Advertisement

Diagnosis of Inherited Neuromuscular Disorders by Next-Generation–Sequencing

  • C. Alexander Valencia
  • M. Ali Pervaiz
  • Ammar Husami
  • Yaping Qian
  • Kejian Zhang
Chapter
Part of the SpringerBriefs in Genetics book series (BRIEFSGENETICS)

Abstract

Inherited neuromuscular disorders (NMD) form a group of genetic diseases that result in long-term disability. The total incidence of NMD is greater than 1 in 3,000 and comprises a group of more than 200 monogenic disorders (Emery 1991). For about half of the cases, the molecular cause has not been identified. An extensive clinical evaluation with complementary gene-by-gene testing is often required to reach an exact diagnosis. Due to the presence of genetic heterogeneity and lack of segregation in sporatic cases, reaching a diagnosis is challenging, lengthy, and expensive. The genetic heterogeneity can be demonstrated by the number of genes involved in specific subgroups of NMD, namely, hereditary sensorimotor neuropathies (HSMN; 50 genes) and congenital muscular dystrophies (12 genes; North 2008; Valencia et al. 2013). In other instances, some NMD genes are very large and are not sequenced completely because it is costly and labor-intensive to sequence by the Sanger method. For the patient, this gene-by-gene approach increases the number of tests that are required, thus, delaying the diagnosis and exposing the patient to unnecessary investigations and treatments, precluding the full benefit of a targeted approach to treatment, and increasing recurrence risk in the families (Vasli et al. 2012).

Keywords

Muscular Dystrophy Sanger Sequencing Molecular Diagnosis Duchenne Muscular Dystrophy Illumina Genome Analyzer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bennett RR, den Dunnen J, O’Brien KF et al (2001) Detection of mutations in the dystrophin gene via automated DHPLC screening and direct sequencing. BMC Genet 2:17PubMedCrossRefGoogle Scholar
  2. Emery AE (1991) Population frequencies of inherited neuromuscular diseases—a world survey. Neuromuscul Disord 1:19–29PubMedCrossRefGoogle Scholar
  3. Flanigan KM, von Niederhausern A, Dunn DM et al (2003) Rapid direct sequence analysis of the dystrophin gene. Am J Hum Genet 72:931–939PubMedCrossRefGoogle Scholar
  4. Hackman P, Vihola A, Haravuori H et al (2002) Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet 71:492–500. doi: 10.1086/342380 PubMedCrossRefGoogle Scholar
  5. Lalic T, Vossen RHAM, Coffa J et al (2005) Deletion and duplication screening in the DMD gene using MLPA. Eur J Hum Genet 13:1231–1234. doi: 10.1038/sj.ejhg.5201465 PubMedCrossRefGoogle Scholar
  6. Lim BC, Lee S, Shin J-Y et al (2011) Genetic diagnosis of Duchenne and Becker muscular dystrophy using next-generation sequencing technology: comprehensive mutational search in a single platform. J Med Genet 48:731–736. doi: 10.1136/jmedgenet-2011-100133 PubMedCrossRefGoogle Scholar
  7. Mendell JR, Buzin CH, Feng J et al (2001) Diagnosis of Duchenne dystrophy by enhanced detection of small mutations. Neurology 57:645–650PubMedCrossRefGoogle Scholar
  8. North K (2008) What’s new in congenital myopathies? Neuromuscul Disord 18:433–442. doi: 10.1016/j.nmd.2008.04.002 PubMedCrossRefGoogle Scholar
  9. Prior TW, Bridgeman SJ (2005) Experience and strategy for the molecular testing of Duchenne muscular dystrophy. J Mol Diagn 7:317–326. doi: 10.1016/S1525-1578(10)60560-0 PubMedCrossRefGoogle Scholar
  10. Sironi M, Pozzoli U, Comi GP et al (2006) A region in the dystrophin gene major hot spot harbors a cluster of deletion breakpoints and generates double-strand breaks in yeast. FASEB J 20:1910–1912. doi: 10.1096/fj.05-5635fje PubMedCrossRefGoogle Scholar
  11. Valencia CA, Rhodenizer D, Bhide S et al (2012) Assessment of target enrichment platforms using massively parallel sequencing for the mutation detection for congenital muscular dystrophy. J Mol Diagn 14:233–246. doi: 10.1016/j.jmoldx.2012.01.009 PubMedCrossRefGoogle Scholar
  12. Valencia CA, Ankala A, Rhodenizer D et al (2013) Comprehensive mutation analysis for congenital muscular dystrophy: a clinical PCR-based enrichment and next-generation sequencing panel. PLoS One 8:e53083. doi: 10.1371/journal.pone.0053083 PubMedCrossRefGoogle Scholar
  13. Vasli N, Böhm J, Le Gras S et al (2012) Next-generation sequencing for molecular diagnosis of neuromuscular diseases. Acta Neuropathol (Berl) 124:273–283. doi: 10.1007/s00401-012-0982-8 CrossRefGoogle Scholar
  14. Wang CH, Bonnemann CG, Rutkowski A et al (2010) Consensus statement on standard of care for congenital muscular dystrophies. J Child Neurol 25:1559–1581. doi: 10.1177/0883073810381924 PubMedCrossRefGoogle Scholar
  15. Wheeler DA, Srinivasan M, Egholm M et al (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature 452:872–876. doi: 10.1038/nature06884 PubMedCrossRefGoogle Scholar
  16. Xie S, Lan Z, Qu N et al (2012) Detection of truncated dystrophin lacking the C-terminal domain in a Chinese pedigree by next-generation sequencing. Gene 499:139–142. doi:10.1016/j.gene.2012.03.029 10.1016/j.gene.2012.03.029 PubMedCrossRefGoogle Scholar

Copyright information

© C. Alexander Valencia 2013

Authors and Affiliations

  • C. Alexander Valencia
    • 1
  • M. Ali Pervaiz
    • 2
  • Ammar Husami
    • 1
  • Yaping Qian
    • 1
  • Kejian Zhang
    • 1
  1. 1.Division of Human GeneticsCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.WellStar Douglas HospitalWellStar Health SystemDouglasvilleUSA

Personalised recommendations