Skip to main content

Noisy Dynamical Systems

  • Chapter
  • First Online:
Mathematics as a Laboratory Tool
  • 1797 Accesses

Abstract

The study of fluctuations in dynamical systems had rather humble beginnings. With the advent of the light microscope in the late 1600s, many investigators noticed that small particles suspended in liquid were continually moving, even though no macroscopic movements of the fluid could be detected [492]. Initially, it was thought that these movements indicated that the particles were alive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Robert Brown (1773–1858), Scottish botanist.

  2. 2.

    Robert Brown was not the first person to observe these movements. In his original paper, Brown cites ten investigators who had earlier observed these movements; subsequently, a scientific historian added the name J. Ingen-Housz to this list [626]. However, it is clear that Robert Brown was the first to investigate the origins of this phenomenon in a systematic manner, and consequently, he deserves to have his name attached to these particle motions [492].

  3. 3.

    Albert Einstein (1879–1955), German-born American physicist.

  4. 4.

    Paul Langevin (1872–1946), French physicist.

  5. 5.

    Kiyoshi It\(\bar{\mathrm{o}}\) (1915–2008), Japanese mathematician.

  6. 6.

    Ruslan Leont’evich Stratonovich (1930–1997), Russian physicist and engineer.

  7. 7.

    Adriaan Daniël Fokker (1887–1972), Dutch physicist and musician.

  8. 8.

    When the noise is multiplicative and/or the equation is nonlinear, the Ito and Stratonovich formulations are not typically equivalent.

  9. 9.

    Osborne Reynolds (1842–1912), Anglo-Irish physicist.

  10. 10.

    George Gabriel Stokes (1819–1903), Irish mathematician, physicist, politician, and theologian.

  11. 11.

    Haldan Keffer Hartline (1903–1983), American physiologist.

  12. 12.

    L.A. Scott Kelso (d. 1947), Irish-American neuroscientist.

  13. 13.

    The noise intensity can be measured in a variety of ways, including its variance, root-mean-square value, its standard deviation, and the coefficient of variation, which is the standard deviation divided by the mean.

  14. 14.

    Peter Swain (b. 1970), British-Canadian systems biologist.

  15. 15.

    A 1,000-nt protein corresponds to a protein sequence containing ≈ 333 amino acids, since each amino acid is encoded in the gene by three consecutive nucleotides.

  16. 16.

    Otto Herbert Schmitt (1913–1998), American inventor, engineer, and biophysicist.

  17. 17.

    Frank Edward Moss (1934–2011), American physicist, pioneered applications of stochastic resonance to biology.

  18. 18.

    Intermittency is the term used by physicists to describe the burstiness of biological signals discussed in Section 15.5.2. Technically, the type of intermittency we describe here is referred to as on–off intermittency in order to distinguish it from other forms of intermittency [503].

  19. 19.

    The law of large numbers states that the arithmetic mean of a very large sum of independent observations of a random variable x(s) is equal to the mean of x(s) [162, 486].

References

  1. D. Acheson. From calculus to chaos: An introduction to dynamics. Oxford University Press, New York, 1997.

    Google Scholar 

  2. S. Bahar, A. B. Neiman, P. Jung, J. Kurths, L. Schimansky-Geier, and K. Showalter. Introduction to focus issue: Nonlinear and stochastic physics in biology. Chaos, 21:047501, 2011.

    Article  Google Scholar 

  3. J. L. Bogdanoff and S. J. Citron. Experiments with an inverted pendulum subject to rapid parametric excitation. J. Acoust. Soc. Amer., 38:447–452, 1964.

    Article  Google Scholar 

  4. H. Bremer and P. P. Denis. Modulation of chemical composition and other parameters of the cell by growth rate. In F. C. Neidhardt, editor, Escherichia coli and Salmonella: cellular and molecular biology, pp. 1553–1569, Washington, D.C., 1996. A. S. M. Press.

    Google Scholar 

  5. R. Brown. A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Edinburgh New Philos. J., 5:358–371, 1828. An electronic copy can be downloaded from sciweb.nybg.org/science2/pdfs/dws/Brownian.pdf.

    Google Scholar 

  6. J. L. Cabrera and J. G. Milton. On–off intermittency in a human balancing task. Phys. Rev. Lett., 89:158702, 2002.

    Article  Google Scholar 

  7. J. L. Cabrera and J. G. Milton. Human stick balancing: Tuning Lévy flights to improve balance control. CHAOS, 14:691–698, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. M. Deutsch. Probability distributions for one component equations with mulitplicative noise. Physica A, 246:430–444, 1994.

    Google Scholar 

  9. R. J. Douglass, L. Wilkens, E. Pantazelou, and F. Moss. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 365:337–340, 1989.

    Article  Google Scholar 

  10. A. Einstein. On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. Ann. Physik, 17:549–560, 1905.

    Article  MATH  Google Scholar 

  11. M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain. Stochastic gene expression in a single cell. Science, 297:1183–1186, 2002.

    Article  Google Scholar 

  12. M. Fairweather. Skill learning principles: Implications for coaching practice. In N. Cross and J. Lyle, editors, Coaching Process: Principles and Practice for Sport, pp. 113–129. New York, Butterworth-Heineman, 2003.

    Google Scholar 

  13. S. Fauve and F. Heslot. Stochastic resonance in a bistable system. Phys. Lett. A, 97:5–7, 1983.

    Article  Google Scholar 

  14. J. L. Feldman and J. D. Cowan. Large-scale activity in neural nets I: Theory with application to motoneuron pool responses. Biol. Cybern., 17:29–38, 1975.

    Article  MATH  Google Scholar 

  15. W. Feller. An introduction to probability theory and its applications, vol. I, 3rd ed. Wiley & Sons, New York, 1968.

    Google Scholar 

  16. C. P. Gabbard. Lifelong motor development, 4th ed. Pearson–Benjamin Cummings, New York, 2004.

    Google Scholar 

  17. L. Gammaitoni. Stochastic resonance and the dithering effect in threshold physical systems. Phys. Rev. E, 52:4691–4698, 1995.

    Article  Google Scholar 

  18. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni. Stochastic resonance. Rev. Mod. Phys., 70:223–288, 1998.

    Article  Google Scholar 

  19. M. Gitterman. Simple treatment of correlated multiplicative and additive noise. J. Phys. A: Math. Gen., 32:L293–L297, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  21. S. Guillouzic, I. L’Heureux, and A. Longtin. Small delay approximation of stochastic delay differential equations. Phys. Rev. E, 59:3970–3982, 1999.

    Article  Google Scholar 

  22. C. M. Harris and D. M. Wolpert. Signal-dependent noise determines motor planning. Nature, 394:780–784, 1998.

    Article  Google Scholar 

  23. J. F. Heagy, N. Platt, and S. M. Hammel. Characterization of on–off intermittency. Phys. Rev. E, 49:1140–1150, 1994.

    Article  Google Scholar 

  24. J. D. Hunter and J. Milton. Using inhibitory interneurons to control neural synchrony. In J. D. Hunter and J. Milton, editors, Epilepsy as Dynamic Disease, pp. 115–130. New York, Springer, 2003.

    Chapter  Google Scholar 

  25. J. D. Hunter, J. G. Milton, H. Lüdtke, B. Wilhelm, and H. Wilhelm. Spontaneous fluctuations in pupil size are not triggered by lens accommodation. Vision Research, 40:567–573, 2000.

    Article  Google Scholar 

  26. K. Jerger and S. J. Schiff. Periodic pacing and in vitro epileptic focus. J. Neurophysiol., 73:876–879, 1995.

    Google Scholar 

  27. V. K. Jirsa, P. Fink, P. Foo, and J. A. S. Kelso. Parametric stabilization of biological coordination: A theoretical model. J. Biol. Phys., 26:85–112, 2000.

    Article  Google Scholar 

  28. J. A. S. Kelso. Dynamic patterns: The self-organization of brain and behavior. MIT Press, Boston, 1995.

    Google Scholar 

  29. P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations. Springer-Verlag, New York, 1992.

    Book  MATH  Google Scholar 

  30. U. Küchler and B. Mensch. Langevin’s stochastic differential equation extended by a time-delayed term. Stoch. Stoch. Rep., 40:23–42, 1992.

    Article  MATH  Google Scholar 

  31. P. Langevin. Sur la théorie du mouvement brownien. C. R. Acad. Sci. (Paris), 146:530–533, 1908.

    Google Scholar 

  32. A. Longtin, A. Bulsara, and F. Moss. Time interval sequences in bistable systems and the noise induced transmission of information by sensory neurons. Phys. Rev. Lett., 67:656–659, 1991.

    Article  Google Scholar 

  33. A. Longtin, J. G. Milton, J. E. Bos, and M. C. Mackey. Noise and critical behavior of the pupil light reflex at oscillation onset. Phys. Rev. A, 41:6992–7005, 1990.

    Article  Google Scholar 

  34. D. K. C. MacDonald. The statistical analysis of electrical noise. Phil. Mag., 41:814–818, 1950.

    MATH  Google Scholar 

  35. D. K. C. MacDonald. Noise and fluctuations: An introduction. John Wiley and Sons, New York, 1962.

    Google Scholar 

  36. J. Milton. Dynamics of small neural populations. American Mathematical Society, Providence, Rhode Island, 1996.

    MATH  Google Scholar 

  37. J. Milton. Pupil light reflex: Delays and oscillations. In A. Beuter, L. Glass, M. C. Mackey, and M. S. Titcombe, editors, Nonlinear dynamics in physiology and medicine, pp. 271–302. New York, Springer, 2003.

    Google Scholar 

  38. J. G. Milton. The delayed and noisy nervous system: Implications for neural control. J. Neural Eng., 8:065005, 2011.

    Article  Google Scholar 

  39. J. G. Milton, J. L. Cabrera, and T. Ohira. Unstable dynamical systems: Delays, noise and control. Europhys. Lett., 83:48001, 2008.

    Article  MathSciNet  Google Scholar 

  40. J. G. Milton, S. S. Small, and A. Solodkin. On the road to automatic: Dynamic aspects in the development of expertise. J. Clin. Neurophysiol., 21:134–143, 2004.

    Article  Google Scholar 

  41. R. P. Morse and E. F. Evans. Enhancement of vowel coding for cochlear implants by addition of noise. Nature Med., 2:928–932, 1996.

    Article  Google Scholar 

  42. F. Moss. Stochastic resonance: From the ice ages to the monkey’s ear. In G. H. Weiss, editor, Some problems in statistical physics, pp. 205–253, Philadelphia, 1994. SIAM Frontiers in Applied Mathematics.

    Google Scholar 

  43. H. Nakao. Asymptotic power law of moments in a random multiplicative process with weak additive noise. Phys. Rev. E, 58:1591–1601, 1998.

    Article  MathSciNet  Google Scholar 

  44. T. Ohira and J. Milton. Delayed random walks: investigating the interplay between noise and delay. In B. Balachandran, T. Kalmár-Nagy, and D. E. Gilsinn, editors, Delay differential equations: Recent advances and new directions, pp. 305–335. New York, Springer, 2009.

    Google Scholar 

  45. T. Ohira and T. Yamane. Delayed stochastic systems. Phys. Rev. E, 61:1247–1257, 2000.

    Article  Google Scholar 

  46. A. Papoulis. Probability, random variables and stochastic processes. McGraw–Hill, New York, 1965.

    MATH  Google Scholar 

  47. P. Pearle, B. Collett, and K. Bart. What Brown saw and you can too. Am. J. Phys., 78:1278–1289, 2010.

    Article  Google Scholar 

  48. D. Pelz. Dave Pelz’s putting bible, pp. 89–94. Doubleday, New York, 2002.

    Google Scholar 

  49. J. Perrin. Brownian movement and molecular reality. Dover Publications, New York, 2005.

    Google Scholar 

  50. N. Platt, E. A. Spiegel, and C. Tresser. On–off intermittency: A mechanism for bursting. Phys. Rev. Lett., 70:279–282, 1993.

    Article  Google Scholar 

  51. Y. Pomeau and P. Manneville. Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys., 74:189–198, 1980.

    Article  MathSciNet  Google Scholar 

  52. A. A. Priplata, J. B. Niemi, J. D. Harry, L. A. Lipsitz, and J. J. Collins. Vibratory insoles and balance control in elderly people. Lancet, 362:1123–1124, 2003.

    Article  Google Scholar 

  53. J. M. Raser and E. K. O’Shea. Control of stochasticity in eukaryotic gene expression. Science, 304:1811–1814, 2004.

    Article  Google Scholar 

  54. F. Ratliff, H. K. Hartline, and W. H. Miller. Spatial and temporal aspects of retinal inhibitory interaction. J. Opt. Soc. Am., 53:110–120, 1963.

    Article  Google Scholar 

  55. F. Ratliff, B. W. Knight, and N. Graham. On tuning and amplification by lateral inhibition. Proc. Natl. Acad. Sci. USA, 62:733–740, 1868.

    Article  Google Scholar 

  56. H. Risken. The Fokker–Planck equation. Springer, New York, 1989.

    MATH  Google Scholar 

  57. J. E. Rose, J. F. Bruggee, D. J. Anderson, and J. E. Hind. Phase-locked response to low-frequency tones in a single auditory nerve fiber of the squirrel monkey. J. Neurophysiol., 30:769–793, 1967.

    Google Scholar 

  58. A. C. Sanderson, W. M. Kozak, and T. W. Calvert. Distribution coding in the visual pathway. Biophys. J., 13:218–244, 1973.

    Article  Google Scholar 

  59. A-H. Sato, H. Takayasu, and Y. Sawada. Invariant power laws distribution of Langevin systems with colored multiplicative noise. Phys. Rev. E, 61:1081–1087, 2000.

    Google Scholar 

  60. A-H. Sato, H. Takayasu, and Y. Sawada. Power law fluctuation generator based on analog electrical circuit. Fractals, 8:219–225, 2009.

    Google Scholar 

  61. A. Shumway-Cook and M. H. Woollacott. Motor control: theory and practical applications. Lippincott Williams & Wilkins, New York, 2001.

    Google Scholar 

  62. D. Sornette. Critical phenomena in natural sciences: Chaos, fractals, selforganization and disorder: Concepts and tools. Springer, New York, 2004.

    Google Scholar 

  63. L. Stark, F. W. Campbell, and J. Atwood. Pupillary unrest: An example of noise in a biological servo-mechanism. Nature, 182:857–858, 1958.

    Article  Google Scholar 

  64. G. Stepan. Delay effects in the human sensory system during balancing. Phil. Trans. Roy. Soc. A, 367:1195–1212, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  65. P. S. Swain, M. B. Elowitz, and E. D. Siggia. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA, 99:12795–12800, 2002.

    Article  Google Scholar 

  66. H. Takayasu, A-H. Sato, and M. Takayasu. Stable infinite variance fluctuation in randomly amplified Langevin systems. Phys. Rev. Lett., 79:966–969, 1997.

    Google Scholar 

  67. P. W. van der Pes. The discovery of the Brownian motion. Scientiarum Historia, 13:27–35, 1971.

    Google Scholar 

  68. S. C. Venkataramani, T. M. Antonsen, E. Ott, and J. C. Sommerer. Power spectrum and fractal properties of time series. Physica D, 96:66–99, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  69. S. Vogel. Comparative biomechanics: Life’s physical world. Princeton University Press, Princeton, NJ, 2003.

    Google Scholar 

  70. M. Woollacott and A. Shumway-Cook. Changes in posture control across the life span: A systems approach. Phys. Ther., 70:799–807, 1990.

    Google Scholar 

  71. J. I. Yellot. Spectral consequences of photoreceptor sampling in the rhesus retina. Science, 221:382–385, 1983.

    Article  Google Scholar 

  72. X. Yu and E. R. Lewis. Studies with spike initiators: Linearization by noise allows continuous signal modulation in neural networks. IEEE Trans. Biomed. Eng., 36:36–43, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milton, J., Ohira, T. (2014). Noisy Dynamical Systems. In: Mathematics as a Laboratory Tool. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9096-8_13

Download citation

Publish with us

Policies and ethics