Skip to main content

Thermodynamic Perspectives

  • Chapter
  • First Online:
Mathematics as a Laboratory Tool
  • 1782 Accesses

Abstract

All biological processes require energy. Models of biological processes must therefore ultimately be shaped by considerations of energy budgets: Is there enough energy available for the process to take place? How is the heat generated by the process dissipated? And so on. Indeed, since an organism is a complex processing plant in which multitudes of chemical and physical processes occur concurrently, it is not hard to conclude that evolution would likely have favored mechanisms that are energetically efficient over those that are not [189, 420, 674]. Biologists are well aware of the importance of thermodynamics (see, for example, [436, 437]); however, their typical introduction to that topic is through courses in chemistry and physics that emphasize the study of systems at, or very near, equilibrium (see Section 15.3.1). In such courses, connections between thermodynamics and dynamical systems are seldom addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Johannes Diderik van der Waals (1837–1923), Dutch theoretical physicist.

  2. 2.

    Hermann Ludwig Ferdinand von Helmholtz (1821–1894), German physician, physicist, and inventor of the ophthalmoscope.

  3. 3.

    Named for Johann Friedrich Pfaff (1765–1825), German mathematician.

  4. 4.

    In honor of Nicolas Léonard Sadi Carnot (1796–1832), who first proposed it.

  5. 5.

    Rudolf Julius Emanuel Clausius (1822–1888), German physicist and mathematician.

  6. 6.

    Lars Onsager (1903–1976), Norwegian-born American physical chemist and theoretical physicist.

  7. 7.

    Svante August Arrhenius (1859–1927), Swedish physical chemist.

  8. 8.

    Henry Eyring (1901–1981), Mexican-born American theoretical chemist.

  9. 9.

    More precisely, we should write \((\varDelta G^{\circ })^{\ddag }\), where the superscript ∘ indicates that all reactants are in their standard states. We have dropped the ∘ in the equations that follow in order to simplify the notation.

  10. 10.

    After the Austrian chemist Rudolf Franz Johann Wegscheider (1859–1935).

  11. 11.

    Ilya Romanovich Prigogine (1917–2003), Belgian physical chemist.

  12. 12.

    Per Bak (1948–2002), Danish theoretical physicist.

  13. 13.

    Andrey Nikolaevich Kolmogorov (1903–1987), Soviet mathematician; Nikolai Vasilyevich Smirnov (1900–1966), Soviet mathematician.

  14. 14.

    For example at http://tuvalu.santfe.edu/~aarmc/powerlaws/.

  15. 15.

    Didier Sornette, Swiss mathematical physicist

  16. 16.

    Lev Davidovich Landau (1908–1968), Soviet physicist; Vitaly Lazarevich Ginzburg (1916–2009), Soviet physicist.

References

  1. P. Bak. How nature works: The science of self-organized criticality. Copernicus, New York, 1996.

    Book  MATH  Google Scholar 

  2. P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality: An explantion of 1∕f noise. Phys. Rev. Lett., 59:381–384, 1987.

    Article  MathSciNet  Google Scholar 

  3. P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Phys. Rev. A, 38:364–375, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. A. Bak. Contributions to the theory of chemical equilibria. W. A. Benjamin, New York, 1963.

    Google Scholar 

  5. E. Barbera. On the principle of minimal entropy production for Navier–Stokes–Fourier fluids. Continuum Mech. Thermodynam., 11:327–330, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. M. Beggs and D. Plenz. Neuronal avalanches in neocortical circuits. J. Neurosci. 23:11167–11177, 2003.

    Google Scholar 

  7. W. Bialek, F. Rieke, R. R. de Ruyter van Steveninck, and D. Warland. Reading a neural code. Science, 252:1854–1857, 1991.

    Google Scholar 

  8. D. Blow. So do we understand how enzymes work? Structure, 8:R77–R81, 2000.

    Article  Google Scholar 

  9. J. L. Cabrera and J. G. Milton. On–off intermittency in a human balancing task. Phys. Rev. Lett., 89:158702, 2002.

    Article  Google Scholar 

  10. S. Camazine, J-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-organization in biological systems. Princeton University Press, Princeton, NJ, 2001.

    Google Scholar 

  11. C. C. Chow and K. D. Hall. The dynamics of human body weight change. PLoS Comp. Biol., 4:e1000045, 2008.

    Article  MathSciNet  Google Scholar 

  12. K. Christensen and N. R. Moloney. Complexity and criticality. Imperial College Press, London, 2005.

    Book  Google Scholar 

  13. A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Rev., 51:661–703, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Cornish-Bowden. Enthalpy–entropy compensation: a phantom phenomenon. J. Biosci., 27:121–126, 2002.

    Article  Google Scholar 

  15. A. M. Edwards, R. A. Phillips, N. W. Watkins, M. P. Freeman, E. J. Murphy, V. Afanasyev, S. V. Buldyrev, M. G. E. da Luz, E. P. Raposo, and H. E. Stanley. Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature, 449:1044–1049, 2007.

    Article  Google Scholar 

  16. D. Engel, I. Pahner, K. Schulze, C. Frahm, H. Jarry, G. Ahnert-Hilger, and A. Draguhn. Plasticity of rat central inhibitory synapses through GABA metabolism. J. Physiol., 535.2:473–482, 2001.

    Article  Google Scholar 

  17. A. S. French and P. H. Torkkeli. The power law of sensory adaptation: Simulation by a model of excitability in spider mechanoreceptor neurons. Ann. Biomed. Eng., 36:153–161, 2008.

    Article  Google Scholar 

  18. V. Frette, K. Christensen, A. Malthe-Sorenssen, J. Feder, T. Jossang, and P. Meakin. Avalanche dynamics in a pile of rice. Nature, 379:49–52, 1996.

    Article  Google Scholar 

  19. J. Gao, W. D. Luedtke, D. Gourdon, M. Ruths, J. N. Israelachville, and U. Landman. Frictional forces and Amonton’s law: From the molecular to the macroscopic scale. J. Phys. Chem. B, 108:3410–3425, 2008.

    Article  Google Scholar 

  20. J. Gao, S. Ma, D. T. Major, K. Nam, J. Pu, and D. G. Truhlar. Mechanisms and free energies of enzymatic reactions. Chem Rev., 106:3188–3209, 2006.

    Article  Google Scholar 

  21. J-P. Gauthier, B. Berret B, and F. Jean. A biomechanical inactivation principle. Proc. Steklov Inst. Math., 268:93–116, 2010.

    Google Scholar 

  22. L. Gil and D. Sornette. Landau–Ginzburg theory of self-organzed criticality. Phys. Rev. Lett., 76:3991–3994, 1996.

    Article  Google Scholar 

  23. P. Glansdorff and I. Prigogine. Thermodynamic theory of structure, stability and fluctuations. John Wiley & Sons, New York, 1971.

    MATH  Google Scholar 

  24. J. F. Heagy, N. Platt, and S. M. Hammel. Characterization of on–off intermittency. Phys. Rev. E, 49:1140–1150, 1994.

    Article  Google Scholar 

  25. T. Ido, C-N. Wan, V. Casella, J. S. Fowler, A. D. Wold, M. Reivich, and D. E. Kuhl. Labeled 2-deoxy-D-glucose analogs.18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose, and14C-2-deoxy-2-fluoro-D-glucose. J. Lab. Compounds Radiopharm., 14:175–182, 1978.

    Google Scholar 

  26. H. J. Jensen. Self-organized criticality: Emergent complex behavior in physical and biological systems. Cambridge University Press, New York, 1998.

    Book  MATH  Google Scholar 

  27. L. C. Jia, P-Y. Lai, and C. K. Chan. Scaling properties of avalanches from a collapsing granular pile. Phys. A, 281:404–412, 2000.

    Google Scholar 

  28. N. G. Van Kampen. Stochastic processes in physics and chemistry, 3rd ed. Elsevier, New York, 2007.

    Google Scholar 

  29. A. Katchalsky and P. F. Curran. Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, Massachusetts, 1967.

    Google Scholar 

  30. M. Khfifi and M. Loulidi. Scaling properties of a rice-pile model: Inertia and friction effects. Phys. Rev. E, 78:051117, 2008.

    Article  Google Scholar 

  31. P. Lennie. The cost of cortical computation. Current Biol., 13:493–497, 2003.

    Article  Google Scholar 

  32. G. W. Lewis. A new principle of equilibrium. Proc. Natl. Acad. Sci., 11:179–183, 1925.

    Article  Google Scholar 

  33. R. B. Loftfield, E A. Eigner, A. Pastuszyn, T. N. Lövgren, and H. Jakubowski. Conformational changes during enzyme catalysis: Role of water in the transition state. Proc. Natl. Acad. Sci. USU, 77:3374–3378, 1980.

    Google Scholar 

  34. C. F. M. Magalhães and J. G. Moreira. Catastrophic regime in the discharge of a sandpile. Phys. Rev. E, 82:051303, 2010.

    Article  Google Scholar 

  35. A. Malthe-Sorenssen, J. Feder, K. Christensen, V. Frette, and T. Jossang. Surface fluctuations and correlations in a pile of rice. Phys. Rev. Lett., 83:764–767, 1999.

    Article  Google Scholar 

  36. H. Margenau and G. M. Murphy. The mathematics of physics and chemistry. Van Nostrand, Toronto, 1968.

    Google Scholar 

  37. L. M. Martyushev and V. D. Seleznev. Maximum entropy production principle in physics, chemistry and biology. Phys. Reports, 426:1–45, 2006.

    Article  MathSciNet  Google Scholar 

  38. J. W. Mellor. Higher mathematics for students of chemistry and physics. Longmans, Green, and Co., New York, 1902.

    Google Scholar 

  39. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: Simple building blocks of complex networks. Science, 298:824–827, 2002.

    Article  Google Scholar 

  40. J. Milton. Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. Eur. J. Neurosci., 35:2156–2163, 2012.

    Article  Google Scholar 

  41. J. G. Milton, J. L. Cabrera, and T. Ohira. Unstable dynamical systems: Delays, noise and control. Europhys. Lett., 83:48001, 2008.

    Article  MathSciNet  Google Scholar 

  42. J. G. Milton and W. C. Galley. Evidence for heterogeneity in DNA-associated solvent mobility from acridine phosphorescence spectra. Biopolymers, 25:1673–1684, 1986.

    Article  Google Scholar 

  43. J. G. Milton and W. C. Galley. Rate constants and activation parameters for the mobility of bulk and DNA-associated glycol–water solvents. Biopolymers, 25:1685–1695, 1986.

    Article  Google Scholar 

  44. H. J. Morowitz. Energy flows in biology. Ox Bow Press, Woodbridge, CT, 1970.

    Google Scholar 

  45. H. J. Morowitz. Entropy for biologists: An introduction to thermodynamics. Academic Press, New York, 1970.

    Google Scholar 

  46. I. Müller. Entropy in nonequilibrium. In A. Greven, G. Keller, and G. Warnecke, editors, Entropy, pp. 79–105, Princeton, NJ, 2003. Princeton University Press.

    Google Scholar 

  47. J. D. Murray. Mathematical Biology. Springer-Verlag, New York, 1989.

    Book  MATH  Google Scholar 

  48. M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law. Cont. Phys., 46:323–351, 2005.

    Article  Google Scholar 

  49. G. Nicolis and I. Prigogine. Self-organization in non-equilibrium systems. John Wiley & Sons, New York, 1977.

    Google Scholar 

  50. J. M. Nieto-Villar, R. Quintana, and J. Rieumont. Entropy production rate as a Lyapunov function in chemical systems: Proof. Physica Scripta, 68:163–165, 2003.

    Article  MATH  Google Scholar 

  51. L. Onsager. Reciprocal relation in irreversible processes. I. Phys. Rev., 37:405–426, 1931.

    Google Scholar 

  52. L. Onsager. Reciprocal relation in irreversible processes. II. Phys. Rev., 38:2265–2779, 1931.

    Google Scholar 

  53. I. Osorio, M. G. Frei, D. Sornette, and J. Milton. Pharmaco-resistant seizures: self-triggering capacity, scale-free properties and predictability? Eur. J. Neurosci., 30:1554–1558, 2009.

    Article  Google Scholar 

  54. I. Osorio, M. G. Frei, D. Sornette, J. Milton, and Y-V. C. Lai. Epileptic seizures: quakes of the brain? Phys. Rev. E, 82:021919, 2010.

    Google Scholar 

  55. M. I. Page and W. P. Jencks. Entropic contributions to rate acceleration in enzymic and intramolecular reactions and the chelate effect. Proc. Natl. Acad. Sci. USA, 68:1678–1683, 1971.

    Article  Google Scholar 

  56. F. Patzelt and K. Pawelzik. Criticality of adaptive control dynamics. Phys. Rev. Lett., 107:238103, 2011.

    Article  Google Scholar 

  57. A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization: A universal concept in nonlinear sciences. Cambridge University Press, New York, 2001.

    Book  Google Scholar 

  58. N. Platt, E. A. Spiegel, and C. Tresser. On–off intermittency: A mechanism for bursting. Phys. Rev. Lett., 70:279–282, 1993.

    Article  Google Scholar 

  59. I. Prigogine and I. Stengers. Order out of chaos: Man’s dialogue with nature. Bantam Books, New York, 1984.

    Google Scholar 

  60. A. M. Reynolds. Bridging the gap between correlated random walks and Lévy walks: autocorrelation as a source Lévy walk movement patterns. J. Roy. Soc. Interface, 7:1753–1758, 2010.

    Article  Google Scholar 

  61. A. M. Reynolds. Can spontaneous cell movements be modeled as Lévy walks? Physica A, 389:273–277, 2010.

    Article  Google Scholar 

  62. F. Rieke, D. Warland, and W. Cialek. Coding efficiency and information rates in sensory neurons. Europhys. Lett., 22:151–156, 1993.

    Article  Google Scholar 

  63. P. A. Rock. Chemical thermodynamics: Principles and applications. Collier–Macmillan, Ltd., London, 1969.

    Google Scholar 

  64. Schmidt-Nielsen. Scaling: Why is animal size so important? Cambridge University Press, Cambridge, MA, 1985.

    Google Scholar 

  65. J. Schnakenberg. Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Physics, 48:571–585, 1976.

    Article  MathSciNet  Google Scholar 

  66. S. Solomon and M. Levy. Spontaneous scaling emergence in generic stochastic systems. Int. J. Mod. Phys., 7:745–751, 1996.

    Article  Google Scholar 

  67. B. Song and D. M. Thomas. Dynamics of starvation in humans. J. Math. Biol., 54:27–43, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  68. D. Sornette. Critical phenomena in natural sciences: Chaos, fractals, selforganization and disorder: Concepts and tools. Springer, New York, 2004.

    Google Scholar 

  69. D. Sornette. Dragon-Kings, black swans, and the prediction of crisis. Int. J. Terraspace Sci. Eng., 2:1–18, 2009.

    Google Scholar 

  70. D. Sornette and G. Ouillon. Dragon kings: mechanism, statistical methods, and empirical evidence. European Phys. J Special Topics, 205:1–26, 2012.

    Article  Google Scholar 

  71. O. Sporns and R. Kötter. Motifs in brain networks. PLoS Biology, 2:e369, 2004.

    Article  Google Scholar 

  72. E. B. Starikov and B. Nordén. Enthapy–entropy compensation: A phantom or something useful? J. Phys. Chem., 111:14431–14435, 2007.

    Article  Google Scholar 

  73. S. H. Strogatz. SYNC: The emerging science of spontaneous order. Hyperion, New York, 2003.

    Google Scholar 

  74. H. Struchtrup and W. Weiss. Maximum of the local entropy production becomes minimal in stationary process. Phys. Rev. Lett., 80:5048–5051, 1998.

    Article  Google Scholar 

  75. V. V. Sychev. The differential equations of thermodynamics, 2nd ed. Hemisphere Pub. Co., New York, 1991.

    MATH  Google Scholar 

  76. N. N. Taleb. The black swan: The impact of the highly improbable. Random House, New York, 2007.

    Google Scholar 

  77. T. Tomé and M. J. de Oliveira. Entropy production in nonequilibrium systems at stationary states. Phys. Rev. Lett., 108:020601, 2012.

    Article  Google Scholar 

  78. J. Villa, M. Strajbl, T. M. Glennon, Y. Y. Sham, Z. T. Chu, and A. Warshel. How important are entropic contributions to enzyme catalysis? Proc. Natl. Acad. Sci. USA, 97:11899–11904, 2000.

    Article  Google Scholar 

  79. D. Voet and J. G. Voet. Biochemistry, vol. I. Biomolecular, mechanism of enzyme action and metabolism. John Wiley & Sons, New York, 2003.

    Google Scholar 

  80. A. T. Winfree. When time breaks down: The three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton University Press, Princeton, NJ, 1987.

    Google Scholar 

  81. A. T. Winfree. Are cardiac waves relevant to epileptic wave propagation? In J. Milton and P. Jung, editors, Epilepsy as a dynamic disease, pp. 165–188, New York, 2003. Springer.

    Google Scholar 

  82. V. M. Zatsiorsky. Kinetics of human motion. Human Kinetics, Champaign, Ill., 2002.

    Google Scholar 

  83. H. Ziegler. Some extremum principles in irreversible thermodynamics. In I. N. Snedden and R. Hill, editors, Progress in Solid Mechanics, vol. 4, pp. 91–193. Amsterdam, North Holland, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milton, J., Ohira, T. (2014). Thermodynamic Perspectives. In: Mathematics as a Laboratory Tool. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9096-8_15

Download citation

Publish with us

Policies and ethics