Skip to main content

Memristor Device Engineering and CMOS Integration for Reconfigurable Logic Applications

  • Chapter
  • First Online:
Memristors and Memristive Systems

Abstract

This chapter reviews the application of memristive devices as reconfigurable switches. First, the fundamental performance metrics (power consumption, endurance, switch speed, IV nonlinearity, CMOS compatibility, ON/OFF ratio, etc.) of memristors as switches are discussed. Device engineering approaches including fabrication techniques, choice of materials, and geometry engineering are then reviewed. Finally, hybrid memristor/CMOS circuits that integrate CMOS with memristive devices as reconfigurable switches are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Moore, Cramming more components onto integrated circuits. Electron. Mag. 38, 114–117 (1965)

    Google Scholar 

  2. L.O. Chua, Memristor—missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  3. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–233 (1976)

    Article  MathSciNet  Google Scholar 

  4. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  5. S.D. Ha, S. Ramanathan, Adaptive oxide electronics: a review. J. Appl. Phys. 110, 071101 (2011)

    Article  Google Scholar 

  6. M.-J. Lee et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 10, 625–630 (2011)

    Article  Google Scholar 

  7. A.C. Torrezan et al., Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22, 485203 (2011)

    Article  Google Scholar 

  8. M.D. Pickett, R.S. Williams, Nanotechnology 23, 215202 (2012)

    Article  Google Scholar 

  9. C. Nauenheim, C. Kuegeler, S. Trellenkamp, A. Ruediger, R. Waser, in Proceedings of 10th International Conference on Ultimate Integration on Silicon (2009), p. 135

    Google Scholar 

  10. I.G. Baek, D.C. Kim, M.J. Lee, H.-J. Kim, E.K. Yim, M.S. Lee, J.E. Lee, S.E. Ahn, S. Seo, J.H. Lee, J.C. Park, Y.K. Cha, S.O. Park, H.S. Kim, I.K. Yoo, U.-I. Chung, J.T. Moon, B.I. Ryu, Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application, in Proceedings of the Electron Device Meeting, San Francisco, CA (December 2005), pp. 750–753

    Google Scholar 

  11. A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, M. Taguchi, Non-volatile resistive switching for advanced memory applications. IEDM Tech. Dig., 765–768 (2005)

    Google Scholar 

  12. X.M. Chen, G.H. Wu, D.H. Bao, Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications. Appl. Phys. Lett. 93, 093501 (2008)

    Article  Google Scholar 

  13. Q.F. Xia et al., Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640–3645 (2009)

    Article  Google Scholar 

  14. J. Borghetti et al., ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010)

    Article  Google Scholar 

  15. G.S. Snider, Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18, 365202 (2007)

    Article  Google Scholar 

  16. Y.V. Pershin, S. La Fontaine, M. Di Ventra, Memristive model of amoeba’s learning. Phys. Rev. E 80, 021926 (2009)

    Article  Google Scholar 

  17. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Lett. 10, 1297 (2010)

    Article  Google Scholar 

  18. J.J. Yang et al., High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010)

    Article  Google Scholar 

  19. S. Gaba, P. Sheridan, J. Zhou, S. Choi, W. Lu, Stochastic memristive devices for computing and neuromorphic applications. Nanoscale 5, 5872–5878 (2013)

    Google Scholar 

  20. S.H. Jo, K.-H. Kim, W. Lu, High-density crossbar arrays based on a Si memristive system. Nano Lett. 9, 870–874 (2009)

    Article  Google Scholar 

  21. S. Pi, P. Lin, Q. Xia, Cross point arrays of ultralow power 8 nm by 8 nm memristive devices fabricated with nanoimprint lithography. J. Vac. Sci. Technol. B, (2013), accepted. doi: 10.1116/1.4827021

    Google Scholar 

  22. Q.F. Xia, M.D. Pickett, J.J. Yang, M.–.X. Zhang, J. Borghetti, X. Li, W. Wu, G. Medeiros-Ribeiro, R.S. Williams, Impact of geometry on the performance of memristive nanodevices. Nanotechnology 22, 254026 (2011)

    Article  Google Scholar 

  23. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996)

    Article  Google Scholar 

  24. M. Colburn, S. Johnson, M. Stewart et al., Step and flash imprint lithography: a new approach to high-resolution patterning. Proc. SPIE 3676, 379–389 (1999)

    Article  Google Scholar 

  25. J. Haisma, M. Verheijen, K. vanden Heuvel, J. vanden Berg, Mold-assisted nanolithography: a process for reliable pattern replication. J. Vac. Sci. Technol. B 14, 4124–4128 (1996)

    Article  Google Scholar 

  26. Q.F. Xia, Nanoscale resistive switches: devices, fabrication and integration. Appl. Phys. A102, 955–965 (2011)

    Article  Google Scholar 

  27. W. Wu, G.Y. Jung, D.L. Olynick et al., One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography. Appl. Phys. A 80, 1173–1178 (2005)

    Article  Google Scholar 

  28. G.Y. Jung, S. Ganapathiappan, D.A.A. Ohlberg et al., Fabrication of a 34 × 34 crossbar structure at 50 nm half-pitch by UV-based nanoimprint lithography. Nano Lett. 4, 1225–1229 (2004)

    Article  Google Scholar 

  29. Q.F. Xia, J.J. Yang, W. Wu, X. Li, R.S. Williams, Self-aligned memristor cross point arrays fabricated with one nanoimprint lithography step. Nano Lett. 10, 2909–2914 (2010)

    Article  Google Scholar 

  30. M.T. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962)

    Article  Google Scholar 

  31. D.C. Kim, S. Seo, S.E. Ahn, D.-S. Suh, M.J. Lee, B.-H. Park, I.K. Yoo, I.G. Baek, H.-J. Kim, E.K. Yim, J.E. Lee, S.O. Park, H.S. Kim, U.-I. Chung, J.T. Moon, B.I. Ryu, Electrical observations of filamentary conductions for the resistive memory switching in NiO films. Appl. Phys. Lett. 88, 202102 (2006)

    Article  Google Scholar 

  32. T.-N. Fang, S. Kaza, S. Haddad, A. Chen, Y.-C. Wu, Z. Lan, S. Avanzino, D. Liao, C. Gopalan, M. Choi, S. Mahdavi, M. Buynoski, Y. Lin, C. Marrian, C. Bill, M. van Buskirk, M. Taguchi, Copper oxide resistive switching for non-volatile memory applications, in Proceedings of the International Conference on Memory Technology and Design, Giens, France (May 2007), pp. 143–146

    Google Scholar 

  33. D. Lee, D.-J. Seong, I. Jo, F. Xiang, R. Dong, S. Oh, H. Hwang, Resistance switching of copper doped MoOx films for nonvolatile memory applications. Appl. Phys. Lett. 90, 122104 (2007)

    Article  Google Scholar 

  34. W. Guan, S. Long, Q. Liu, M. Liu, W. Wang, Nonpolar nonvolatile resistive switching in Cu doped ZrO2. IEEE Electron Device Lett. 29, 434–437 (2008)

    Article  Google Scholar 

  35. H. Schröder, D.S. Jeong, Resistive switching in a Pt/TiO2/Pt thin film stack—a candidate for a nonvolatile ReRAM. Microelectr. J. 84, 1982–1985 (2007)

    Article  Google Scholar 

  36. S.-G. Park, B. Magyari-Köpe, Y. Nishi, Electronic correlation effects in reduced rutile TiO2 within the LDA + U method. Phys. Rev. B 82, 115109 (2010)

    Article  Google Scholar 

  37. J.J. Yang, J.P. Strachan, Q.F. Xia et al., Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv. Mater. 22, 4034–4038 (2010)

    Article  Google Scholar 

  38. C.-H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, R. Ramesh, Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485–493 (2009)

    Article  Google Scholar 

  39. J. Blanc, D.L. Staebler, Electrocoloration in SrTiO3—vacancy drift and oxidation-reduction of transition metals. Phys. Rev. B 4, 3548–3557 (1971)

    Article  Google Scholar 

  40. S. Kim et al., Effect of scaling WOx-based RRAMs on their resistive switching characteristics. IEEE Electron Device Lett. 32, 671–673 (2011)

    Article  Google Scholar 

  41. A. Avila, R. Asomoza, Switching in coplanar amorphous hydrogenated silicon devices. Solid State Electron. 44, 17–27 (2000)

    Article  Google Scholar 

  42. C. Schindler, S.C.P. Thermadam, R. Waser, M.N. Kozicki, Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Devices 54, 2762–2768 (2007)

    Article  Google Scholar 

  43. J. Yao, Z.Z. Sun, L. Zhong, D. Natelson, J.M. Tour, Resistive switches and memories from silicon oxide. Nano Lett. 10, 4105–4110 (2010)

    Article  Google Scholar 

  44. J.G. Simmons, R.R. Verderber, Proc. R. Soc. London Ser. A 301, 77–102 (1967)

    Article  Google Scholar 

  45. J. Yao, L. Zhong, D. Natelson, J.M. Tour, J. Am. Chem. Soc. 133(4), 941–948 (2011)

    Article  Google Scholar 

  46. A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, C. Labbe, R. Rizk, A.J. Kenyon, Nanotechnology 23(45), 455201 (2012)

    Article  Google Scholar 

  47. Y.-F. Chang, P.-Y. Chen, B. Fowler, Y.-T. Chen, F. Xue, Y. Wang, F. Zhou, J.C. Lee, J. Appl. Phys. 112(12), 123702 (2012)

    Article  Google Scholar 

  48. C. Li, H. Jiang, Q. Xia, Low voltage resistive switching devices based on chemically produced silicon oxide. Appl. Phys. Lett. 103, 062104 (2013)

    Google Scholar 

  49. C.-I. Hsieh, et al., Forming-free resistive switching of TiOx layers with oxygen injection treatments, in 2011 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA). doi:10.1109/VTSA.2011.5872234

    Google Scholar 

  50. H. Jiang, Q. Xia, Improved switching uniformity for TiO2/HfO2 bi-layer memristive devices, in The 57th International Conference on Electron, Ion, and Photon Beam Technology & Nanofabrication (EIPBN’13), Nashville, TN (28–31 May 2013)

    Google Scholar 

  51. J.J. Yang et al., Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett. 100, 113501 (2012)

    Article  Google Scholar 

  52. E. Linn, R. Rosezin, C. Kugeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9, 403–406 (2010)

    Article  Google Scholar 

  53. J. Yang, P. Sheridan, W. Lu, Complementary resistive switching in tantalum oxide-based resistive memory devices. Appl. Phys. Lett. 100, 203112 (2012)

    Article  Google Scholar 

  54. J.J. Yang et al., Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008)

    Article  Google Scholar 

  55. J. Park, et al., Quantized conductive filament formed by limited Cu source in sub-5nm era, in 2011 IEEE International Electron Devices Meeting (IEDM) (2011), pp. 3.7.1–3.7.4. doi:10.1109/IEDM.2011.6131484

  56. B. Govoreanu, et al., 10 × 10 nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation, in 2011 IEEE International Electron Devices Meeting (IEDM) (2011), pp. 31.6.1–31.6.4. doi:10.1109/IEDM.2011.6131652

    Google Scholar 

  57. D.H. Kwon et al., Atomic structure of conducting nano-filaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)

    Article  Google Scholar 

  58. D.B. Strukov, K.K. Likharev, CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888–900 (2005)

    Article  Google Scholar 

  59. G.S. Snider, R.S. Williams, Nano/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnology 18, 035204 (2007)

    Article  Google Scholar 

  60. P. Lin, S. Pi, Q. Xia, 3D integration of planar crossbar memristive devices with CMOS substrates. IEEE. Trans. Nanotechnol. (2013)

    Google Scholar 

  61. D.B. Strukov, R.S. Williams, Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Natl. Acad. Sci. USA 106, 20155–20158 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the financial support from the U. S. Air Force Office of Scientific Research (AFOSR) (FA9550-12-1-0038), the Defense Advanced Research Program Agency (DARPA) (N66001-12-1-4217), and the U. S. National Science Foundation (NSF) (ECCS-1253073) for his research at UMass Amherst. Work done at Hewlett-Packard Labs was under partial sponsorship from the US Government’s Nano-Enabled Technology Initiative. The author would like to acknowledge help from current students at UMass Amherst and former colleagues at HP Labs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangfei Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xia, Q. (2014). Memristor Device Engineering and CMOS Integration for Reconfigurable Logic Applications. In: Tetzlaff, R. (eds) Memristors and Memristive Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9068-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9068-5_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9067-8

  • Online ISBN: 978-1-4614-9068-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics