Skip to main content

Beyond Limit Cycles

  • Chapter
  • First Online:
Mathematics as a Laboratory Tool
  • 1777 Accesses

Abstract

Dynamical approaches to biological systems emphasize the qualitative nature of the time-dependent behaviors that can be observed as parameter values are changed. If the important parameters can be identified, then they can be manipulated experimentally. For example, in feedback control, the stability of the fixed point depends on the interplay between the delay τ and the feedback gain. It is surprising that experimentalists did not begin earlier than they did to investigate systematically the behaviors of biological systems as parameters were changed. One barrier was that inexpensive personal computers did not become available until the 1970s. The second barrier was that experimentalists did not have catalogs that documented the types of behaviors that could occur (see, for example, [215, 600]). It can be very difficult at the benchtop to interpret complex time series unless there is some sense of the nature of the phenomena that one is looking for.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Robert McCredie May, Baron May of Oxford (b. 1936), Australian theoretical ecologist.

  2. 2.

    As in Chapter 5, we use the symbol μ to designate the bifurcation parameter.

  3. 3.

    Mitchell Jay Feigenbaum (b. 1944), American mathematical physicist.

  4. 4.

    Although we have chosen to focus on modeling the human brain to illustrate our points, the same issues arise in other complex biological systems such as the metabolism of a cell, passage from a single cell to tissues and organs, and the behaviors of schools of fish, herds of animals, flocks of birds, and ecosystems.

  5. 5.

    Eugene Izhikevich (b. 1967), Russian-born American mathematical neuroscientist.

  6. 6.

    The FHN equation is the special case for which the w-nullcline is a straight line.

References

  1. U. an der Heiden and M. C. Mackey. The dynamics of production–destruction: Analytic insight into complex behavior. J. Math. Biol., 16:75–101, 1982.

    Google Scholar 

  2. U. an der Heiden and M. C. Mackey. Mixed feedback: A paradigm for regular and irregular oscillations. In L. Rensing, U. an der Heiden, and M. C. Mackey, editors, Temporal disorders in human oscillatory systems, pp. 30–46, New York, 1987. Springer-Verlag.

    Google Scholar 

  3. J. Bélair, L. Glass, U. an der Heiden, and J. Milton. Dynamical disease: Mathematical analysis of human illness. American Institue of Physics, Woodbury, New York, 1995.

    Google Scholar 

  4. C. Bernard. Leçons sur les Phénomènes de la Vie Commun aux Animaux et aux Végétaux. Ballière, Paris, 1878.

    Google Scholar 

  5. F. Brauer and C. Castillo-Chavez. Mathematical models in population biology and epidemiology. Springer, New York, 2001.

    Book  MATH  Google Scholar 

  6. K. L. Briggman, H. D. I. Abarbanel, and W. B. Kristan. Optical imaging of neuronal populations during decision-making. Science, 307:896–901, 2008.

    Article  Google Scholar 

  7. E. Brown, J. Gao, P. Holmes, R. Bogacz, M. Gilzenrat, and J. D. Cohen. Simple neural networks that optimize decisions. Int. J. Bifurc. Chaos, 15:803–826, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. A. Buice and J. D. Cowan. Statistical mechanics of the neocortex. Prog. Biophys. Mol. Biol., 99:53–86, 2009.

    Article  Google Scholar 

  9. W. B. Cannon. Organization for physiological homeostasis. Physiol. Rev., 36:399–431, 1929.

    Google Scholar 

  10. P. J. Choi, L. Cai, K. Fieda, and X. S. Xie. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science, 322:442–446, 2008.

    Article  Google Scholar 

  11. R. F. Constantino, R. A. Desharnais, J. M. Cushing, and B. Dennis. Chaotic dynamics in an insect population. Science, 275:389–391, 1997.

    Article  Google Scholar 

  12. R. F. Costantino, J. M. Cushing, B. Dennis, and R. A. Desharnais. Experimentally induced transitions in the dynamic behavior of insect populations. Nature, 375:227–230, 1995.

    Article  Google Scholar 

  13. H. Degn, A. V. Holden, and L. F. Olsen. Chaos in biological systems. Plenum Press, New York, 1987.

    Book  Google Scholar 

  14. R. A. Desharnais. Population dynamics of Tribolium. In S. Tuljapurkar and H. Caswell, editors, Structured population models in marine, terrestrial, and freshwater systems, pp. 303–328. New York, Chapman & Hall, 1997.

    Google Scholar 

  15. R. L. Devaney. An introduction to chaotic dynamical systems. Benjamin Cummings, Menlo Park, CA, 1986.

    MATH  Google Scholar 

  16. J. D. Farmer. Chaotic attractors of an infinite-dimensional dynamical system. Physica D, 4:366–393, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. J. Feigenbaum. Quantitative universality for a class of non-linear transformations. J. Stat. Phys., 19:25–52, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Foley and M. C. Mackey. Mathematical model for G–CSF administration after chemotherapy. J. Theoret. Biol, 19:25–52, 2009.

    MathSciNet  Google Scholar 

  19. L. Glass and M. C. Mackey. Pathological conditions resulting from instabilities in physiological control systems. Ann. N. Y. Acad. Sci., 316:214–235, 1979.

    Article  Google Scholar 

  20. J. Gotman. Measurement of small time differences between EEG channels method and its application to epileptic seizure propagation. Electroenceph. Clin. Neurophysiol., 56:501–514, 1983.

    Article  Google Scholar 

  21. C. Grotta-Ragazzo, K. Pakdaman, and C. P. Malta. Metastability for delayed differential equations. Phys. Rev. E., 60:6230–6233, 1999.

    Article  MathSciNet  Google Scholar 

  22. J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  23. M. R. Guevara, L. Glass, and A. Shrier. Phase locking, period–doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science, 214:1350–1353, 1981.

    Article  Google Scholar 

  24. J. K. Hale. Theory of functional differential equations. Springer-Verlag, New York, 1977.

    Book  MATH  Google Scholar 

  25. H. Hayashi and S. Ishizuka. Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro. Brain Res., 686:194–206, 1995.

    Google Scholar 

  26. H. Hayashi, M. Nakao, and K. Nirakawa. Entrained, harmonic, quasiperiodic and chaotic responses of the self-sustained oscillation of Nitella to sinusoidal stimulation. J. Physiol. Soc. Japan, 52:344–351, 1983.

    Article  Google Scholar 

  27. G. E. Hutchinson. Circular cause systems in ecology. Ann. New York Acad. Sci., 50:221–246, 1948.

    Article  Google Scholar 

  28. S. Ishizuka and H. Hayashi. Chaotic and phase-locked responses of the somatosensory cortex to a periodic medial lemniscus stimulation in the anesthetized rat. Brain Res., 723:46–60, 1996.

    Article  Google Scholar 

  29. E. M. Izhikevich. Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos, 10:1171–1266, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  30. E. M. Izhikevich. Simple model of spiking neurons. IEEE Trans. Neural Net., 14:1569–1572, 2003.

    Article  Google Scholar 

  31. E. M. Izhikevich. Which model to use for cortical spiking neurons? IEEE Trans. Neural Net., 15:1063–1070, 2004.

    Article  Google Scholar 

  32. E. M. Izhikevich. Dynamical systems in neuroscience: The geometry of excitability and bursting. MIT Press, MIT, 2007.

    Google Scholar 

  33. E. W. Izhikevich and G. M. Edelman. Large-scale model of mammalian thalamocortical system. Proc. Natl. Acad. Sci. USA, 105:3593–3598, 2008.

    Article  Google Scholar 

  34. J. A. S. Kelso. Dynamic patterns: The self-organization of brain and behavior. MIT Press, Boston, 1995.

    Google Scholar 

  35. V. B. Kolmanovski and V. R. Nosov. Stability of functional differential equations. Academic Press, London, 1986.

    Google Scholar 

  36. Y. Kuang. Delay differential equations with application in population dynamics. Academic Press, San Diego, 1989.

    Google Scholar 

  37. T. Y. Li and J. A. Yorke. Period three implies chaos. Amer. Math. Monthly, 82:985–982, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Longtin and J. G. Milton. Complex oscillations in the human pupil light reflex with “mixed” and delayed feedback. Math. Biosci., 90:183–199, 1988.

    Article  MathSciNet  Google Scholar 

  39. E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:282–293, 1963.

    Google Scholar 

  40. M. C. Mackey and L. Glass. Oscillation and chaos in physiological control systems. Science, 197:287–289, 1977.

    Article  Google Scholar 

  41. M. C. Mackey and J. G. Milton. Dynamical diseases. Ann. New York Acad. Sci., 504:16–32, 1987.

    Article  Google Scholar 

  42. G. Matsumoto, K. Aihara, Y. Hanyu, N. Takahashi, S. Yoshizawa, and J. Nagumo. Chaos and phase locking in normal squid axons. Phys. Lett. A, 123:162–166, 1987.

    Article  Google Scholar 

  43. R. M. May. Simple mathematical models with very complicated dynamics. Nature, 261:459–467, 1976.

    Article  Google Scholar 

  44. N. Metropolis, M. L. Stein, and P. R. Stein. On finite limit sets for transformations on the unit interval. J. Comb. Theory, 15:25–44, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Miller. What is the contribution of axonal conduction delay to temporal structure of brain dynamics? In C. Pantex, editor, Oscillatory event-related brain dynamics, pp. 53–57. New York, Academic Press, 1994.

    Chapter  Google Scholar 

  46. J. Milton. Dynamics of small neural populations. American Mathematical Society, Providence, Rhode Island, 1996.

    MATH  Google Scholar 

  47. J. Milton and D. Black. Dynamic diseases in neurology and psychiatry. Chaos, pp. 8–13, 1995.

    Google Scholar 

  48. J. Milton, J. Gyorffy, J. L. Cabrera, and T. Ohira. Amplitude control of human postural sway using Achilles tendon vibration. USNCTAN2010, 2010:791, 2010.

    Google Scholar 

  49. J. Milton and P. Jung. Epilepsy as a dynamic disease. Springer, New York, 2003.

    Book  MATH  Google Scholar 

  50. J. Milton, P. Naik, C. Chan, and S. A. Campbell. Indecision in neural decision making models. Math. Model. Nat. Phenom., 5:125–145, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. G. Milton. Epilepsy as a dynamic disease: A tutorial of the past with an eye to the future. Epil. Behav., 18:33–44, 2010.

    Article  Google Scholar 

  52. J. G. Milton. The delayed and noisy nervous system: Implications for neural control. J. Neural Eng., 8:065005, 2011.

    Article  Google Scholar 

  53. J. G. Milton and A. Longtin. Evaluation of pupil constriction and dilation from cycling measurements. Vision Research, 30:515–525, 1990.

    Article  Google Scholar 

  54. J. G. Milton, A. Longtin, A. Beuter, M. C. Mackey, and L. Glass. Complex dynamics and bifurcations in neurology. J. Theoret. Biol., 138:129–147, 1989.

    Article  MathSciNet  Google Scholar 

  55. J. G. Milton, A. R. Quan, and I. Osorio. Nocturnal frontal lobe epilepsy: Metastability in a dynamic disease? In I. Osorio, N. P. Zaveri, M. G. Frei, and S. Arthurs, editors, Epilepsy: Intersection of neuroscience, biology, mathematics, engineering and physics, pp. 445–450. New York, CRC Press, 2011.

    Google Scholar 

  56. K. Pakdaman, C. Grotta-Ragazzo, and C. P. Malta. Transient regime duration in continuous-time neural networks with delay. Phys. Rev. E, 58:3623–3627, 1998.

    Article  Google Scholar 

  57. K. Pakdaman, C. Grotta-Ragazzo, C. P. Malta, O. Arino, and J.-F. Vibert. Effect of delay on the boundary of the basin of attraction in a system of two neurons. Neural Networks, 11:509–519, 1998.

    Article  Google Scholar 

  58. A. Quan, I. Osorio, T. Ohira, and J. Milton. Vulnerability to paroxysmal oscillations in delayed neural networks: A basis for nocturnal frontal lobe epilepsy? Chaos, 21:047512, 2011.

    Article  Google Scholar 

  59. M. Rubinov, O. Sporns, J-P. Thivierge, and M. Breakspear. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Comp. Biology, 7:e1002038, 2011.

    Google Scholar 

  60. K. A. Schindler, C. A. Bernasconi, R. Stoop, P. H. Goodman, and R. J. Douglas. Chaotic spike patterns evoked by periodic inhibition of rat cortical neurons. Z. Naturforsch, 25a:509–512, 1997.

    Google Scholar 

  61. L. Stark, F. W. Campbell, and J. Atwood. Pupillary unrest: An example of noise in a biological servo-mechanism. Nature, 182:857–858, 1958.

    Article  Google Scholar 

  62. C. F. Stevens. How cortical interconnectedness varies with network size. Neural Comp., 1:473–479, 1965.

    Article  Google Scholar 

  63. S. H. Strogatz. Nonlinear dynamics and chaos. Addison–Wesley, New York, 1994.

    Google Scholar 

  64. H. A. Swadlow. Physiological properties of individual cerebral axons studied in vivo for as long as one year. J. Neurophysiol., 54:1346–1362, 1985.

    Google Scholar 

  65. S. M. Ulam and J. von Neumann. On combination of stochastic and deterministic processes. Bull. Am. Math. Soc., 53:1120, 1947.

    Google Scholar 

  66. S. Visser, H. G. E. Meijer, H. C. Lee, W. van Drongelen, M. J. A. M. Putten, and S. A. van Gils. Comparing epileptoform behavior of mesoscale detailed models and population models of neocortex. J. Clin. Neurophysiol., 27:471–478, 2010.

    Article  Google Scholar 

  67. H. R. Wilson. Simplified dynamics of human and mammalian neocortical neurons. J. Theoret. Biol., 200:375–388, 1999.

    Article  Google Scholar 

  68. H. R. Wilson. Spikes, decisions and actions: dynamical foundations of neurosciences. Oxford University Press, New York, 1999.

    MATH  Google Scholar 

  69. H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J., 12:1–224, 1972.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milton, J., Ohira, T. (2014). Beyond Limit Cycles. In: Mathematics as a Laboratory Tool. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9096-8_11

Download citation

Publish with us

Policies and ethics