q-J.Fu, and R. P. Morse. Human hearing enhanced by noise. Brain Res., 869:251–255, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milton, J., Ohira, T. (2014). Feedback and Control Systems. In: Mathematics as a Laboratory Tool. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9096-8_9

Download citation

Publish with us

Policies and ethics