Skip to main content

Presentation of the Problems and Tools of the Finite Horizon

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Optimization ((BRIEFSOPTI))

Abstract

In Sect. 1.2 of this first chapter, we formulate the infinite-horizon discrete-time optimal control problems that we study. The considered systems are governed by difference equations or by difference inequations. We define four optimality criterions on such systems. In Sect. 1.3, we describe a method that we call the reduction to finite horizon: we associate to an optimal process of an infinite-horizon problem a sequence of finite-horizon problems for which the restrictions of the optimal process are solutions. In Sect. 1.4, we begin to specify the notion of strong maximum principle and of weak maximum principle and we use the contribution of Boltyanskii to understand interesting differences between them. To obtain weak maximum principles on finite-horizon problems we use the multiplier rules of Halkin and of Clarke. To obtain strong maximum principles on finite-horizon problems we present a result of Michel and we adapt a condition of Pschenichnyi.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V.M. Alexeev, V.M. Tihomirov, S.V. Fomin, Commande Optimale, French edn. (MIR, Moscow, 1982)

    Google Scholar 

  2. J.-P. Aubin, Mathematical Methods of Game and Economic Theory, Revised edn. (Dover Publication, Inc., Mineola, New York, 2007)

    Google Scholar 

  3. C. Berge, Topological Spaces, English edn. (Dover Publications, Inc., Mineola, New York, 1997)

    Google Scholar 

  4. J. Blot, Équation d’Euler-Lagrange, in Dictionnaire des sciences économiques, ed. by C. Jessua, C. Labrousse, D. Vitry, D. Gaumont (Presses Universitaires de France, Paris, 2001) pp. 400–401

    Google Scholar 

  5. J. Blot, Infinite-horizon Pontryagin principle without invertibility, J. Nonlinear Convex Anal. 10(2), 157–176 (2009)

    MathSciNet  MATH  Google Scholar 

  6. J. Blot, N. Hayek, F. Pekergin, N. Pekergin, The competition between Internet service qualities from a difference games viewpoint, Int. Game Theor Rev. 14(1), (2012) 1250001 (36 pages), doi: 10.1142/SO 219198912500016.

    Google Scholar 

  7. N. Bourbaki, Éléments de mathématiques, topologie générale, Chapitres I à IV (Hermann, Paris, 1971)

    Google Scholar 

  8. W.A. Brock, On existence of weakly maximal programmes in a multi-sector economy, The Rev. Econ. Stud. 37(2), 12970, 275–280.

    Google Scholar 

  9. G. Chichilnisky, An axiomatic approach of sustainable development, Soc. Choice Welf. 13, 231–257 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Chichilnisky, P.J. Kalman, Application of functional analysis to models of efficient allocation of economic resources, J. Optim. Theor. Appl. 30(1), 19–32 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. C.W. Clark, Mathematical Bioeconomics: Optimal Management of Renewable Resources (Wiley Inc., Hoboken, NJ, 2005)

    Google Scholar 

  12. S.D. Flam, R.J.B. Wets, Existence results and finite horizon approximates for infinite horizon optimization problems, Econometrica 55(5), 1187–1209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Gale, An optimal development in a multi-sector economy, The Rev. Econ. Stud. 34(1), 1–18 (1967)

    Article  MathSciNet  Google Scholar 

  14. H. Hotelling, The economics of exhaustive resources, J. Polit. Econ. 39(2), 137–175 (1931)

    Article  MathSciNet  Google Scholar 

  15. A. Ioffe, V.M. Tihomirov, Theory of Extremal Problems (North-Holland Publishing Company, Amsterdam, 1979)

    MATH  Google Scholar 

  16. W. Krabs, S.W. Pickl, Analysis, Controllability and Optimization of Time-Discrete Systems and Differential Games, Lecture Notes in Economics and Mathematical Systems n 529, (Springer, Berlin, 2003)

    Google Scholar 

  17. J. P. La Salle, The Stability and the Control of Discrete Processes (Springer, New York, 1986)

    Google Scholar 

  18. C. Le Van, R.-A. Dana, Dynamic Programming in Economics (Kluwer Academic Publisher, 2002)

    Google Scholar 

  19. L.W. McKenzie, Optimal Economic Growth, turnpike Theorems and Comparative Dynamics, ed. by K.J. Arroxw, M.D. Intriligator. Handbook of Mathematical Economics, volume III, (North-Holland, Amsterdam, 1986) pp. 1281–1355

    Google Scholar 

  20. P. Michel, Une démonstration élémentaire du principe du maximum de Pontriaguine, Bull. Math. Économiques, 14, 9–23 (1977)

    Google Scholar 

  21. P. Michel, Programmes mathématiques mixtes. Application au principe du maximum en temps discret dans le cas déterministe et dans le cas stochastique, RAIRO Recherche Opérationnelle, 14(1), 1–19 (1980)

    MATH  Google Scholar 

  22. P. Michel, Some clarifications on the transversality conditions, Econometrica 58(3), 705–728 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. H.J. Pesch, M. Plail, The Cold War and the maximum principle of optimal control. Documenta Mathematica, Extra volume ISMP optimization stories, 331–343 (2012)

    Google Scholar 

  24. B.N. Pschenichnyi, Necessary Conditions for an Extremum, English edn. (M. Dekker, New York, 1971)

    Google Scholar 

  25. F.P. Ramsey, A mathematical theory of saving, The Econ. J. 38(152), 543–559 (1928)

    Article  Google Scholar 

  26. A.K. Skiba, Optimal growth with a convex-concave production function, Econometrica, 46(3), 527–539 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. E.D. Sontag, Mathematical Control Theory (Springer, New York, 1990)

    Book  MATH  Google Scholar 

  28. N.L. Stokey, R.E. Lucas, E.C. Prescott, Recursive Methods in Economic Dynamics (Harvard University Press, Cambridge, MA, 1989)

    MATH  Google Scholar 

  29. W.R.S. Sutherland, On optimal development in a multi-sectoral economy, Rev. Econ. Stud. 37(4), 585–589 (1970)

    Article  MATH  Google Scholar 

  30. C.C. von Weizsäcker, Existence of optimal programs of accumulation for an infinite time horizon, Rev. Econ. Stud. 32(2), 85–104 (1965)

    Article  Google Scholar 

  31. M.L. Weitzman, Duality theory for infinite horizon convex models, Manag. Sci. 19, 783–789 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  32. A.J. Zaslavski, Existence and Structure Results of Optimal Solutions of Variational Problems, in Recent Developments in Optimization and Nonlinear Analysis, ed. by Y. Censor, S. Reich, Contemporary Mathematics, 204, 247–278 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Joël Blot, Naïla Hayek

About this chapter

Cite this chapter

Blot, J., Hayek, N. (2014). Presentation of the Problems and Tools of the Finite Horizon. In: Infinite-Horizon Optimal Control in the Discrete-Time Framework. SpringerBriefs in Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9038-8_1

Download citation

Publish with us

Policies and ethics