Skip to main content

Stability

  • Chapter
  • First Online:
  • 1776 Accesses

Abstract

A reasonable starting point for the study of input–output relationships is to assume that the black box shown in Figure 4.1 contains a dynamical system operating at its fixed point. In a laboratory setting, this is equivalent to a system that is either at equilibrium or in a steady state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Our use of the term “potential” is in keeping with the concept of the Lyapunov function introduced in Section 4.5 [228]. Thus we use the same symbol, U(x), to denote the potential function and the Lyapunov function.

  2. 2.

    After Louis Albert Necker (1786–1861), Swiss crystallographer, zoologist, and geographer.

  3. 3.

    Brook Taylor (1685–1731), English mathematician.

  4. 4.

    The partial derivative of f(x, y) with respect to x is calculated by assuming that y is constant. For example, if f(x, y) = 6xy, then \(\partial f/\partial x = 6y\). Similarly, \(\partial f/\partial y = 6x\).

  5. 5.

    For another definition of phase and phase shift, see Section 10.5.

  6. 6.

    Historically, mathematicians favored the term focal point. However, the recent trend is to use the term spiral point [52, 121, 600, 646, 654]. The advantage of the latter term is that it describes what one sees in the phase plane. Most undergraduate students do not intuitively associate this phase-plane portrait with the word focus.

  7. 7.

    Developed independently by Alfred James Lotka (1880–1949), American biophysicist and biostatistician, and Vito Volterra (1860–1940), Italian mathematician and physicist.

  8. 8.

    Although it seems intuitive that density should be number of animals per unit area, the SI unit is in fact area−1, since, as the reader will recall from Section 1.2.3, a number of objects has no units in the SI system.

  9. 9.

    Balthasar van der Pol (1889–1959), Dutch physicist.

  10. 10.

    Formulated in a weaker version by Poincaré and later strengthened and proved rigorously by Ivar Otto Bendixson (1861–1935), Swedish mathematician.

  11. 11.

    Aleksandr Mikhailovich Lyapunov (1857–1918), Russian mathematician and physicist.

  12. 12.

    After William Rowan Hamilton (1805–1865), Irish physicist, astronomer, and mathematician.

  13. 13.

    In biology, the term dissipative system is used to describe a thermodynamic open system that is operating out of, and often far from, thermodynamic equilibrium and freely exchanges both energy and mass with its surroundings. From this point of view, the damped harmonic oscillator describes a transient response of a closed dynamical system. A simple example of a dissipative system is that of the water fountain we considered in Section 3.3.1. A remarkable property of dissipative systems is their ability to form the large-scale spatially coherent structures that characterize biology, including cells, tissues, and organs [78, 462]. In Chapter 15, we more carefully examine the thermodynamic differences between systems at equilibrium and those not at equilibrium.

  14. 14.

    Asymptotic stability means that as t → , the trajectory approaches the fixed point itself. In contrast, stability means that as t → , the trajectory approaches a neighborhood of the fixed point.

  15. 15.

    Georg Duffing (1861–1944), German engineer and inventor.

  16. 16.

    Ronald Ross (1857–1932), Indian-born British physician.

  17. 17.

    Brian Carey Goodwin (1931–2009), Canadian biomathematician.

References

  1. R. M. Anderson and R. M. May. Infectious disease of humans: dynamics and control. Oxford University Press, London, 1991.

    Google Scholar 

  2. T. Asai, T. Fukai, and S. Tanaka. A subthreshold MOS circuit for the Lotka–Volterra neural network producing the winners-take-all solution. Neural Networks, 12:211–216, 1999.

    Article  Google Scholar 

  3. Y. Asai, Y. Tasaka, K. Nomura, T. Nomura, M. Casidio, and P. Morasso. A model of postural control in quiet standing: Robust compensation of delay-induced instability using intermittent activation of feedback control. PLoS ONE, 4:e6169, 2009.

    Article  Google Scholar 

  4. A. Borsellino, A. De Marco, A. Allazetta, S. Rinesi, and B. Bartolini. Reversal time distribution in the perception of visual ambiguous stimuli. Kybernetik, 10:139–144, 1972.

    Article  Google Scholar 

  5. W. E. Boyce and R. C. DiPrima. Elementary differential equations and boundary value problems, 9th ed. John Wiley & Sons, New York, 2005.

    Google Scholar 

  6. W. Braune and O. Fischer. On the center of gravity of the human body, translated by PGJ Maquet and R. Furong. Springer-Verlag, Berlin, 1984.

    Google Scholar 

  7. M. A. Buice and J. D. Cowan. Statistical mechanics of the neocortex. Prog. Biophys. Mol. Biol., 99:53–86, 2009.

    Article  Google Scholar 

  8. J. L. Cabrera and J. G. Milton. On–off intermittency in a human balancing task. Phys. Rev. Lett., 89:158702, 2002.

    Article  Google Scholar 

  9. J. L. Cabrera and J. G. Milton. Stick balancing, falls, and Dragon Kings. Eur. Phys. J. Spec. Topics, 205:231–241, 2012.

    Article  Google Scholar 

  10. S. Camazine, J-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-organization in biological systems. Princeton University Press, Princeton, NJ, 2001.

    Google Scholar 

  11. F. H. Clarke, Y. S. Ledyaev, E. D. Sontag, and A. I. Subbotin. Asymptotic controllability implies feedback stabilization. IEEE Trans. Automatic Control, 20:1–13, 1999.

    Google Scholar 

  12. E. Cruck, R. Moitie, and N. Seube. Estimation of basins of attraction for uncertain systems with affine and Lipschitz dynamics. Dynamics & Control, 11:211–227, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Lopes da Silva, W. Blanes, S. N. Kalitizin, J. Parra, P. Suffczynski, and D. N. Velis. Epilepsies as dynamical diseases of brain systems: Basic model of the transition between normal and epileptic activity. Epilepsia, 44 (Suppl. 12):72–83, 2003.

    Article  Google Scholar 

  14. J. Day, J. E. Rubin, and C. C. Chow. Competition between transients in the rate of approach to a fixed point. SIAM J. Appl. Dyn. Syst, 8:1523–1563, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. de Vries, T. Hillen, M. Lewis, J. Müller, and B. Schönfisch. A course in mathematical biology: Quantitative modeling with mathematical and computational methods. SIAM, Philadelphia, 2006.

    Book  Google Scholar 

  16. W. Einhäuser, K. A. Martin, and P. König. Are switches in perception of the Necker cube related to eye position? Eur. J. Neuroscience, 20:2811–2818, 2004.

    Article  Google Scholar 

  17. J. Foss and J. Milton. Multistability in recurrent neural loops arising from delay. J. Neurophysiol., 84:975–985, 2000.

    Google Scholar 

  18. P. Giesel and H. Wagner. Lyapunov functions and their basins of attraction for a single-point muscle–skeletal model. J. Math. Biol., 54:453–464, 2007.

    Article  MathSciNet  Google Scholar 

  19. B. C. Goodwin. Temporal organization in cells. Academic Press, New York, 1963.

    Google Scholar 

  20. R. Guttman, S. Lewis, and J. Rinzel. Control of repetitive firing in squid axon membrane as a model for a neuron oscillator. J. Physiol. (London), 305:377–395, 1980.

    Google Scholar 

  21. J. Hale and H. Koçak. Dynamics and Bifurcations. Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  22. S. Harrison and B. Backus. Disambiguating Necker cube rotation using a location cue: What types of spatial location signal can the visual system learn? J. Vision, 10:1–15, 2010.

    Google Scholar 

  23. F. A. Hellebrandt, R. H. Tepper, and G. L. Braun. Location of the cardinal anatomical orientation planes passing through the center of weight in young adult women. Am. J. Physiol., 121:465–470, 1938.

    Google Scholar 

  24. E. W. Izhikevich and G. M. Edelman. Large-scale model of mammalian thalamocortical system. Proc. Natl. Acad. Sci. USA, 105:3593–3598, 2008.

    Article  Google Scholar 

  25. D. Kaplan and L. Glass. Understanding nonlinear dynamics. Springer, New York, 1995.

    Book  MATH  Google Scholar 

  26. J. Keener and J. Sneyd. Mathematical physiology. Springer, New York, 1998.

    MATH  Google Scholar 

  27. P. Kruse and M. Stadler. Ambiguity in mind and nature. Springer, New York, 1995.

    Book  MATH  Google Scholar 

  28. Y. Kuang. Delay differential equations with application in population dynamics. Academic Press, San Diego, 1989.

    Google Scholar 

  29. H. K. Leung. Stochastic transient of noisy Lotka–Volterra model. Chinese J. Physics, 29:637–652, 1991.

    Google Scholar 

  30. S. R. Lord, C. Sherrington, and H. B. Menz. Falls in older people: Risk factors and strategies for prevention. Cambridge University Press, New York, 2001.

    Google Scholar 

  31. A. J. Lotka. Elements of mathematical biology. Dover Publications, New York, 1956.

    MATH  Google Scholar 

  32. A. M. Lyapunov. The general problem of the stability of motion. Taylor & Francis, Washington, DC, 1992.

    MATH  Google Scholar 

  33. W. W. Lytton. Computer modeling of epilepsy. Nature Rev., 9:626–637, 2008.

    Article  Google Scholar 

  34. S. Mandal, R. R. Sarkar, and S. Sinha. Mathematical models of malaria: a review. Malaria J., 10:202, 2011.

    Article  Google Scholar 

  35. J. Milton and P. Jung. Epilepsy as a dynamic disease. Springer, New York, 2003.

    Book  MATH  Google Scholar 

  36. J. Milton, P. Naik, C. Chan, and S. A. Campbell. Indecision in neural decision making models. Math. Model. Nat. Phenom., 5:125–145, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. G. Milton. Epilepsy: multistability in a dynamic disease. In J. Walleczek, editor, Self–organized biological dynamics & nonlinear control, pp. 374–386, New York, 2000. Cambridge University Press.

    Google Scholar 

  38. K. Morris. An introduction to feedback controller design. Harcourt/Academic Press, New York, 2001.

    Google Scholar 

  39. F. Moss and J. G. Milton. Balancing the unbalanced. Nature, 425:911–912, 2003.

    Article  Google Scholar 

  40. G. K. Motamedi, R. P. Lesser, D. L. Miglioretti, Y. Mizuon-Matsumoto, B. Gordon, W. R. S. Webber, D. C. Jackson, J. P. Sepkuty, and N. E. Crone. Optimizing parameters for terminating cortical afterdischarges with pulse stimulation. Epilepsia, 43:836–846, 2002.

    Article  Google Scholar 

  41. R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical introduction to robotic manipulation. CRC Press, Boca Raton, 1994.

    MATH  Google Scholar 

  42. L. A. Necker. Observations on some remarkable optical phenomena seen in Switzerland and on an optical phenomenon which occurs on viewing of a crystal or geometrical solid. London Edinburgh Phil. Mag. J. Science, 1:329–337, 1832.

    Google Scholar 

  43. G. Nicolis and I. Prigogine. Self-organization in non-equilibrium systems. John Wiley & Sons, New York, 1977.

    Google Scholar 

  44. E. P. Odum. Fundamentals of Ecology. W. B. Saunders, Philadephia, 1953.

    Google Scholar 

  45. I. Osorio and M. G. Frei. Seizure abatement with single DC pulses: Is phase resetting at play? Int. J. Neural Sys., 19:1–8, 2009.

    Article  Google Scholar 

  46. R. Rosen. Dynamical system theory in biology, vol. 1. Wiley-Interscience, New York, 1970.

    MATH  Google Scholar 

  47. R. Ross. Some a priori pathometric equations. Br. Med. J., 1:546–547, 1911.

    Article  Google Scholar 

  48. E. D. Sontag. A universal construction of Artstein’s theorem in nonlinear stabilization. Systems & Control, 13:117–123, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  49. B. Spagnolo, A. Fiasconaro, and D. Valenti. Noise-induced phenomena in Lotka–Volterra systems. Fluctuation Noise Lett., 3:L177–L185, 2003.

    Article  Google Scholar 

  50. J. R. Stirling and M. S. Zakynthinaki. Stability and the maintenance of balance following a perturbation from quiet stance. Chaos, 14:96–105, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  51. S. H. Strogatz. Nonlinear dynamics and chaos. Addison–Wesley, New York, 1994.

    Google Scholar 

  52. S. T. Thornton and J. B. Marion. Classical dynamics of particles and systems, 4th ed. Holt, Rinehardt & Winston, Austin, TX, 1995.

    Google Scholar 

  53. B. van der Pol. Forced oscillations in a circuit with nonlinear resistance (receptance with reactive triod). Phil. Mag. (London, Edinburgh, and Dublin), 3:65–80, 1927.

    Google Scholar 

  54. B. van der Pol and J. van der Mark. The heart beat considered as a relaxation oscillator, and an electrical model of the heart. Phil. Mag. (7th ser.), 6:763–775, 1928.

    Google Scholar 

  55. E. W. Weinstein. Encyclopedia of mathematics. Chapman & Hill/ CRC, New York, 2003.

    Google Scholar 

  56. H. R. Wilson. Spikes, decisions and actions: dynamical foundations of neurosciences. Oxford University Press, New York, 1999.

    MATH  Google Scholar 

  57. Z. Yi and K. K. Tan. Dynamic stability conditions for Lotka–Volterra recurrent neural networks with delays. Phys. Rev. E, 66:011910, 2002.

    Article  MathSciNet  Google Scholar 

  58. M. S. Zakynthinaki, J. R. Stirling, C. A. Cordent Martinez, A. López Diíaz de Durana, M. S. Quintana, G. R. Romo, and J. S. Molinueve. Modeling the basin of attraction as a two-dimensional manifold from experimental data: Applications to balance in humans. Chaos, 20:013119, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milton, J., Ohira, T. (2014). Stability. In: Mathematics as a Laboratory Tool. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9096-8_4

Download citation

Publish with us

Policies and ethics