Skip to main content

Application of the Volterra Series Paradigm to Memristive Systems

  • Chapter
  • First Online:

Abstract

The advent of the memristor in the panorama of fundamental passive circuit elements and the recent development of physical nano-devices with memory resistance opens new opportunities in IC electronics. However, considerable progress in the design of novel memristor-based circuits and systems may not be achieved unless the nonlinear dynamics of these nano-devices is fully unfolded and modeled. Due to the strongly nonlinear behavior of the physical memristor, classical analysis and synthesis techniques from linear system theory may not be applied to memristor-based circuits. Within the framework of nonlinear system theory, the Volterra series paradigm offers a solid theoretical background which may support the modeling and analysis of these unique systems. After a brief pedagogical review of the Volterra series theory, this paper introduces a systematic technique enabling the accurate reproduction of the dynamical behavior of classes of memristor circuits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(\mathfrak{M}\mathfrak{L}(\mathbb{E}_{1},\ldots, \mathbb{E}_{L}, \mathbb{F})\) denotes the vector space of multilinear functions. Further the following notation is introduced: \(\mathfrak{M}\mathfrak{L}_{j_{1},\ldots,j_{L}}(\mathbb{E}_{1},\ldots, \mathbb{E}_{L}, \mathbb{F}) = \mathfrak{M}\mathfrak{L}(\underbrace{\mathop{\mathbb{E}_{1},\ldots, \mathbb{E}_{1}}}\limits _{j_{1}},\ldots \underbrace{\mathop{ \mathbb{E}_{L},\ldots, \mathbb{E}_{L}}}\limits _{j_{L}}, \mathbb{F})\).

  2. 2.

    Note that for m > 1 the technique requires the preliminary derivation of all kernels of order 1, , m − 1.

References

  1. F. Corinto, A. Ascoli, A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans. Circuits Syst. I 59(11), 2713–2726 (2012)

    Article  MathSciNet  Google Scholar 

  2. F. Corinto, A. Ascoli, M. Gilli, Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I 58(6), 1323–1336 (2011)

    Google Scholar 

  3. L.O. Chua, Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  4. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  5. H.K. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, Englewood Cliffs, 2002)

    MATH  Google Scholar 

  6. M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems (Krieger Publishing Company, Malabar, FL, 2006)

    Google Scholar 

  7. L.O. Chua, C.Y. Ng, Frequency domain analysis of nonlinear systems. IEE J. Electron. Circuits Syst. 3(4), 165–185 (1979)

    Article  Google Scholar 

  8. S. Boyd, Y.S. Tang, L.O. Chua, Measuring Volterra kernels. IEEE Trans. Circuits Syst. CAS-30(8), 571–577 (1983)

    Article  Google Scholar 

  9. J.F. Barrett, The use of functionals in the analysis of non-linear physical systems. J. Electron. Control 15(6), 567–615 (1963)

    Article  Google Scholar 

  10. J. Waddington, F. Fallside, Analysis of non-linear differential equations by the Volterra series. Int. J. Control 3(1), 1–15 (1966)

    Article  Google Scholar 

  11. A.J. Krener, Linearization and bilinearization of control systems. Proceedings of Allerton Conference on Circuit and System Theory, pp. 834–843, University of Illinois, Urbana Champaign, Illinois, 1974

    Google Scholar 

  12. C. Lesiak, A. Krener, The existence und uniqueness of Volterra series for nonlinear systems. IEEE Trans. Automat. Control AC-23, 1090–1095 (1978)

    Article  MathSciNet  Google Scholar 

  13. E.G. Gilbert, Functional expansions for the response nonlinear differential systems. IEEE Trans. Automat. Control AC-22(6), 909–921 (1977)

    Article  Google Scholar 

  14. W.J. Rugh, Nonlinear System Theory (The Johns Hopkins University Press, Baltimore, MD, 1981)

    MATH  Google Scholar 

  15. I.W. Sandberg, A perspective on system theory. IEEE Trans. Circuits Syst., CAS-31(1), 88–103 (1984)

    Article  MathSciNet  Google Scholar 

  16. S.P. Boyd, L.O. Chua, Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Circuits Syst. CAS-32(11), 1150–1161 (1985)

    Article  MathSciNet  Google Scholar 

  17. S.P. Boyd, L.O. Chua, Volterra series for nonlinear circuits. Proceedings of International Symposium on Circuits and Systems, p. 369, Kyoto, 1985

    Google Scholar 

  18. S.P. Boyd, L.O. Chua, C.A. Desoer, Analytical foundations of Volterra series. IMA J. Math. Control Info. 1(3), 243–282 (1984)

    Article  MATH  Google Scholar 

  19. R.W. Brockett, Volterra series and geometric control theory. Automatica, 12, 167–176 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. I.W. Sandberg, Bounds for discrete-time Volterra series representations. IEEE Trans. Circuits Syst. I 46(1), 135–139 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Siu, M. Schetzen, Convergence of Volterra series representation and BIBO stability of bilinear systems. Int. J. Syst. Sci. 22(12), 2679–2684 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. J.F. Barrett, The use of Volterra series to find region of stability of a non-linear differential equation. Int. J. Control 1(3), 209–216 (1965)

    Article  MATH  Google Scholar 

  23. S.P. Boyd, Volterra Series: Engineering Fundamentals. PhD Dissertation Thesis, 1985

    Google Scholar 

  24. T. H\(\acute{e}\) lie, B. Laroche, Computation of convergence bounds for volterra series of linear-analytic single-input systems. IEEE Trans. Automat. Control 56(9), 2062–2072 (2011)

    Google Scholar 

  25. L.O. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)

    Article  Google Scholar 

  26. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  27. F. Corinto, A. Ascoli, Memristive diode bridge with LCR filter. Electron. Lett. 48(14), 824–825 (2012)

    Article  Google Scholar 

  28. Z.-Q. Lang, S.A. Billings, Evaluation of output frequency responses of nonlinear systems under multiple inputs. IEEE Trans. Circuits Syst. II 47(1), 28–38 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alon Ascoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ascoli, A., Schmidt, T., Tetzlaff, R., Corinto, F. (2014). Application of the Volterra Series Paradigm to Memristive Systems. In: Tetzlaff, R. (eds) Memristors and Memristive Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9068-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9068-5_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9067-8

  • Online ISBN: 978-1-4614-9068-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics