Skip to main content

The Art and Science of Constructing a Memristor Model

  • Chapter
  • First Online:
Memristors and Memristive Systems

Abstract

Constructing an accurate and predictive compact mathematical model for an electronic circuit element that displays memristor behavior is extremely challenging, but it is also essential for designing and modeling complex integrated circuits that contain the element. Although the fundamental equations that specify the device physics may be known, they usually comprise a set of coupled nonlinear integro-differential equations that are extremely challenging to solve in three dimensions. A numerical solution of the equations can require supercomputers and long times, and thus this approach is useless for interactive simulation of large circuits that contain many such elements. Thus, the equations must be simplified dramatically, and it is not always clear which terms are the most important for the behavior of the device. On the other hand, a purely black box approach of fitting a set of experimental measurements to a convenient functional form runs the risk of poorly representing the behavior of the device in operating regimes outside the range in which the data were collected. Thus, a hybrid approach is necessary, in which the mathematical formalism for a memristor provides the framework for the model and knowledge of the device physics defines the state variable(s), operating limits, and asymptotic behavior necessary to make the model useful. After describing the challenge, the art and science of constructing a memristor model are illustrated by two examples: a locally active and volatile device based on a thin film of niobium dioxide that undergoes an insulator-to-metal transition because of Joule heating and a nonvolatile memory device based on titanium dioxide in which the effective width of an electron tunnel barrier is determined by oxygen vacancy drift caused by an applied electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Abdalla, M.D. Pickett, SPICE modeling of memristors, in IEEE International Symposium on Circuits Systems (ISCAS), pp. 1832–1835 (2011)

    Google Scholar 

  2. S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I (2013)

    Google Scholar 

  3. C.N. Berglund, Thermal filaments in vanadium dioxide. IEEE Trans. Electron Devices 16, 432 (1969)

    Article  Google Scholar 

  4. K.L. Chopra, Current-controlled negative resistance in thin niobium oxide films. Proc. IEEE 51, 941–942 (1963)

    Article  Google Scholar 

  5. L.O. Chua, Introduction to Nonlinear Network Theory (McGraw-Hill, New York, 1969)

    Google Scholar 

  6. L.O. Chua, Memristor—the missing circuit element. IEEE Trans. Circuits Theory 18, 507–519 (1971)

    Article  Google Scholar 

  7. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  8. L.O. Chua, Device modeling via basic nonlinear circuit elements. IEEE Trans. Circuits Syst. CAS-27, 1014–1044 (1980)

    Article  MathSciNet  Google Scholar 

  9. L.O. Chua, Nonlinear circuits. IEEE Trans. Circuits Syst. CAS-31, 69–87 (1984)

    Article  Google Scholar 

  10. L.O. Chua, Nonlinear foundations for nanodevices, Part I: The four-element torus. Proc. IEEE 91, 1830–1859 (2003)

    Article  Google Scholar 

  11. L.O. Chua, Local activity is the origin of complexity. Int. J. Bifurcation Chaos 15, 3435–3456 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. L.O. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)

    Article  Google Scholar 

  13. L.O. Chua, V. Sbitnev, H. Kim, Hodgkin-Huxley axon is made of memristors. Int. J. Bifurcation Chaos 22, 1230011 (2012)

    Article  Google Scholar 

  14. L.O. Chua, V. Sbitnev, H. Kim, Neurons are poised near the edge of chaos. Int. J. Bifurcation Chaos 22, 1250098 (2012)

    Article  Google Scholar 

  15. L.O. Chua, The fourth element. Proc. IEEE 100, 1920–1927 (2012)

    Article  Google Scholar 

  16. L.O. Chua, Memristor, Hodgkin-Huxley, and edge of chaos. Nanotechnology 24(38), 383001 (2013)

    Google Scholar 

  17. H.D. Crane, The neuristor. IRE Trans. Electron. Comput. EC-9, 370–371 (1960)

    Article  Google Scholar 

  18. D.V. Geppert, A new negative-resistance device. Proc. IEEE 51, 223 (1963)

    Article  Google Scholar 

  19. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  20. M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurcation Chaos 18, 3183–3206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M.D. Pickett, R.S. Williams, Lognormal switching times for titanium dioxide bipolar memristors: origin and resolution. Nanotechnology 22, 095702 (2011)

    Article  Google Scholar 

  22. M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, R.S. Williams, Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508 (2009)

    Article  Google Scholar 

  23. M.D. Pickett, R.S. Williams, Sub-100 femtoJoule and sub-nanosecond thermally-driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23, 215202 (2012)

    Article  Google Scholar 

  24. M.D. Pickett, G. Medeiros-Ribeiro, R.S. Williams, A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013)

    Article  Google Scholar 

  25. J.P. Strachan, A.C. Torrezan, G. Medeiros-Ribeiro, R.S. Williams, Measuring the switching dynamics and energy efficiency of tantalum oxide memristors. Nanotechnology 22, 505402 (2011)

    Article  Google Scholar 

  26. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  27. D.B. Strukov, R.S. Williams, Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94, 515–519 (2009)

    Article  Google Scholar 

  28. D.B. Strukov, J.L. Borghetti, R.S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5, 1058–1063 (2009)

    Article  Google Scholar 

  29. D.B. Strukov, F. Alibart, R.S. Williams, Thermophoresis/diffusion as a mechanism for unipolar resistive switching in metal-oxide-metal memristors. Appl. Phys. A 107, 509–518 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stanley Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, R.S., Pickett, M.D. (2014). The Art and Science of Constructing a Memristor Model. In: Tetzlaff, R. (eds) Memristors and Memristive Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9068-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9068-5_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9067-8

  • Online ISBN: 978-1-4614-9068-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics