Skip to main content

Frequency Domain II: Fourier Analysis and Power Spectra

  • Chapter
  • First Online:
Book cover Mathematics as a Laboratory Tool
  • 1938 Accesses

Abstract

There are several practical problems associated with the use of the Laplace transform to study input–output relationships in the laboratory. In particular, it is extremely difficult to obtain the Laplace integral transform for measured signals, and even if the transform is known, obtaining the inverse transform can be problematic. At the root of these problems is the lack of efficient numerical methods to calculate the Laplace transform and its inverse [146].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Jean Baptiste Joseph Fourier (1768–1830), French mathematician and physicist.

  2. 2.

    James William Cooley (b. 1926), American mathematician; John Wilder Tukey (1915–2000), American mathematician.

  3. 3.

    Michael Faraday (1791–1867), English physicist and chemist.

  4. 4.

    Leopold Kronecker (1823–1891), German mathematician.

  5. 5.

    Leon Ong Chua (b. 1936), American engineer.

  6. 6.

    For a very accessible account of this derivation, see [629].

  7. 7.

    Norbert Wiener (1894–1964), American mathematician; Aleksandr Yakovlevich Khinchin (1894–1959), Soviet mathematician.

  8. 8.

    Max Planck (1858–1947), German theoretical physicist.

  9. 9.

    Werner Karl Heisenberg (1901–1976), German theoretical physicist.

  10. 10.

    This phenomenon was in fact discovered by Henry Wilbraham (1825–1883), English mathematician, and rediscovered by Josiah Willard Gibbs (1839–1903), American physicist, chemist, and mathematician.

  11. 11.

    Marc-Antoine Parseval des Chênes (1755–1836), French mathematician.

  12. 12.

    Ary L. Goldberger (b. 1949), American physician–scientist and fractal physiologist.

  13. 13.

    Jan Evangelista Purkyně, or the Latinized Johannes Evangelist Purkinje (1787–1869), Czech anatomist and physiologist.

  14. 14.

    Michael R. Guevara (PhD 1984), Canadian physiologist; Tim J. Lewis (PhD 1998), Canadian biomathematician.

  15. 15.

    Claude Elwood Shannon (1916–2001), American mathematician, engineer, and cryptographer; Harry Nyquist (1889–1976), American electronic engineer.

  16. 16.

    Note that we are just using one of our favorite tricks.

  17. 17.

    This definition of Sinc(f) is the one most used in the signal-processing literature. In the mathematical literature, this function is written as sinc(t) = sin(t)∕t. However, (8.39) is the definition that will be encountered most often by laboratory investigators.

  18. 18.

    We do not consider the important topic of digital filters. We have kept our focus on analog filters because we wish to draw analogies to the filtering properties of biological dynamical systems.

  19. 19.

    John D. Hunter (1968–2012), American neuroscientist.

  20. 20.

    Do not use PyLab’s version of psd(). The function matplolib.mlab.psd() produces the same power spectrum as that obtained using the corresponding programs in Matlab.

  21. 21.

    Julius Ferdinand von Hann (1839–1921), Austrian meteorologist.

References

  1. J. S. Bendat and A. G. Piersol. Random data: Analysis and measurement procedures, 2nd ed. John Wiley & Sons, New York, 1986.

    MATH  Google Scholar 

  2. W. E. Boyce and R. C. DiPrima. Elementary differential equations and boundary value problems, 9th ed. John Wiley & Sons, New York, 2005.

    Google Scholar 

  3. R. N. Bracewell. The Fourier transform and its applications, 2nd ed., revised. McGraw–Hill, San Francisco, 1986.

    Google Scholar 

  4. G. A. Bryant. Animal signals and emotion in music: coordinating affect across group. Frontiers in Psychology, 4:1–12, 2013.

    Article  Google Scholar 

  5. B. A. Cohen and A. Sances. Stationarity of the human electroencephalogram. Med. Biol. Eng. Comput., 15:513–518, 1977.

    Article  Google Scholar 

  6. J. W. Cooley and J. W. Tukey. An algorithm for machine calculation of complex Fourier series. Math. Computation, 19:297–301, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. E. Epstein and J. Shotland. The bad truth about Laplace’s transform. SIAM Rev., 50:504–520, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. S. French and A. V. Holden. Alias-free sampling of neuronal spike trains. Kybernetik, 5:165–171, 1971.

    Article  Google Scholar 

  9. V. Fugère and R. Krahe. Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus. J. Exp. Biol., 213:225–236, 2010.

    Google Scholar 

  10. W. B. Gearhart and H. S. Shultz. The function sinxx. The College Mathematics Journal, 21:90–99, 1990.

    Google Scholar 

  11. A. L. Goldberger, V. Bharagava, B. J. West, and A. J. Mandell. On the mechanism of cardiac electrical stability: the fractal hypothesis. Biophys. J., 48:525–528, 1985.

    Article  Google Scholar 

  12. J. D. Hunter, J. G. Milton, P. J. Thomas, and J. D. Cowan. Resonance effect for neural spike time reliability. J. Neurophysiol., 80:1427–1438, 1998.

    Google Scholar 

  13. F. M. Klis, A. Boorsma, and P. W. J. DeGroot. Cell wall construction in Saccharomycetes cerevisiae. Yeast, 23:185–202, 2006.

    Google Scholar 

  14. T. J. Lewis and M. R. Guevara. 1∕f power spectrum of the QRS complex does not imply fractal activation of the ventricles. Biophys. J., 60:1297–1300, 1991.

    Article  Google Scholar 

  15. G. Meyer-Kress, I. Choi, N. Weber, R. Bargas, and A. Hübler. Musical signals from Chua’s circuit. IEEE Trans. Circuits Systems II Analog Digital Signal Processing, 40:688–695, 1993.

    Article  Google Scholar 

  16. P. Moller. Electric fishes: History and behavior. Chapman & Hall, London, 1995.

    Google Scholar 

  17. E. Niedermeyer and F. Lopes da Silva. Electro-encephalography: Basic principles, clinical applications and related fields. Urban & Schwarzenberg, Baltimore, 1987.

    Google Scholar 

  18. K. Omori, H. Kojima, R. Kakani, D. H. Stavit, and S. M. Blaugrund. Acoustic characteristics of rough voice: subharmonics. J. Voice, 11:40–47, 1997.

    Article  Google Scholar 

  19. R. J. Peterka, A. C. Sanderson, and D. P. O’Leary. Practical considerations in the implementation of the French–Holden algorithm for sampling neuronal spike trains. IEEE Trans. Biomed. Engng., 25:192–195, 1978.

    Article  Google Scholar 

  20. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes: The art of scientific computing, 3rd ed. Cambridge University Press, New York, 2007.

    Google Scholar 

  21. X. Rodet. Sound and music from Chua’s circuit. J. Circuits Systems Computers, 3:49–61, 1993.

    Article  Google Scholar 

  22. J. A. Simmons. Resolution of target range by echolocating bats. J. Acosut. Soc. Amer., 54:157–173, 1973.

    Article  Google Scholar 

  23. A. D. Straw, B. Branson, T. R. Neumann, and M. H. Dickinson. Multi-camera real-time three-dimensional tracking of multiple flying animals. J. Roy. Soc. Interface, 8:6900–6914, 2010.

    Google Scholar 

  24. W. van Drongelen. Signal processing for neuroscientists: Introduction to the analysis of physiological signals. Academic Press, New York, 2007.

    Google Scholar 

  25. H. Zakon, J. Oestreich, S. Tallarovic, and F. Triefenbach. EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips. J. Physiol. Paris, 96:451–458, 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milton, J., Ohira, T. (2014). Frequency Domain II: Fourier Analysis and Power Spectra. In: Mathematics as a Laboratory Tool. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9096-8_8

Download citation

Publish with us

Policies and ethics