Advertisement

Memristor Device Engineering and CMOS Integration for Reconfigurable Logic Applications

Chapter

Abstract

This chapter reviews the application of memristive devices as reconfigurable switches. First, the fundamental performance metrics (power consumption, endurance, switch speed, IV nonlinearity, CMOS compatibility, ON/OFF ratio, etc.) of memristors as switches are discussed. Device engineering approaches including fabrication techniques, choice of materials, and geometry engineering are then reviewed. Finally, hybrid memristor/CMOS circuits that integrate CMOS with memristive devices as reconfigurable switches are presented.

Keywords

Bottom Electrode Resistive Switching Nanoimprint Lithography Switching Material Memristor Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author thanks the financial support from the U. S. Air Force Office of Scientific Research (AFOSR) (FA9550-12-1-0038), the Defense Advanced Research Program Agency (DARPA) (N66001-12-1-4217), and the U. S. National Science Foundation (NSF) (ECCS-1253073) for his research at UMass Amherst. Work done at Hewlett-Packard Labs was under partial sponsorship from the US Government’s Nano-Enabled Technology Initiative. The author would like to acknowledge help from current students at UMass Amherst and former colleagues at HP Labs.

References

  1. 1.
    G.E. Moore, Cramming more components onto integrated circuits. Electron. Mag. 38, 114–117 (1965)Google Scholar
  2. 2.
    L.O. Chua, Memristor—missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  3. 3.
    L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–233 (1976)MathSciNetCrossRefGoogle Scholar
  4. 4.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  5. 5.
    S.D. Ha, S. Ramanathan, Adaptive oxide electronics: a review. J. Appl. Phys. 110, 071101 (2011)CrossRefGoogle Scholar
  6. 6.
    M.-J. Lee et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 10, 625–630 (2011)CrossRefGoogle Scholar
  7. 7.
    A.C. Torrezan et al., Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22, 485203 (2011)CrossRefGoogle Scholar
  8. 8.
    M.D. Pickett, R.S. Williams, Nanotechnology 23, 215202 (2012)CrossRefGoogle Scholar
  9. 9.
    C. Nauenheim, C. Kuegeler, S. Trellenkamp, A. Ruediger, R. Waser, in Proceedings of 10th International Conference on Ultimate Integration on Silicon (2009), p. 135Google Scholar
  10. 10.
    I.G. Baek, D.C. Kim, M.J. Lee, H.-J. Kim, E.K. Yim, M.S. Lee, J.E. Lee, S.E. Ahn, S. Seo, J.H. Lee, J.C. Park, Y.K. Cha, S.O. Park, H.S. Kim, I.K. Yoo, U.-I. Chung, J.T. Moon, B.I. Ryu, Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application, in Proceedings of the Electron Device Meeting, San Francisco, CA (December 2005), pp. 750–753Google Scholar
  11. 11.
    A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, M. Taguchi, Non-volatile resistive switching for advanced memory applications. IEDM Tech. Dig., 765–768 (2005)Google Scholar
  12. 12.
    X.M. Chen, G.H. Wu, D.H. Bao, Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications. Appl. Phys. Lett. 93, 093501 (2008)CrossRefGoogle Scholar
  13. 13.
    Q.F. Xia et al., Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640–3645 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Borghetti et al., ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010)CrossRefGoogle Scholar
  15. 15.
    G.S. Snider, Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18, 365202 (2007)CrossRefGoogle Scholar
  16. 16.
    Y.V. Pershin, S. La Fontaine, M. Di Ventra, Memristive model of amoeba’s learning. Phys. Rev. E 80, 021926 (2009)CrossRefGoogle Scholar
  17. 17.
    S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)CrossRefGoogle Scholar
  18. 18.
    J.J. Yang et al., High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Gaba, P. Sheridan, J. Zhou, S. Choi, W. Lu, Stochastic memristive devices for computing and neuromorphic applications. Nanoscale 5, 5872–5878 (2013)Google Scholar
  20. 20.
    S.H. Jo, K.-H. Kim, W. Lu, High-density crossbar arrays based on a Si memristive system. Nano Lett. 9, 870–874 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Pi, P. Lin, Q. Xia, Cross point arrays of ultralow power 8 nm by 8 nm memristive devices fabricated with nanoimprint lithography. J. Vac. Sci. Technol. B, (2013), accepted. doi: 10.1116/1.4827021Google Scholar
  22. 22.
    Q.F. Xia, M.D. Pickett, J.J. Yang, M.–.X. Zhang, J. Borghetti, X. Li, W. Wu, G. Medeiros-Ribeiro, R.S. Williams, Impact of geometry on the performance of memristive nanodevices. Nanotechnology 22, 254026 (2011)CrossRefGoogle Scholar
  23. 23.
    S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996)CrossRefGoogle Scholar
  24. 24.
    M. Colburn, S. Johnson, M. Stewart et al., Step and flash imprint lithography: a new approach to high-resolution patterning. Proc. SPIE 3676, 379–389 (1999)CrossRefGoogle Scholar
  25. 25.
    J. Haisma, M. Verheijen, K. vanden Heuvel, J. vanden Berg, Mold-assisted nanolithography: a process for reliable pattern replication. J. Vac. Sci. Technol. B 14, 4124–4128 (1996)CrossRefGoogle Scholar
  26. 26.
    Q.F. Xia, Nanoscale resistive switches: devices, fabrication and integration. Appl. Phys. A102, 955–965 (2011)CrossRefGoogle Scholar
  27. 27.
    W. Wu, G.Y. Jung, D.L. Olynick et al., One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography. Appl. Phys. A 80, 1173–1178 (2005)CrossRefGoogle Scholar
  28. 28.
    G.Y. Jung, S. Ganapathiappan, D.A.A. Ohlberg et al., Fabrication of a 34 × 34 crossbar structure at 50 nm half-pitch by UV-based nanoimprint lithography. Nano Lett. 4, 1225–1229 (2004)CrossRefGoogle Scholar
  29. 29.
    Q.F. Xia, J.J. Yang, W. Wu, X. Li, R.S. Williams, Self-aligned memristor cross point arrays fabricated with one nanoimprint lithography step. Nano Lett. 10, 2909–2914 (2010)CrossRefGoogle Scholar
  30. 30.
    M.T. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962)CrossRefGoogle Scholar
  31. 31.
    D.C. Kim, S. Seo, S.E. Ahn, D.-S. Suh, M.J. Lee, B.-H. Park, I.K. Yoo, I.G. Baek, H.-J. Kim, E.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U.-I. Chung, J.T. Moon, B.I. Ryu, Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl. Phys. Lett. 88, 202102 (2006)CrossRefGoogle Scholar
  32. 32.
    T.-N. Fang, S. Kaza, S. Haddad, A. Chen, Y.-C. Wu, Z. Lan, S. Avanzino, D. Liao, C. Gopalan, M. Choi, S. Mahdavi, M. Buynoski, Y. Lin, C. Marrian, C. Bill, M. van Buskirk, M. Taguchi, Copper oxide resistive switching for non-volatile memory applications, in Proceedings of the International Conference on Memory Technology and Design, Giens, France (May 2007), pp. 143–146Google Scholar
  33. 33.
    D. Lee, D.-J. Seong, I. Jo, F. Xiang, R. Dong, S. Oh, H. Hwang, Resistance switching of copper doped MoOx films for nonvolatile memory applications. Appl. Phys. Lett. 90, 122104 (2007)CrossRefGoogle Scholar
  34. 34.
    W. Guan, S. Long, Q. Liu, M. Liu, W. Wang, Nonpolar nonvolatile resistive switching in Cu doped ZrO2. IEEE Electron Device Lett. 29, 434–437 (2008)CrossRefGoogle Scholar
  35. 35.
    H. Schröder, D.S. Jeong, Resistive switching in a Pt/TiO2/Pt thin film stack—a candidate for a nonvolatile ReRAM. Microelectr. J. 84, 1982–1985 (2007)CrossRefGoogle Scholar
  36. 36.
    S.-G. Park, B. Magyari-Köpe, Y. Nishi, Electronic correlation effects in reduced rutile TiO2 within the LDA + U method. Phys. Rev. B 82, 115109 (2010)CrossRefGoogle Scholar
  37. 37.
    J.J. Yang, J.P. Strachan, Q.F. Xia et al., Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv. Mater. 22, 4034–4038 (2010)CrossRefGoogle Scholar
  38. 38.
    C.-H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, R. Ramesh, Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485–493 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Blanc, D.L. Staebler, Electrocoloration in SrTiO3—vacancy drift and oxidation-reduction of transition metals. Phys. Rev. B 4, 3548–3557 (1971)CrossRefGoogle Scholar
  40. 40.
    S. Kim et al., Effect of scaling WOx-based RRAMs on their resistive switching characteristics. IEEE Electron Device Lett. 32, 671–673 (2011)CrossRefGoogle Scholar
  41. 41.
    A. Avila, R. Asomoza, Switching in coplanar amorphous hydrogenated silicon devices. Solid State Electron. 44, 17–27 (2000)CrossRefGoogle Scholar
  42. 42.
    C. Schindler, S.C.P. Thermadam, R. Waser, M.N. Kozicki, Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Devices 54, 2762–2768 (2007)CrossRefGoogle Scholar
  43. 43.
    J. Yao, Z.Z. Sun, L. Zhong, D. Natelson, J.M. Tour, Resistive switches and memories from silicon oxide. Nano Lett. 10, 4105–4110 (2010)CrossRefGoogle Scholar
  44. 44.
    J.G. Simmons, R.R. Verderber, Proc. R. Soc. London Ser. A 301, 77–102 (1967)CrossRefGoogle Scholar
  45. 45.
    J. Yao, L. Zhong, D. Natelson, J.M. Tour, J. Am. Chem. Soc. 133(4), 941–948 (2011)CrossRefGoogle Scholar
  46. 46.
    A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, C. Labbe, R. Rizk, A.J. Kenyon, Nanotechnology 23(45), 455201 (2012)CrossRefGoogle Scholar
  47. 47.
    Y.-F. Chang, P.-Y. Chen, B. Fowler, Y.-T. Chen, F. Xue, Y. Wang, F. Zhou, J.C. Lee, J. Appl. Phys. 112(12), 123702 (2012)CrossRefGoogle Scholar
  48. 48.
    C. Li, H. Jiang, Q. Xia, Low voltage resistive switching devices based on chemically produced silicon oxide. Appl. Phys. Lett. 103, 062104 (2013)Google Scholar
  49. 49.
    C.-I. Hsieh, et al., Forming-free resistive switching of TiOx layers with oxygen injection treatments, in 2011 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA). doi:10.1109/VTSA.2011.5872234Google Scholar
  50. 50.
    H. Jiang, Q. Xia, Improved switching uniformity for TiO2/HfO2 bi-layer memristive devices, in The 57th International Conference on Electron, Ion, and Photon Beam Technology & Nanofabrication (EIPBN’13), Nashville, TN (28–31 May 2013)Google Scholar
  51. 51.
    J.J. Yang et al., Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett. 100, 113501 (2012)CrossRefGoogle Scholar
  52. 52.
    E. Linn, R. Rosezin, C. Kugeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010)CrossRefGoogle Scholar
  53. 53.
    J. Yang, P. Sheridan, W. Lu, Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 100, 203112 (2012)CrossRefGoogle Scholar
  54. 54.
    J.J. Yang et al., Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)CrossRefGoogle Scholar
  55. 55.
    J. Park, et al., Quantized conductive filament formed by limited Cu source in sub-5nm era, in 2011 IEEE International Electron Devices Meeting (IEDM) (2011), pp. 3.7.1–3.7.4. doi: 10.1109/IEDM.2011.6131484
  56. 56.
    B. Govoreanu, et al., 10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation, in 2011 IEEE International Electron Devices Meeting (IEDM) (2011), pp. 31.6.1–31.6.4. doi:10.1109/IEDM.2011.6131652Google Scholar
  57. 57.
    D.H. Kwon et al., Atomic structure of conducting nano-filaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)CrossRefGoogle Scholar
  58. 58.
    D.B. Strukov, K.K. Likharev, CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888–900 (2005)CrossRefGoogle Scholar
  59. 59.
    G.S. Snider, R.S. Williams, Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18, 035204 (2007)CrossRefGoogle Scholar
  60. 60.
    P. Lin, S. Pi, Q. Xia, 3D integration of planar crossbar memristive devices with CMOS substrates. IEEE. Trans. Nanotechnol. (2013)Google Scholar
  61. 61.
    D.B. Strukov, R.S. Williams, Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Natl. Acad. Sci. USA 106, 20155–20158 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Nanodevices and Integrated Systems Laboratory, Department of Electrical and Computer EngineeringUniversity of MassachusettsAmherstUSA

Personalised recommendations