Skip to main content

Price-Driven Hydropower Dispatch Under Uncertainty

  • Chapter
  • First Online:
Handbook of Risk Management in Energy Production and Trading

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 199))

Abstract

After a review of hydropower optimization models, we focus on price-driven hydropower dispatch models under uncertainty of the electricity price. We present two modeling approaches for pumped-storage plants. In the first model, the water level is constrained in expectation. We discuss the marginal price of water, which is obtained analytically, and influences of price variances. The second model is a multistage stochastic linear program on a scenario tree. Financial risk is constrained by a time-consistent extension of CVaR (conditional-value-at-risk). The model has two time scales: The short-term dispatch decision is separated from the long-term planning by aggregating electricity prices into occupation times at price levels. The risk constraint is tested in a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acerbi C, Tasche D (2002) On the coherence of expected shortfall. J Bank Financ 26(7):1487–1503. doi:10.1016/S0378-4266(02)00283-2

    Article  Google Scholar 

  2. Archibald T, Buchanan C, McKinnon K, Thomas L (1999) Nested Benders decomposition and dynamic programming for reservoir optimisation. J Oper Res Soc 50(5):468–479. doi:10.1057/palgrave.jors.2600727

    Google Scholar 

  3. Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Financ 9(3):203–228. doi:10.1111/1467-9965.00068

    Article  Google Scholar 

  4. Artzner P, Delbaen F, Eber JM, Heath D, Ku H (2007) Coherent multiperiod risk adjusted values and Bellman’s principle. Ann Oper Res 152:5–22. doi:10.1007/s10479-006-0132-6

    Article  Google Scholar 

  5. Barrera-Esteve C, Bergeret F, Dossal C, Gobet E, Meziou A, Munos R, Reboul-Salze D (2006) Numerical methods for the pricing of swing options: A stochastic control approach. Methodol Comput Appl Probab 8(4):517–540. doi:10.1007/s11009-006-0427-8

    Article  Google Scholar 

  6. Bellman R (1954) Some applications of the theory of dynamic programming—a review. Oper Res 2(3):275–288. doi:10.1287/opre.2.3.275

    Article  Google Scholar 

  7. Benth FE, Koekebakker S (2008) Stochastic modeling of financial electricity contracts. Energ Econ 30(3):1116–1157. doi:10.1016/j.eneco.2007.06.005

    Article  Google Scholar 

  8. Benth FE, Kiesel R, Nazarova A (2012) A critical empirical study of three electricity spot price models. Energ Econ 34(5):1589–1616. doi:10.1016/j.eneco.2011.11.012

    Article  Google Scholar 

  9. Berling P, de Albéniz VM (2011) Optimal inventory policies when purchase price and demand are stochastic. Oper Res 59(1):109–124. doi:10.1287/opre.1100.0862

    Article  Google Scholar 

  10. Birge JR, Louveaux F (1997) Introduction to stochastic programming. In: Springer series in operations research and financial engineering. Springer, New York. doi:10.1007/b97617

    Google Scholar 

  11. Borodin AN, Ibragimov I (1995) Limit theorems for functionals of random walks. In: Proceedings of the Steklov institute of mathematics, vol 195. American Mathematical Society

    Google Scholar 

  12. Burger M, Klar B, Müller A, Schindlmayr G (2004) A spot market model for pricing derivatives in electricity markets. Quant Financ 4(1):109–122. doi:10.1088/1469-7688/4/1/010

    Article  Google Scholar 

  13. Carmona R (ed) (2009) Indifference pricing: theory and applications. In: Princeton series in financial engineering. Princeton University Press, Princeton

    Google Scholar 

  14. Catalão J, Pousinho H, Contreras J (2012) Optimal hydro scheduling and offering strategies considering price uncertainty and risk management. Energy 37(1):237–244. doi:10.1016/j.energy.2011.11.041

    Article  Google Scholar 

  15. Dantzig GB, Infanger G (1997) Intelligent control and optimization under uncertainty with application to hydro power. Eur J Oper Res 97(2):396–407. doi:10.1016/S0377-2217(96)00206-8

    Article  Google Scholar 

  16. Dantzig GB, Thapa MN (2003) Linear programming – 2: theory and extensions. In: Springer series in operations research and financial engineering. Springer, New York. doi:10.1007/b97283

    Google Scholar 

  17. De Ladurantaye D, Gendreau M, Potvin JY (2007) Strategic bidding for price-taker hydroelectricity producers. IEEE Trans Power Syst 22(4), 2187–2203. doi:10.1109/TPWRS.2007.907457

    Article  Google Scholar 

  18. Deane JP, McKeogh EJ, Gallachóir BPÓ (2013) Derivation of intertemporal targets for large pumped hydro energy storage with stochastic optimization. IEEE Trans Power Syst. doi:10.1109/TPWRS.2012.2236111

    Google Scholar 

  19. Densing M (2007) Hydro-electric power plant dispatch-planning – multi-stage stochastic programming with time-consistent constraints on risk. Ph.D. thesis, ETH, Zürich. doi:10.3929/ethz-a-005464814. Nr. 17244

  20. Densing M (2012) Occupation times of the Ornstein–Uhlenbeck process: Functional PCA and evidence from electricity prices. Physica A 391(23):5818–5826. doi:10.1016/j.physa.2012.07.040

    Article  Google Scholar 

  21. Densing M (2013) Dispatch planning using newsvendor dual problems and occupation times: Application to hydropower. Eur J Oper Res 228(2):321–330. doi:10.1016/j.ejor.2013.01.033

    Article  Google Scholar 

  22. Densing M, Mayer J (2012) Multiperiod stochastic optimization problems with time-consistent risk constraints. In: Klatte D, Lüthi HJ, Schmedders K (eds) Operations research proceedings 2011, Operations research proceedings. Springer, Berlin, pp 521–526. doi:10.1007/978-3-642-29210-1-83

    Chapter  Google Scholar 

  23. Doege J, Schiltknecht P, Lüthi HJ (2006) Risk management of power portfolios and valuation of flexibility. OR Spectrum 28(2):267–287. doi:10.1007/s00291-005-0005-4

    Article  Google Scholar 

  24. Doege J, Fehr M, Hinz J, Lüthi HJ, Wilhelm M (2009) Risk management in power markets: the hedging value of production flexibility. Eur J Oper Res 199(3):936–943. doi:10.1016/j.ejor.2009.01.067

    Article  Google Scholar 

  25. EEX: European Energy Exchange (2011) Connecting markets - power, natural gas, emissions, coal, Leipzig

    Google Scholar 

  26. EEX: European Energy Exchange (2011) Historical market data – power spot market. www.eex.com

  27. Eichhorn A, Römisch W (2005) Polyhedral risk measures in stochastic programming. SIAM J Optimiz 16(1):69–95. doi:10.1137/040605217

    Article  Google Scholar 

  28. Eichhorn A, Heitsch H, Römisch W (2010) Stochastic optimization of electricity portfolios: Scenario tree modeling and risk management. In: Rebennack S, Pardalos PM, Pereira MVF, Iliadis NA (eds) Handbook of power systems II, Energy systems. Springer, Berlin, pp 405–432. doi:10.1007/978-3-642-12686-4

    Chapter  Google Scholar 

  29. Faria E, Fleten SE (2011) Day-ahead market bidding for a Nordic hydropower producer: taking the Elbas market into account. Comput Manage Sci 8:75–101. doi:10.1007/s10287-009-0108-5

    Article  Google Scholar 

  30. Fleten SE, Kristoffersen TK (2007) Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer. Eur J Oper Res 181(2):916–928. doi:10.1016/j.ejor.2006.08.023

    Article  Google Scholar 

  31. Fleten SE, Kristoffersen TK (2008) Short-term hydropower production planning by stochastic programming. Comput Oper Res 35(8):2656–2671. doi:10.1016/j.cor.2006.12.022

    Article  Google Scholar 

  32. Fleten SE, Wallace SW, Ziemba WT (2002) Hedging electricity portfolios via stochastic programming. In: Greengard C, Ruszczyński A (eds) Decision making under uncertainty: energy and power. The IMA volumes in mathematics and its applications, vol 128. Springer, New York, pp 71–94. doi:10.1007/978-1-4684-9256-9

    Chapter  Google Scholar 

  33. Fleten SE, Haugstvedt D, Steinsbø JA, Belsnes M, Fleischmann F (2011) Bidding hydropower generation: integrating short- and long-term scheduling. In: 17th power system computation conference. http://mpra.ub.uni-muenchen.de/id/eprint/44450

  34. Fleten SE, Keppo J, Näsäkkälä E (2012) Risk management in electric utilities. In: Kouvelis P, Dong L, Boyabatli O, Li R (eds) Handbook of integrated risk management in global supply chains, Chap 18, 1st edn. Wiley, Hoboken, pp 495–513. doi:10.1002/9781118115800.ch18

    Google Scholar 

  35. Fosso OB, Gjelsvik A, Haugstad A, Mo B, Wangensteen I (1999) Generation scheduling in a deregulated system - the Norwegian case. IEEE Trans Power Syst 14(1):75–81. doi:10.1109/59.744487

    Article  Google Scholar 

  36. Frauendorfer K, Güssow J (2002) Stochastic multistage programming in the operation and management of a power system. In: Marti K (ed) Stochastic optimization techniques – numerical methods and technical applications. Lecture notes in economics and mathematical system, vol 513. Springer, Berlin, pp 199–222

    Google Scholar 

  37. Geman H, Ohana S (2008) Time-consistency in managing a commodity portfolio: a dynamic risk measure approach. J Bank Financ 32(10):1991–2005. doi:10.1016/j.jbankfin.2007.05.020

    Article  Google Scholar 

  38. Gjelsvik A, Mo B, Haugstad A (2010) Long- and medium-term operations planning and stochastic modelling in hydro-dominated power systems based on stochastic dual dynamic programming. In: Rebennack S, Pardalos PM, Pereira MVF, Iliadis NA (eds) Handbook of power systems I, Energy systems. Springer, Berlin, pp 33–55. doi:10.1007/978-3-642-02493-1

    Chapter  Google Scholar 

  39. Grinold RC (1983) Model building techniques for the correction of end effects in multistage convex programs. Oper Res 31(3):407–431. doi:10.1287/opre.31.3.407

    Article  Google Scholar 

  40. Guigues V, Sagastizábal C (2012) The value of rolling-horizon policies for risk-averse hydro-thermal planning. Eur J Oper Res 217(1):129–140. doi:10.1016/j.ejor.2011.08.017

    Article  Google Scholar 

  41. Heitsch H, Römisch W (2009) Scenario tree modeling for multistage stochastic programs. Math Program 118(2):371–406. doi:10.1007/s10107-007-0197-2

    Article  Google Scholar 

  42. Helseth A, Mo B, Warland G (2010) Long-term scheduling of hydro-thermal power systems using scenario fans. Energ Syst 1:377–391. doi:10.1007/s12667-010-0020-7

    Article  Google Scholar 

  43. Hochreiter R, Wozabal D (2010) A multi-stage stochastic programming model for managing risk optimal electricity portfolios. In: Rebennack S, Pardalos PM, Pereira MVF, Iliadis NA (eds) Handbook of power systems II, Energy systems. Springer, Berlin, pp 383–404. doi:10.1007/978-3-642-12686-4

    Chapter  Google Scholar 

  44. Iliadis NA, Pereira MVF, Granville S, Chabar R, Barroso LA (2007) Portfolio optimization of hydroelectric assets subject to financial indicators. In: 2007 IEEE power engineering society general meeting. Institute of Electrical and Electronics Engineers, pp 1–8. doi:10.1109/PES.2007.385726

  45. Inderfurth K, Kelle P, Kleber R (2013) Dual sourcing using capacity reservation and spot market: optimal procurement policy and heuristic parameter determination. Eur J Oper Res 225(2):298–309. doi:10.1016/j.ejor.2012.08.025

    Article  Google Scholar 

  46. Jacobs J, Freeman G, Grygier J, Morton D, Schultz G, Staschus K, Stedinger J (1995) SOCRATES: a system for scheduling hydroelectric generation under uncertainty. Ann Oper Res 59(1):99–133. doi:10.1007/BF02031745

    Article  Google Scholar 

  47. Jamshidian F, Zhu Y (1997) Scenario simulation: theory and methodology. Financ Stochast 1(1):43–67. doi:10.1007/s007800050016

    Article  Google Scholar 

  48. Kall P, Mayer J (2011) Stochastic linear programming: models, theory, and computation. In: International series in operations research & management science, vol 156, 2nd edn. Springer, New York. doi:10.1007/978-1-4419-7729-8

  49. Kim JH, Powell WB (2011) Optimal energy commitments with storage and intermittent supply. Oper Res 59(6):1347–1360. doi:10.1287/opre.1110.0971

    Article  Google Scholar 

  50. Kleindorfer PR, Li L (2005) Multi-period VaR-constrained portfolio optimization with application to the electric power sector. Energ J 26(1):1–26. doi:10.5547/ISSN0195-6574-EJ-Vol26-No1-1

    Google Scholar 

  51. Kovacevic RM, Paraschiv F (2013) Medium-term planning for thermal electricity production. OR Spectrum. doi:10.1007/s00291-013-0340-9

    Google Scholar 

  52. Kovacevic RM, Pflug GC (2013) Electricity swing option pricing by stochastic bilevel optimization: a survey and new approaches. Stochastic programming e-print series (SPES). http://nbn-resolving.de/urn:nbn:de:kobv:11-100209377

  53. Kristoffersen TK, Fleten SE (2010) Stochastic programming models for short-term power generation scheduling and bidding. In: Bjørndal E, Bjørndal M, Pardalos PM, Rönnqvist M (eds) Energy, natural resources and environmental economics, energy systems. Springer, Berlin, pp 187–200. doi:10.1007/978-3-642-12067-1

    Chapter  Google Scholar 

  54. Kuhn D (2009) Convergent bounds for stochastic programs with expected value constraints. J Optimiz Theory Appl 141(3):597–618. doi:10.1007/s10957-008-9476-1

    Article  Google Scholar 

  55. LaSalle JP (1959) Time optimal control systems. Proc Nat Acad Sci USA 45(4):573–577. http://www.pnas.org/content/45/4

  56. Little JDC (1955) The use of storage water in a hydroelectric system. Oper Res 3(2):187–197. doi:10.1287/opre.3.2.187

    Article  Google Scholar 

  57. Lucia JJ, Schwartz ES (2002) Electricity prices and power derivatives: evidence from the Nordic power exchange. Rev Derivatives Res 5:5–50

    Article  Google Scholar 

  58. Massé P (1946) Les réserves et la régulation de l’avenir dans la vie économique- avenir aléatoire. In: Actualités Scientifiques et Industrielles, vol 1008. Hermann and Cie, Paris

    Google Scholar 

  59. Mo B, Gjelsvik A, Grundt A (2001) Integrated risk management of hydro power scheduling and contract management. IEEE Trans Power Syst 16(2):216–221. doi:10.1109/59.918289

    Article  Google Scholar 

  60. Morton DP (1996) An enhanced decomposition algorithm for multistage stochastic hydroelectric scheduling. Ann Oper Res 64(1):211–235. doi:10.1007/BF02187647

    Article  Google Scholar 

  61. Näsäkkälä E, Keppo J (2008) Hydropower with financial information. Appl Math Financ 15(5-6):503–529. doi:10.1080/13504860701852494

    Article  Google Scholar 

  62. Ni E, Luh PB, Rourke S (2004) Optimal integrated generation bidding and scheduling with risk management under a deregulated power market. IEEE Trans Power Syst 19(1):600–609. doi:10.1109/TPWRS.2003.818695

    Article  Google Scholar 

  63. Nord Pool (2011) Elspot prices. http://www.nordpoolspot.com

  64. Pereira MVF, Pinto LMVG (1985) Stochastic optimization of a multireservoir hydroelectric system: a decomposition approach. Water Resour Res 21(6): 779–792. doi:10.1029/WR021i006p00779

    Article  Google Scholar 

  65. Pereira MVF, Pinto LMVG (1991) Multi-stage stochastic optimization applied to energy planning. Math Program 52(1–3):359–375. doi:10.1007/BF01582895

    Article  Google Scholar 

  66. Pflug GC (2000) Some remarks on the value-at-risk and the conditional value-at-risk. In: Uryasev SP (ed) Pobabilistic constrained optimization. Nonconvex optimization and its application, vol 49, Chap 1. Kluwer Academic, Dordrecht, pp 272–281

    Google Scholar 

  67. Pflug GC, Römisch W (2007) Modeling, measuring, and managing risk. World Scientific, New Jersey. doi:10.1142/9789812708724

    Google Scholar 

  68. Philbrick CRJ, Kitanidis PK (1999) Limitations of deterministic optimization applied to reservoir operations. J Water Resour Plan Manage 125(3):135–142. doi:10.1061/(ASCE)0733-9496(1999)125:3(135)

    Google Scholar 

  69. Philpott AB, de Matos VL (2012) Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion. Eur J Oper Res 218(2):470–483. doi:10.1016/j.ejor.2011.10.056

    Article  Google Scholar 

  70. Philpott AB, Craddock M, Waterer H (2000) Hydro-electric unit commitment subject to uncertain demand. Eur J Oper Res 125(2):410–424. doi:10.1016/S0377-2217(99)00172-1

    Article  Google Scholar 

  71. Powell WB, George A, Simao H, Scott W, Lamont A, Stewart J (2012) Smart: a stochastic multiscale model for the analysis of energy resources, technology, and policy. INFORMS J Comput 24(4):665–682. doi:10.1287/ijoc.1110.0470

    Article  Google Scholar 

  72. Pritchard G, Philpott AB, Neame PJ (2005) Hydroelectric reservoir optimization in a pool market. Math Program 103(3):445–461. doi:10.1007/s10107-004-0565-0

    Article  Google Scholar 

  73. Read EG, Hindsberger M (2010) Constructive dual DP for reservoir optimization. In: Rebennack S, Pardalos PM, Pereira MVF, Iliadis NA (eds) Handbook of power systems I, Energy systems. Springer, Berlin, pp 3–32. doi:10.1007/978-3-642-02493-1

    Chapter  Google Scholar 

  74. Rocha P, Kuhn D (2012) Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules. Eur J Oper Res 216(2): 397–408. doi:10.1016/j.ejor.2011.08.001

    Article  Google Scholar 

  75. Rockafellar RT, Uryasev S (2000) Optimization of conditional value-at-risk. J Risk 2:21–41

    Google Scholar 

  76. Rockafellar RT, Uryasev S (2002) Conditional value-at-risk for general loss distributions. J Bank Financ 26(7):1443–1471. doi:10.1016/S0378-4266(02)00271-6

    Article  Google Scholar 

  77. Römisch W, Vigerske S (2010) Recent progress in two-stage mixed-integer stochastic programming with applications to power production planning. In: Rebennack S, Pardalos PM, Pereira MVF, Iliadis NA (eds) Handbook of power systems I, Energy systems. Springer, Berlin, pp 177–208. doi:10.1007/978-3-642-02493-1

    Chapter  Google Scholar 

  78. Sagastizábal C (2012) Divide to conquer: decomposition methods for energy optimization. Math Program 134(1):187–222. doi:10.1007/s10107-012-0570-7

    Article  Google Scholar 

  79. Sen S, Yu L, Genc T (2006) A stochastic programming approach to power portfolio optimization. Oper Res 54(1):55–72. doi:10.1287/opre.1050.0264

    Article  Google Scholar 

  80. Shapiro A (2011) Analysis of stochastic dual dynamic programming method. Eur J Oper Res 209(1):63–72. doi:10.1016/j.ejor.2010.08.007

    Article  Google Scholar 

  81. Tipping J, Read EG (2010) Hybrid bottom-up/to-down modeling of prices. In: Rebennack S, Pardalos PM, Pereira MVF, Iliadis NA (eds) Handbook of power systems II, Energy systems. Springer, Berlin, pp 213–238. doi:10.1007/978-3-642-12686-4

    Chapter  Google Scholar 

  82. Valenzuela J, Mazumdar M (2005) A probability model for the electricity price duration curve under an oligopoly market. IEEE Trans Power Syst 20(3): 1250–1256. doi:10.1109/TPWRS.2005.851966

    Article  Google Scholar 

  83. Vespucci MT, Maggioni F, Bertocchi MI, Innorta M (2012) A stochastic model for the daily coordination of pumped storage hydro plants and wind power plants. Ann Oper Res 193(1):91–105. doi:10.1007/s10479-010-0756-4

    Article  Google Scholar 

  84. Votruba L, Broža V (1989) Water management in reservoirs, developments in water science, vol 33. Elsevier, Amsterdam. http://www.sciencedirect.com/science/bookseries/01675648/33

  85. Wallace SW (2010) Stochastic programming and the option of doing it differently. Ann Oper Res 177(1):3–8. doi:10.1007/s10479-009-0600-x

    Article  Google Scholar 

  86. Wallace SW, Fleten SE (2003) Stochastic programming models in energy. In: Ruszczyński A, Shapiro A (eds) Stochastic programming. Handbooks in operations research and management science, vol 10. Elsevier, London, pp 637–677 doi:10.1016/S0927-0507(03)10010-2

    Chapter  Google Scholar 

  87. Wolfgang O, Haugstad A, Mo B, Gjelsvik A, Wangensteen I, Doorman G (2009) Hydro reservoir handling in Norway before and after deregulation. Energy 34(10):1642–1651. doi:10.1016/j.energy.2009.07.025

    Article  Google Scholar 

  88. Zivot E, Wang J (2006) Modelling financial time series with S-PLUS, 2nd edn. Springer, New York

    Google Scholar 

Download references

Acknowledgements

I thank H. Turton for valuable suggestions on a draft version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Densing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Densing, M. (2013). Price-Driven Hydropower Dispatch Under Uncertainty. In: Kovacevic, R., Pflug, G., Vespucci, M. (eds) Handbook of Risk Management in Energy Production and Trading. International Series in Operations Research & Management Science, vol 199. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9035-7_4

Download citation

Publish with us

Policies and ethics