Skip to main content

Memristor-Based Resistive Computing

  • Chapter
  • First Online:
Memristors and Memristive Systems

Abstract

This chapter reviews recent technology, circuits, and systems trends in memristive electronics, with particular attention to ultra-dense and energy-efficient resistive logic gates and signal processing. A reconfigurable nonvolatile computing platform that harnesses memristor properties is devised to deploy massive arrays of nanoscale resistive memory devices and advance their computing capabilities with much lowered energy consumption than the conventional charge-based VLSI systems. With application of memristive devices for stateful logic gates and multipliers, nonvolatile latches with high integration density and CMOS compatibility, combining the memristor technology with the prevailing CMOS technology pose. To prolong the Moore’s Law beyond the hitherto observed technological limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.O. Chua, Memristor-the missing circuit element. IEEE Trans. Circuits Theory 18, 507–519 (1971)

    Article  Google Scholar 

  2. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  3. D.B. Strukov et al., The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  4. ERD/ERM Final Report, ITRS (2010)

    Google Scholar 

  5. M. Di Ventra, Y.V. Preshin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)

    Article  Google Scholar 

  6. D.B. Strukov, K.K. Likharev, CMOLFPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16, 888–900 (2005)

    Article  Google Scholar 

  7. G.S. Snider, R.S. Williams, Nano/CMOS architectures using a field programmable nanowire interconnect. Nanotechnology 18, 035204 (2007)

    Article  Google Scholar 

  8. S. Shin, K. Kim, S.M. Kang, Memristor-based fine resolution resistance and its applications, in ICCCAS 2009 (2009), pp. 948–951

    Google Scholar 

  9. S. Shin, K. Kim, S.M. Kang, Memristor application to programmable analog ICs. IEEE Trans. Nanotechnol. 10(2), 266–270 (2011)

    Article  Google Scholar 

  10. D. Varghese, G. Gandhi, Memristor based high linear range differential pair, in ICCCAS 2009 (2009), pp. 935–938

    Google Scholar 

  11. Y.V. Pershin, M.D. Ventra, Practical approach to programmable analog circuits with memristors. IEEE Trans. Circuits Syst. I 57(8), 1857–1864 (2010)

    Article  MathSciNet  Google Scholar 

  12. S. Shin, K. Kim, S.M. Kang, Analysis of passive memristive devices array: data-dependent statistical model and self-adaptable sense resistance for RRAMs. Proc. IEEE 100(6), 2021–2032 (2012)

    Article  Google Scholar 

  13. B. Mouttet, Proposal for memristors in signal processing. Nano-Net 2008, 11–13 (2009)

    Article  Google Scholar 

  14. S.H. Jo et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  MathSciNet  Google Scholar 

  15. D.B. Strukov, R.S. Williams, Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Natl. Acad. Sci. USA 106(48), 20155–20158 (2009)

    Article  Google Scholar 

  16. P.J. Kuekes et al., The crossbar latch: logic value storage, restoration, and inversion in crossbar circuits. J Appl. Phys. 97, 034301 (2005)

    Article  Google Scholar 

  17. P. Kuekes, Material implication: digital logic with memristors, in Memristor and Memristive Systems Symposium (November 21, 2008)

    Google Scholar 

  18. J. Borghetti et al., A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proc. Natl. Acad. Sci. USA 106(6), 1699–1703 (2009)

    Article  Google Scholar 

  19. J. Borghetti et al., ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–875 (2010)

    Article  Google Scholar 

  20. K. Kim, S. Shin, S.M. Kang, Stateful logic pipeline architecture. IEEE Int. Symp. Circuits Syst. 2011, 2497–2500 (2011)

    Google Scholar 

  21. S. Shin, K. Kim, S.M. Kang, Reconfigurable stateful NOR gate for large-scale logic array integrations. IEEE Trans. Circuits Syst. II 58(7), 442–446 (2011)

    Article  Google Scholar 

  22. K. Kim, S. Shin, S.M. Kang, Field programmable stateful logic array. IEEE Trans. Comput.-Aided Design 30(12), 1800–1813 (2011)

    Article  Google Scholar 

  23. S.M. Kang, S. Shin, Energy-efficient memristive analog and digital electronics. Adv. Neuromorphic Memristor Sci. Appl. Springer Ser. Cogn. Neural Syst. 4, 181–209 (2012)

    Article  Google Scholar 

  24. S. Shin, K. Kim, S.M. Kang, Memristive XOR for resistive multiplier. Electron. Lett. 48(2), 78–80 (2012)

    Article  Google Scholar 

  25. S. Shin, K. Kim, S.M. Kang, Memristive computing-multiplication and correlation. IEEE Int. Symp. Circuits Syst. 2012, 1608–1611 (2012)

    Google Scholar 

  26. S. Shin, K. Kim, S.M. Kang, Resistie Computing: Memristors-Enabled Signal Multiplication. IEEE Trans. Circ. Syst. I 60(5), 1241–1249 (2013)

    Google Scholar 

  27. G. Gill, J. Hansen, M. Singh, Loop pipelining for high-throughput stream computation using self-timed rings, in Proceedings of ICCAD (2006), pp. 289–296

    Google Scholar 

  28. J. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach, 2nd edn. (Morgan Kaufmann, San Mateo, 1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Mo Steve Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kang, SM.S., Shin, S. (2014). Memristor-Based Resistive Computing. In: Tetzlaff, R. (eds) Memristors and Memristive Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9068-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9068-5_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9067-8

  • Online ISBN: 978-1-4614-9068-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics