Skip to main content

Normal Functional Biology of the Liver

  • Chapter
  • First Online:
Diseases of the Liver in Children

Abstract

The liver is a complex multifaceted organ that plays a fundamental role in many processes crucial to bodily function. To accomplish this, the liver is populated with multiple cell types, including hepatocytes, cholangiocytes, stellate cells, endothelial cells, and cells of the immune system (i.e., Kupffer cells). Each cell type performs unique functions essential to the overall performance of the liver. A full treatise of each cell and function is beyond the scope of this chapter. This chapter will outline the cell types and their most important associated functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy-Chowdhury N, Roy-Chowdhury J. Liver physiology and energy metabolism. In: Feldman M, Friedman LS, Brandt LJ, editors. Sleisenger and Fordtran’s gastrointestinal and liver disease – pathophysiology/diagnosis/management. 9th ed. Philadelphia: Saunders/Elsevier; 2010. p. 1207–26.

    Google Scholar 

  2. Blouin A, Bolender RP, Weibel ER. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol. 1977;72(2):441–55.

    PubMed  CAS  Google Scholar 

  3. Srere PA, Sumegi B. Processivity and fatty acid oxidation. Biochem Soc Trans. 1994;22(2):446–50.

    PubMed  CAS  Google Scholar 

  4. Racker E, Horstman LL. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 13. Structure and function of submitochondrial particles completely resolved with respect to coupling factor. J Biol Chem. 1967;242(10):2547–51.

    PubMed  CAS  Google Scholar 

  5. Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 2003;112(4):481–90.

    PubMed  CAS  Google Scholar 

  6. Dean RT, Barrett AJ. Lysosomes. Essays Biochem. 1976;12:1–40.

    PubMed  CAS  Google Scholar 

  7. Yin XM, Ding WX, Gao W. Autophagy in the liver. Hepatology. 2008;47(5):1773–85.

    PubMed  CAS  Google Scholar 

  8. Uchiyama Y, Shibata M, Koike M, Yoshimura K, Sasaki M. Autophagy-physiology and pathophysiology. Histochem Cell Biol. 2008;129(4):407–20.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Roma MG, Crocenzi FA, Mottino AD. Dynamic localization of hepatocellular transporters in health and disease. World J Gastroenterol. 2008;14(44):6786–801.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Ihrke G, Hubbard AL. Control of vesicle traffic in hepatocytes. Prog Liver Dis. 1995;13:63–99.

    PubMed  CAS  Google Scholar 

  11. Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44.

    PubMed  CAS  Google Scholar 

  12. Crowther RA, Pearse BM. Assembly and packing of clathrin into coats. J Cell Biol. 1981;91(3 Pt 1):790–7.

    PubMed  CAS  Google Scholar 

  13. DePierre JW, Dallner G. Structural aspects of the membrane of the endoplasmic reticulum. Biochim Biophys Acta. 1975;415(4):411–72.

    PubMed  CAS  Google Scholar 

  14. Walter P, Lingappa VR. Mechanism of protein translocation across the endoplasmic reticulum membrane. Annu Rev Cell Biol. 1986;2:499–516.

    PubMed  CAS  Google Scholar 

  15. Hurtley SM, Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:277–307.

    PubMed  CAS  Google Scholar 

  16. de Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–92.

    PubMed  Google Scholar 

  17. Inui A, Fujisawa T, Sogo T, Komatsu H, Isozaki A, Sekine I. Different outcomes of vertical transmission of hepatitis C virus in a twin pregnancy. J Gastroenterol Hepatol. 2002;17(5):617–9.

    PubMed  Google Scholar 

  18. Komatsu M. Liver autophagy: physiology and pathology. J Biochem. 2012;152(1):5–15.

    PubMed  CAS  Google Scholar 

  19. Mayor S, Presley JF, Maxfield FR. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J Cell Biol. 1993;121(6):1257–69.

    PubMed  CAS  Google Scholar 

  20. Luzio JP, Mullock BM, Pryor PR, Lindsay MR, James DE, Piper RC. Relationship between endosomes and lysosomes. Biochem Soc Trans. 2001;29(Pt 4):476–80.

    PubMed  CAS  Google Scholar 

  21. Pieuchot L, Jedd G. Peroxisome assembly and functional diversity in eukaryotic microorganisms. Annu Rev Microbiol. 2012;66:237–63.

    PubMed  CAS  Google Scholar 

  22. Waterham HR, Wanders RJ. Metabolic functions and biogenesis of peroxisomes in health and disease. Biochim Biophys Acta. 2012;1822(9):1325.

    PubMed  CAS  Google Scholar 

  23. Zegers MM, Hoekstra D. Mechanisms and functional features of polarized membrane traffic in epithelial and hepatic cells. Biochem J. 1998;336(Pt 2):257–69.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Esteller A. Physiology of bile secretion. World J Gastroenterol. 2008;14(37):5641–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Yee AG, Revel JP. Loss and reappearance of gap junctions in regenerating liver. J Cell Biol. 1978;78(2):554–64.

    PubMed  CAS  Google Scholar 

  26. Yancey SB, Easter D, Revel JP. Cytological changes in gap junctions during liver regeneration. J Ultrastruct Res. 1979;67(3):229–42.

    PubMed  CAS  Google Scholar 

  27. Jones AL, Schmucker DL, Renston RH, Murakami T. The architecture of bile secretion. A morphological perspective of physiology. Dig Dis Sci. 1980;25(8):609–29.

    PubMed  CAS  Google Scholar 

  28. Forker EL. Two sites of bile formation as determined by mannitol and erythritol clearance in the guinea pig. J Clin Invest. 1967;46(7):1189–95.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Rappaport AM. The microcirculatory acinar concept of normal and pathological hepatic structure. Beitr Pathol. 1976;157(3):215–43.

    PubMed  CAS  Google Scholar 

  30. Katz NR. Metabolic heterogeneity of hepatocytes across the liver acinus. J Nutr. 1992;122(3 Suppl):843–9.

    PubMed  CAS  Google Scholar 

  31. Gonzalez J, Esteller A. Heterogeneity of rabbit hepatocytes for bile secretion after acinar zone 3 damage induced by bromobenzene. Effect of bilirubin and bile salt infusions. Biochem Pharmacol. 1985;34(4):507–14.

    PubMed  CAS  Google Scholar 

  32. Smedsrod B, Le CD, Ikejima K, Jaeschke H, Kawada N, Naito M, et al. Hepatic sinusoidal cells in health and disease: update from the 14th International Symposium. Liver Int. 2009;29(4):490–501.

    PubMed  Google Scholar 

  33. Yokomori H, Oda M, Yoshimura K, Hibi T. Recent advances in liver sinusoidal endothelial ultrastructure and fine structure immunocytochemistry. Micron. 2012;43(2–3):129–34.

    PubMed  CAS  Google Scholar 

  34. Goresky CA. A linear method for determining liver sinusoidal and extravascular volumes. Am J Physiol. 1963;204:626–40.

    PubMed  CAS  Google Scholar 

  35. Grisham JW, Nopanitaya W, Compagno J. Scanning electron microscopy of the liver: a review of methods and results. Prog Liver Dis. 1976;5:1–23.

    PubMed  CAS  Google Scholar 

  36. Fraser R, Dobbs BR, Rogers GW. Lipoproteins and the liver sieve: the role of the fenestrated sinusoidal endothelium in lipoprotein metabolism, atherosclerosis, and cirrhosis. Hepatology. 1995;21(3):863–74.

    PubMed  CAS  Google Scholar 

  37. Arias IM. The biology of hepatic endothelial cell fenestrae. Prog Liver Dis. 1990;9:11–26.

    PubMed  CAS  Google Scholar 

  38. Smedsrod B, De Bleser PJ, Braet F, Lovisetti P, Vanderkerken K, Wisse E, et al. Cell biology of liver endothelial and Kupffer cells. Gut. 1994;35(11):1509–16.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Crispe IN. Liver antigen-presenting cells. J Hepatol. 2011;54(2):357–65.

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis. 2001;21(3):311–35.

    PubMed  CAS  Google Scholar 

  41. Sato M, Suzuki S, Senoo H. Hepatic stellate cells: unique characteristics in cell biology and phenotype. Cell Struct Funct. 2003;28(2):105–12.

    PubMed  CAS  Google Scholar 

  42. Friedman G, Liu LM, Friedman SL, Boyles JK. Apolipoprotein E is secreted by cultured lipocytes of the rat liver. J Lipid Res. 1991;32(1):107–14.

    PubMed  CAS  Google Scholar 

  43. Athari A, Hanecke K, Jungermann K. Prostaglandin F2 alpha and D2 release from primary Ito cell cultures after stimulation with noradrenaline and ATP but not adenosine. Hepatology. 1994;20(1 Pt 1):142–8.

    PubMed  CAS  Google Scholar 

  44. Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu Rev Pathol. 2011;6:425–56.

    PubMed  CAS  Google Scholar 

  45. Friedman SL. Hepatic fibrosis – overview. Toxicology. 2008;254(3):120–9.

    PubMed  CAS  Google Scholar 

  46. Unanue ER. Ito cells, stellate cells, and myofibroblasts: new actors in antigen presentation. Immunity. 2007;26(1):9–10.

    PubMed  CAS  Google Scholar 

  47. Winau F, Hegasy G, Weiskirchen R, Weber S, Cassan C, Sieling PA, et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity. 2007;26(1):117–29.

    PubMed  CAS  Google Scholar 

  48. Senoo H, Kojima N, Sato M. Vitamin A-storing cells (stellate cells). Vitam Horm. 2007;75:131–59.

    PubMed  CAS  Google Scholar 

  49. Senoo H, Yoshikawa K, Morii M, Miura M, Imai K, Mezaki Y. Hepatic stellate cell (vitamin A-storing cell) and its relative – past, present and future. Cell Biol Int. 2010;34(12):1247–72.

    PubMed  CAS  Google Scholar 

  50. Krueger PD, Lassen MG, Qiao H, Hahn YS. Regulation of NK cell repertoire and function in the liver. Crit Rev Immunol. 2011;31(1):43–52.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Moreira RK. Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med. 2007;131(11):1728–34.

    PubMed  CAS  Google Scholar 

  52. Hui AY, Friedman SL. Molecular basis of hepatic fibrosis. Expert Rev Mol Med. 2003;5(5):1–23.

    PubMed  Google Scholar 

  53. Brenner DA, Kisseleva T, Scholten D, Paik YH, Iwaisako K, Inokuchi S, et al. Origin of myofibroblasts in liver fibrosis. Fibrogenesis Tissue Repair. 2012;5 Suppl 1:S17.

    PubMed  PubMed Central  Google Scholar 

  54. Stanciu A, Cotutiu C, Amalinei C. New data about ITO cells. Rev Med Chir Soc Med Nat Iasi. 2002;107(2):235–9.

    PubMed  Google Scholar 

  55. Eyden B. The myofibroblast: phenotypic characterization as a prerequisite to understanding its functions in translational medicine. J Cell Mol Med. 2008;12(1):22–37.

    PubMed  CAS  Google Scholar 

  56. Kobold D, Grundmann A, Piscaglia F, Eisenbach C, Neubauer K, Steffgen J, et al. Expression of reelin in hepatic stellate cells and during hepatic tissue repair: a novel marker for the differentiation of HSC from other liver myofibroblasts. J Hepatol. 2002;36(5):607–13.

    PubMed  CAS  Google Scholar 

  57. Pellicoro A, Ramachandran P, Iredale JP. Reversibility of liver fibrosis. Fibrogenesis Tissue Repair. 2012;5 Suppl 1:S26.

    PubMed  PubMed Central  Google Scholar 

  58. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88(1):125–72.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am. 2004;88(4):787–835, ix.

    PubMed  CAS  Google Scholar 

  60. Moore MC, Coate KC, Winnick JJ, An Z, Cherrington AD. Regulation of hepatic glucose uptake and storage in vivo. Adv Nutr. 2012;3(3):286–94.

    PubMed  CAS  PubMed Central  Google Scholar 

  61. Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3(4):267–77.

    PubMed  CAS  Google Scholar 

  62. Roach PJ. Glycogen and its metabolism. Curr Mol Med. 2002;2(2):101–20.

    PubMed  CAS  Google Scholar 

  63. Ryu JH, Drain J, Kim JH, McGee S, Gray-Weale A, Waddington L, et al. Comparative structural analyses of purified glycogen particles from rat liver, human skeletal muscle and commercial preparations. Int J Biol Macromol. 2009;45(5):478–82.

    PubMed  CAS  Google Scholar 

  64. Ferrer JC, Favre C, Gomis RR, Fernandez-Novell JM, Garcia-Rocha M, de la Iglesia N, et al. Control of glycogen deposition. FEBS Lett. 2003;546(1):127–32.

    PubMed  CAS  Google Scholar 

  65. Lomako J, Lomako WM, Whelan WJ. Glycogenin: the primer for mammalian and yeast glycogen synthesis. Biochim Biophys Acta. 2004;1673(1–2):45–55.

    PubMed  CAS  Google Scholar 

  66. Livanova NB, Chebotareva NA, Eronina TB, Kurganov BI. Pyridoxal 5'-phosphate as a catalytic and conformational cofactor of muscle glycogen phosphorylase B. Biochemistry (Mosc). 2002;67(10):1089–98.

    CAS  Google Scholar 

  67. Wegener G, Krause U. Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle. Biochem Soc Trans. 2002;30(2):264–70.

    PubMed  CAS  Google Scholar 

  68. Yoshida A, Watanabe S. Human phosphoglycerate kinase. I. Crystallization and characterization of normal enzyme. J Biol Chem. 1972;247(2):440–5.

    PubMed  CAS  Google Scholar 

  69. Triplitt CL. Understanding the kidneys’ role in blood glucose regulation. Am J Manag Care. 2012;18(1 Suppl):S11–6.

    PubMed  Google Scholar 

  70. Prats C, Cadefau JA, Cusso R, Qvortrup K, Nielsen JN, Wojtaszewski JF, et al. Phosphorylation-dependent translocation of glycogen synthase to a novel structure during glycogen resynthesis. J Biol Chem. 2005;280(24):23165–72.

    PubMed  CAS  Google Scholar 

  71. Rodgers RL. Glucagon and cyclic AMP: time to turn the page? Curr Diabetes Rev. 2012;8(5):362–81.

    PubMed  CAS  Google Scholar 

  72. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–705.

    PubMed  CAS  Google Scholar 

  73. Dancygier H, Merle U, Stremmel W, Niederau C. Hepatic metabolism. In: Dancygier H, editor. Clinical hepatology – principles and practice of hepatobiliary diseases. New York: Springer; 2010. p. 75–102.

    Google Scholar 

  74. Hellerstein MK. De novo lipogenesis in humans: metabolic and regulatory aspects. Eur J Clin Nutr. 1999;53 Suppl 1:S53–65.

    PubMed  Google Scholar 

  75. Macfarlane DP, Forbes S, Walker BR. Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol. 2008;197(2):189–204.

    PubMed  CAS  Google Scholar 

  76. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114(2):147–52.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Ferre P, Foufelle F. SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res. 2007;68(2):72–82.

    PubMed  CAS  Google Scholar 

  78. Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009;50(Suppl):S138–43.

    PubMed  PubMed Central  Google Scholar 

  79. Coleman RA, Mashek DG. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev. 2011;111(10):6359–86.

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Zechner R, Kienesberger PC, Haemmerle G, Zimmermann R, Lass A. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J Lipid Res. 2009;50(1):3–21.

    PubMed  CAS  Google Scholar 

  81. Saario SM, Laitinen JT. Monoglyceride lipase as an enzyme hydrolyzing 2-arachidonoylglycerol. Chem Biodivers. 2007;4(8):1903–13.

    PubMed  CAS  Google Scholar 

  82. Yeaman SJ. Hormone-sensitive lipase – new roles for an old enzyme. Biochem J. 2004;379(Pt 1):11–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89(3):331–40.

    PubMed  CAS  Google Scholar 

  84. Zammit VA. Carnitine palmitoyltransferase 1: central to cell function. IUBMB Life. 2008;60(5):347–54.

    PubMed  CAS  Google Scholar 

  85. McPherson PA, McEneny J. The biochemistry of ketogenesis and its role in weight management, neurological disease and oxidative stress. J Physiol Biochem. 2012;68(1):141–51.

    PubMed  CAS  Google Scholar 

  86. Fu Z, Runquist JA, Montgomery C, Miziorko HM, Kim JJ. Functional insights into human HMG-CoA lyase from structures of Acyl-CoA-containing ternary complexes. J Biol Chem. 2010;285(34):26341–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  87. White H, Venkatesh B. Clinical review: ketones and brain injury. Crit Care. 2011;15(2):219.

    PubMed  PubMed Central  Google Scholar 

  88. Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids. 2004;70(3):243–51.

    PubMed  CAS  Google Scholar 

  89. Carman GM, Han GS. Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci. 2006;31(12):694–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Stone SJ, Levin MC, Zhou P, Han J, Walther TC, Farese Jr RV. The endoplasmic reticulum enzyme DGAT2 is found in mitochondria-associated membranes and has a mitochondrial targeting signal that promotes its association with mitochondria. J Biol Chem. 2009;284(8):5352–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  91. Maxfield FR, van Meer G. Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol. 2010;22(4):422–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Silbernagel G, Lutjohann D, Machann J, Meichsner S, Kantartzis K, Schick F, et al. Cholesterol synthesis is associated with hepatic lipid content and dependent on fructose/glucose intake in healthy humans. Exp Diabetes Res. 2012;2012:361863.

    PubMed  PubMed Central  Google Scholar 

  93. van der Wulp MY, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis. Mol Cell Endocrinol. 2013;368(1–2):1–16.

    PubMed  Google Scholar 

  94. Raabe M, Veniant MM, Sullivan MA, Zlot CH, Bjorkegren J, Nielsen LB, et al. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J Clin Invest. 1999;103(9):1287–98.

    PubMed  CAS  PubMed Central  Google Scholar 

  95. Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990;70(1):43–77.

    PubMed  CAS  Google Scholar 

  96. Feldmann G, Scoazec JY, Racine L, Bernuau D. Functional hepatocellular heterogeneity for the production of plasma proteins. Enzyme. 1992;46(1–3):139–54.

    PubMed  CAS  Google Scholar 

  97. Rothschild MA, Oratz M, Schreiber SS. Serum albumin. Hepatology. 1988;8(2):385–401.

    PubMed  CAS  Google Scholar 

  98. Benham AM. Protein secretion and the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2012;4(8):a012872.

    PubMed  Google Scholar 

  99. Braakman I, Bulleid NJ. Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem. 2011;80:71–99.

    PubMed  CAS  Google Scholar 

  100. Chung KN, Walter P, Aponte GW, Moore HP. Molecular sorting in the secretory pathway. Science. 1989;243(4888):192–7.

    PubMed  CAS  Google Scholar 

  101. Andus T, Bauer J, Gerok W. Effects of cytokines on the liver. Hepatology. 1991;13(2):364–75.

    PubMed  CAS  Google Scholar 

  102. Burt AD, Day CP. Pathophysiology of the liver. In: MacSween RNM, Burt AD, Portmann BC, Ishak KG, Scheuer PJ, Anthony PP, editors. Pathology of the liver. 4th ed. Philadelphia: Churchill Livingstone; 2002. p. 67–106.

    Google Scholar 

  103. Fanali G, di MA, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: from bench to bedside. Mol Aspects Med. 2012;33(3):209–90.

    PubMed  CAS  Google Scholar 

  104. Johnson E, Hetland G. Mononuclear phagocytes have the potential to synthesize the complete functional complement system. Scand J Immunol. 1988;27(5):489–93.

    PubMed  CAS  Google Scholar 

  105. Haglund K, Dikic I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci. 2012;125(Pt 2):265–75.

    PubMed  CAS  Google Scholar 

  106. Mortimore GE, Poso AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr. 1987;7:539–64.

    PubMed  CAS  Google Scholar 

  107. Harper AE, Miller RH, Block KP. Branched-chain amino acid metabolism. Annu Rev Nutr. 1984;4:409–54.

    PubMed  CAS  Google Scholar 

  108. Christensen HN. Interorgan amino acid nutrition. Physiol Rev. 1982;62(4 Pt 1):1193–233.

    PubMed  CAS  Google Scholar 

  109. Simmer JP, Kelly RE, Rinker Jr AG, Scully JL, Evans DR. Mammalian carbamyl phosphate synthetase (CPS). DNA sequence and evolution of the CPS domain of the Syrian hamster multifunctional protein CAD. J Biol Chem. 1990;265(18):10395–402.

    PubMed  CAS  Google Scholar 

  110. Adeva MM, Souto G, Blanco N, Donapetry C. Ammonium metabolism in humans. Metabolism. 2012;61(11):1495–511.

    PubMed  CAS  Google Scholar 

  111. Park BK, Pirmohamed M, Kitteringham NR. The role of cytochrome P450 enzymes in hepatic and extrahepatic human drug toxicity. Pharmacol Ther. 1995;68(3):385–424.

    PubMed  CAS  Google Scholar 

  112. Park K, Williams DP, Naisbitt DJ, Kitteringham NR, Pirmohamed M. Investigation of toxic metabolites during drug development. Toxicol Appl Pharmacol. 2005;207(2 Suppl):425–34.

    PubMed  Google Scholar 

  113. Sugatani J. Function, genetic polymorphism, and transcriptional regulation of human UDP-glucuronosyltransferase (UGT) 1A1. Drug Metab Pharmacokinet. 2013;28(2):83–92.

    PubMed  CAS  Google Scholar 

  114. Gunawan BK, Kaplowitz N. Mechanisms of drug-induced liver disease. Clin Liver Dis. 2007;11(3):459–75, v.

    PubMed  Google Scholar 

  115. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996;6(1):1–42.

    PubMed  CAS  Google Scholar 

  116. Peterson JA, Graham SE. A close family resemblance: the importance of structure in understanding cytochromes P450. Structure. 1998;6(9):1079–85.

    PubMed  CAS  Google Scholar 

  117. Smith G, Stubbins MJ, Harries LW, Wolf CR. Molecular genetics of the human cytochrome P450 monooxygenase superfamily. Xenobiotica. 1998;28(12):1129–65.

    PubMed  CAS  Google Scholar 

  118. Werck-Reichhart D, Feyereisen R. Cytochromes P450: a success story. Genome Biol. 2000;1(6):REVIEWS3003.

    PubMed  CAS  PubMed Central  Google Scholar 

  119. Gonzalez FJ. Molecular genetics of the P-450 superfamily. Pharmacol Ther. 1990;45(1):1–38.

    PubMed  CAS  Google Scholar 

  120. Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3(6):561–97.

    PubMed  CAS  Google Scholar 

  121. DeLeve LD, Kaplowitz N. Mechanisms of drug-induced liver disease. Gastroenterol Clin North Am. 1995;24(4):787–810.

    PubMed  CAS  Google Scholar 

  122. Ehrenpreis ED, Ehrenpreis S. Cytochrome P450: role in drug-induced hepatotoxicity. Clin Liver Dis. 1998;2:457.

    Google Scholar 

  123. Watkins PB. Drug metabolism by cytochromes P450 in the liver and small bowel. Gastroenterol Clin North Am. 1992;21(3):511–26.

    PubMed  CAS  Google Scholar 

  124. Wrighton SA, Vandenbranden M, Ring BJ. The human drug metabolizing cytochromes P450. J Pharmacokinet Biopharm. 1996;24(5):461–73.

    PubMed  CAS  Google Scholar 

  125. Wilkinson GR. Cytochrome P4503A (CYP3A) metabolism: prediction of in vivo activity in humans. J Pharmacokinet Biopharm. 1996;24(5):475–90.

    PubMed  CAS  Google Scholar 

  126. Ketter TA, Flockhart DA, Post RM, Denicoff K, Pazzaglia PJ, Marangell LB, et al. The emerging role of cytochrome P450 3A in psychopharmacology. J Clin Psychopharmacol. 1995;15(6):387–98.

    PubMed  CAS  Google Scholar 

  127. Lehmann DE. Enzymatic shunting: resolving the acetaminophen-warfarin controversy. Pharmacotherapy. 2000;20(12):1464–8.

    PubMed  CAS  Google Scholar 

  128. Waxman DJ. P450 gene induction by structurally diverse xenochemicals: central role of nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys. 1999;369(1):11–23.

    PubMed  CAS  Google Scholar 

  129. Walgren JL, Mitchell MD, Thompson DC. Role of metabolism in drug-induced idiosyncratic hepatotoxicity. Crit Rev Toxicol. 2005;35(4):325–61.

    PubMed  CAS  Google Scholar 

  130. Chalasani N, Bjornsson E. Risk factors for idiosyncratic drug-induced liver injury. Gastroenterology. 2010;138(7):2246–59.

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Dorne JL, Walton K, Renwick AG. Human variability in xenobiotic metabolism and pathway-related uncertainty factors for chemical risk assessment: a review. Food Chem Toxicol. 2005;43(2):203–16.

    PubMed  CAS  Google Scholar 

  132. Tanaka E. Update: genetic polymorphism of drug metabolizing enzymes in humans. J Clin Pharm Ther. 1999;24(5):323–9.

    PubMed  CAS  Google Scholar 

  133. Hasler JA. Pharmacogenetics of cytochromes P450. Mol Aspects Med. 1999;20(1–2):12–137.

    PubMed  CAS  Google Scholar 

  134. Pachkoria K, Lucena MI, Molokhia M, Cueto R, Carballo AS, Carvajal A, et al. Genetic and molecular factors in drug-induced liver injury: a review. Curr Drug Saf. 2007;2(2):97–112.

    PubMed  CAS  Google Scholar 

  135. Daly AK, Day CP. Genetic association studies in drug-induced liver injury. Semin Liver Dis. 2009;29(4):400–11.

    PubMed  CAS  Google Scholar 

  136. Vuilleumier N, Rossier MF, Chiappe A, Degoumois F, Dayer P, Mermillod B, et al. CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Eur J Clin Pharmacol. 2006;62(6):423–9.

    PubMed  CAS  Google Scholar 

  137. Huang YS, Su WJ, Huang YH, Chen CY, Chang FY, Lin HC, et al. Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H:quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. J Hepatol. 2007;47(1):128–34.

    PubMed  CAS  Google Scholar 

  138. Aithal GP, Ramsay L, Daly AK, Sonchit N, Leathart JB, Alexander G, et al. Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity. Hepatology. 2004;39(5):1430–40.

    PubMed  CAS  Google Scholar 

  139. Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe’er I, Floratos A, et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 2009;41(7):816–9.

    PubMed  CAS  Google Scholar 

  140. Kindmark A, Jawaid A, Harbron CG, Barratt BJ, Bengtsson OF, Andersson TB, et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J. 2008;8(3):186–95.

    PubMed  CAS  Google Scholar 

  141. O’Donohue J, Oien KA, Donaldson P, Underhill J, Clare M, MacSween RN, et al. Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut. 2000;47(5):717–20.

    PubMed  PubMed Central  Google Scholar 

  142. Andrade RJ, Lucena MI, Alonso A, Garcia-Cortes M, Garcia-Ruiz E, Benitez R, et al. HLA class II genotype influences the type of liver injury in drug-induced idiosyncratic liver disease. Hepatology. 2004;39(6):1603–12.

    PubMed  CAS  Google Scholar 

  143. Ueshima Y, Tsutsumi M, Takase S, Matsuda Y, Kawahara H. Acetaminophen metabolism in patients with different cytochrome P-4502E1 genotypes. Alcohol Clin Exp Res. 1996;20(1 Suppl):25A–8.

    PubMed  CAS  Google Scholar 

  144. Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 1995;333(17):1118–27 [see comments].

    PubMed  CAS  Google Scholar 

  145. Marez D, Legrand M, Sabbagh N, Lo Guidice JM, Spire C, Lafitte JJ, et al. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics. 1997;7(3):193–202.

    PubMed  CAS  Google Scholar 

  146. Murray M. Mechanisms and significance of inhibitory drug interactions involving cytochrome P450 enzymes (review). Int J Mol Med. 1999;3(3):227–38.

    PubMed  CAS  Google Scholar 

  147. Takahara N, Nakai Y, Isayama H, Sasaki T, Satoh Y, Takai D, et al. Uridine diphosphate glucuronosyl transferase 1 family polypeptide A1 gene (UGT1A1) polymorphisms are associated with toxicity and efficacy in irinotecan monotherapy for refractory pancreatic cancer. Cancer Chemother Pharmacol. 2013;71(1):85–92.

    PubMed  CAS  Google Scholar 

  148. Sim SC, Kacevska M, Ingelman-Sundberg M. Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects. Pharmacogenomics J. 2013;13(1):1–11.

    PubMed  CAS  Google Scholar 

  149. Tukey RH, Strassburg CP, Mackenzie PI. Pharmacogenomics of human UDP-glucuronosyltransferases and irinotecan toxicity. Mol Pharmacol. 2002;62(3):446–50.

    PubMed  CAS  Google Scholar 

  150. Anderson RJ, Kudlacek PE, Clemens DL. Sulfation of minoxidil by multiple human cytosolic sulfotransferases. Chem Biol Interact. 1998;109(1–3):53–67.

    PubMed  CAS  Google Scholar 

  151. Pauli-Magnus C, Meier PJ. Hepatobiliary transporters and drug-induced cholestasis. Hepatology. 2006;44(4):778–87.

    PubMed  CAS  Google Scholar 

  152. Ohno M, Yamaguchi I, Yamamoto I, Fukuda T, Yokota S, Maekura R, et al. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis. 2000;4(3):256–61.

    PubMed  CAS  Google Scholar 

  153. Cho HJ, Koh WJ, Ryu YJ, Ki CS, Nam MH, Kim JW, et al. Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis (Edinb). 2007;87(6):551–6.

    CAS  Google Scholar 

  154. Possuelo LG, Castelan JA, de Brito TC, Ribeiro AW, Cafrune PI, Picon PD, et al. Association of slow N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. Eur J Clin Pharmacol. 2008;64(7):673–81.

    PubMed  CAS  Google Scholar 

  155. Roy B, Chowdhury A, Kundu S, Santra A, Dey B, Chakraborty M, et al. Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 ‘null’ mutation. J Gastroenterol Hepatol. 2001;16(9):1033–7.

    PubMed  CAS  Google Scholar 

  156. Leiro V, Fernandez-Villar A, Valverde D, Constenla L, Vazquez R, Pineiro L, et al. Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. Liver Int. 2008;28(6):835–9.

    PubMed  CAS  Google Scholar 

  157. Lucena MI, Andrade RJ, Martinez C, Ulzurrun E, Garcia-Martin E, Borraz Y, et al. Glutathione S-transferase m1 and t1 null genotypes increase susceptibility to idiosyncratic drug-induced liver injury. Hepatology. 2008;48(2):588–96.

    PubMed  Google Scholar 

  158. Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology. 2007;132(1):272–81.

    PubMed  CAS  Google Scholar 

  159. Choi JH, Ahn BM, Yi J, Lee JH, Lee JH, Nam SW, et al. MRP2 haplotypes confer differential susceptibility to toxic liver injury. Pharmacogenet Genomics. 2007;17(6):403–15.

    PubMed  CAS  Google Scholar 

  160. Lang C, Meier Y, Stieger B, Beuers U, Lang T, Kerb R, et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics. 2007;17(1):47–60.

    PubMed  CAS  Google Scholar 

  161. Zhao WH, Ma ZM, Zhou XR, Feng YZ, Fang BS. Prediction of recurrence and prognosis in patients with hepatocellular carcinoma after resection by use of CLIP score. World J Gastroenterol. 2002;8(2):237–42.

    PubMed  Google Scholar 

  162. Kimoto E, Yoshida K, Balogh LM, Bi YA, Maeda K, El-Kattan AF, et al. Characterization of organic anion transporting polypeptide (OATP) expression and its functional contribution to the uptake of substrates in human hepatocytes. Mol Pharm. 2012;9(12):3535–42.

    Google Scholar 

  163. Iusuf D, van de Steeg E, Schinkel AH. Functions of OATP1A and 1B transporters in vivo: insights from mouse models. Trends Pharmacol Sci. 2012;33(2):100–8.

    PubMed  CAS  Google Scholar 

  164. Weisiger RA, Pond S, Bass L. Hepatic uptake of protein-bound ligands: extended sinusoidal perfusion model. Am J Physiol. 1991;261(5 Pt 1):G872–84.

    PubMed  CAS  Google Scholar 

  165. Weisiger RA, Gollan JL, Ockner RK. The role of albumin in hepatic uptake processes. Prog Liver Dis. 1982;7:71–85.

    PubMed  CAS  Google Scholar 

  166. Stollman YR, Gartner U, Theilmann L, Ohmi N, Wolkoff AW. Hepatic bilirubin uptake in the isolated perfused rat liver is not facilitated by albumin binding. J Clin Invest. 1983;72(2):718–23.

    PubMed  CAS  PubMed Central  Google Scholar 

  167. Inoue M, Hirata E, Morino Y, Nagase S, Chowdhury JR, Chowdhury NR, et al. The role of albumin in the hepatic transport of bilirubin: studies in mutant analbuminemic rats. J Biochem. 1985;97(3):737–43.

    PubMed  CAS  Google Scholar 

  168. Ostrow JD, Murphy NH. Isolation and properties of conjugated bilirubin from bile. Biochem J. 1970;120(2):311–27.

    PubMed  CAS  PubMed Central  Google Scholar 

  169. Robinson SH. Formation of bilirubin from erythroid and nonerythroid sources. Semin Hematol. 1972;9(1):43–53.

    PubMed  CAS  Google Scholar 

  170. Passamonti S, Terdoslavich M, Margon A, Cocolo A, Medic N, Micali F, et al. Uptake of bilirubin into HepG2 cells assayed by thermal lens spectroscopy. Function of bilitranslocase. FEBS J. 2005;272(21):5522–35.

    PubMed  CAS  Google Scholar 

  171. Radominska-Pandya A, Czernik PJ, Little JM, Battaglia E, Mackenzie PI. Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev. 1999;31(4):817–99.

    PubMed  CAS  Google Scholar 

  172. Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol. 2000;40:581–616.

    PubMed  CAS  Google Scholar 

  173. Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger A, et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics. 1997;7(4):255–69.

    PubMed  CAS  Google Scholar 

  174. Turgeon D, Carrier JS, Levesque E, Beatty BG, Belanger A, Hum DW. Isolation and characterization of the human UGT2B15 gene, localized within a cluster of UGT2B genes and pseudogenes on chromosome 4. J Mol Biol. 2000;295(3):489–504.

    PubMed  CAS  Google Scholar 

  175. Strassburg CP, Manns MP. Jaundice, genes and promoters. J Hepatol. 2000;33(3):476–9.

    PubMed  CAS  Google Scholar 

  176. Gong QH, Cho JW, Huang T, Potter C, Gholami N, Basu NK, et al. Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics. 2001;11(4):357–68.

    PubMed  CAS  Google Scholar 

  177. Ohno S, Nakajin S. Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab Dispos. 2009;37(1):32–40.

    PubMed  CAS  Google Scholar 

  178. Crigler Jr JF, Najjar VA. Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics. 1952;10(2):169–80.

    PubMed  Google Scholar 

  179. Keppler D. Cholestasis and the role of basolateral efflux pumps. Z Gastroenterol. 2011;49(12):1553–7.

    PubMed  CAS  Google Scholar 

  180. Jansen PL, Muller M. The molecular genetics of familial intrahepatic cholestasis. Gut. 2000;47(1):1–5.

    PubMed  CAS  PubMed Central  Google Scholar 

  181. Slot AJ, Molinski SV, Cole SP. Mammalian multidrug-resistance proteins (MRPs). Essays Biochem. 2011;50(1):179–207.

    PubMed  CAS  Google Scholar 

  182. Vlahcevic ZR, Heuman DM, Hylemon PB. Regulation of bile acid synthesis. Hepatology. 1991;13(3):590–600.

    PubMed  CAS  Google Scholar 

  183. Hofmann AF. Bile acids. In: Arias IM, Boyer JL, Chisari FV, Fausto N, Schachter D, Shafritz DA, editors. The liver – biology an pathobiology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 361–72.

    Google Scholar 

  184. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–74.

    PubMed  CAS  Google Scholar 

  185. Vlahcevic ZR, Pandak WM, Stravitz RT. Regulation of bile acid biosynthesis. Gastroenterol Clin North Am. 1999;28(1):1–25, v.

    PubMed  CAS  Google Scholar 

  186. Hofmann AF. Bile acids: trying to understand their chemistry and biology with the hope of helping patients. Hepatology. 2009;49(5):1403–18.

    PubMed  CAS  Google Scholar 

  187. Kamp F, Hamilton JA, Kamp F, Westerhoff HV, Hamilton JA. Movement of fatty acids, fatty acid analogues, and bile acids across phospholipid bilayers. Biochemistry. 1993;32(41):11074–86.

    PubMed  CAS  Google Scholar 

  188. Nathanson MH, Boyer JL. Mechanisms and regulation of bile secretion. Hepatology. 1991;14(3):551–66.

    PubMed  CAS  Google Scholar 

  189. Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res. 2009;50(12):2340–57.

    PubMed  CAS  PubMed Central  Google Scholar 

  190. Ung KA, Olofsson G, Fae A, Kilander A, Ohlsson C, Jonsson O. In vitro determination of active bile acid absorption in small biopsy specimens obtained endoscopically or surgically from the human intestine. Eur J Clin Invest. 2002;32(2):115–21.

    PubMed  CAS  Google Scholar 

  191. Weinberg SL, Burckhardt G, Wilson FA. Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system. J Clin Invest. 1986;78(1):44–50.

    PubMed  CAS  PubMed Central  Google Scholar 

  192. Caflisch C, Zimmerli B, Reichen J, Meier PJ. Cholate uptake in basolateral rat liver plasma membrane vesicles and in liposomes. Biochim Biophys Acta. 1990;1021(1):70–6.

    PubMed  CAS  Google Scholar 

  193. Svoboda M, Riha J, Wlcek K, Jaeger W, Thalhammer T. Organic anion transporting polypeptides (OATPs): regulation of expression and function. Curr Drug Metab. 2011;12(2):139–53.

    PubMed  CAS  Google Scholar 

  194. Carey MC, Duane WC. Enterohepatic circulation. In: Arias IM, Boyer JL, Chisari FV, Fausto N, Schachter D, Shafritz DA, editors. The liver – biology and pathobiology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 361–72.

    Google Scholar 

  195. Hedenborg G, Norman A, Ritzen A. Lipoprotein-bound bile acids in serum from healthy men, postprandially and during fasting. Scand J Clin Lab Invest. 1988;48(3):241–5.

    PubMed  CAS  Google Scholar 

  196. Kubitz R, Droge C, Stindt J, Weissenberger K, Haussinger D. The bile salt export pump (BSEP) in health and disease. Clin Res Hepatol Gastroenterol. 2012;36(6):536–53.

    PubMed  CAS  Google Scholar 

  197. Jansen PL, Sturm E. Genetic cholestasis, causes and consequences for hepatobiliary transport. Liver Int. 2003;23(5):315–22.

    PubMed  CAS  Google Scholar 

  198. Weinman SA, Graf J, Boyer JL. Voltage-driven, taurocholate-dependent secretion in isolated hepatocyte couplets. Am J Physiol. 1989;256(5 Pt 1):G826–32.

    PubMed  CAS  Google Scholar 

  199. Poupon R, Poupon R, Dumont M, Erlinger S. Hepatic storage and biliary transport maximum of taurocholate and taurochenodeoxycholate in the dog. Eur J Clin Invest. 1976;6(6):431–7.

    PubMed  CAS  Google Scholar 

  200. Stapelbroek JM, van Erpecum KJ, Klomp LW, Houwen RH. Liver disease associated with canalicular transport defects: current and future therapies. J Hepatol. 2010;52(2):258–71.

    PubMed  CAS  Google Scholar 

  201. Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Handb Exp Pharmacol. 2011;201:299–323.

    PubMed  CAS  Google Scholar 

  202. He SM, Li R, Kanwar JR, Zhou SF. Structural and functional properties of human multidrug resistance protein 1 (MRP1/ABCC1). Curr Med Chem. 2011;18(3):439–81.

    PubMed  CAS  Google Scholar 

  203. Franke RM, Gardner ER, Sparreboom A. Pharmacogenetics of drug transporters. Curr Pharm Des. 2010;16(2):220–30.

    PubMed  CAS  Google Scholar 

  204. Oude Elferink RP, Paulusma CC. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch. 2007;453(5):601–10.

    PubMed  CAS  Google Scholar 

  205. Schmitz G, Langmann T. Structure, function and regulation of the ABC1 gene product. Curr Opin Lipidol. 2001;12(2):129–40.

    PubMed  CAS  Google Scholar 

  206. Borst P, Zelcer N, van Helvoort A. ABC transporters in lipid transport. Biochim Biophys Acta. 2000;1486(1):128–44.

    PubMed  CAS  Google Scholar 

  207. Tavoloni N. The intrahepatic biliary epithelium: an area of growing interest in hepatology. Semin Liver Dis. 1987;7(4):280–92.

    PubMed  CAS  Google Scholar 

  208. Alpini G, Phillips JO, LaRusso NF. The biology of biliary epithelia. In: Arias IM, Boyer JL, Chisari FV, Fausto N, Schachter D, Shafritz DA, editors. The liver – biology and pathobiology. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 421–36.

    Google Scholar 

  209. Strazzabosco M, Fabris L, Spirli C. Pathophysiology of cholangiopathies. J Clin Gastroenterol. 2005;39(4 Suppl 2):S90–102.

    PubMed  Google Scholar 

  210. Strazzabosco M, Fabris L. Functional anatomy of normal bile ducts. Anat Rec (Hoboken). 2008;291(6):653–60.

    Google Scholar 

  211. Alpini G, McGill JM, LaRusso NF. The pathobiology of biliary epithelia. Hepatology. 2002;35(5):1256–68.

    PubMed  CAS  Google Scholar 

  212. Banales JM, Prieto J, Medina JF. Cholangiocyte anion exchange and biliary bicarbonate excretion. World J Gastroenterol. 2006;12(22):3496–511.

    PubMed  CAS  Google Scholar 

  213. LaRusso NF, Masyuk TV. The role of cilia in the regulation of bile flow. Dig Dis. 2011;29(1):6–12.

    PubMed  PubMed Central  Google Scholar 

  214. LaRusso NF. Morphology, physiology, and biochemistry of biliary epithelia. Toxicol Pathol. 1996;24(1):84–9.

    PubMed  CAS  Google Scholar 

  215. Ishii M, Vroman B, LaRusso NF. Isolation and morphologic characterization of bile duct epithelial cells from normal rat liver. Gastroenterology. 1989;97(5):1236–47.

    PubMed  CAS  Google Scholar 

  216. LaRusso NF, Ishii M, Vroman BT. The ins and outs of membrane movement in biliary epithelia. Trans Am Clin Climatol Assoc. 1991;102:245–58.

    PubMed  CAS  PubMed Central  Google Scholar 

  217. Alvaro D, Alpini G, Jezequel AM, Bassotti C, Francia C, Fraioli F, et al. Role and mechanisms of action of acetylcholine in the regulation of rat cholangiocyte secretory functions. J Clin Invest. 1997;100(6):1349–62.

    PubMed  CAS  PubMed Central  Google Scholar 

  218. McGill JM, Basavappa S, Gettys TW, Fitz JG. Secretin activates Cl− channels in bile duct epithelial cells through a cAMP-dependent mechanism. Am J Physiol. 1994;266(4 Pt 1):G731–6.

    PubMed  CAS  Google Scholar 

  219. Tietz PS, Alpini G, Pham LD, LaRusso NF. Somatostatin inhibits secretin-induced ductal hypercholeresis and exocytosis by cholangiocytes. Am J Physiol. 1995;269(1 Pt 1):G110–8.

    PubMed  CAS  Google Scholar 

  220. Kato A, Gores GJ, LaRusso NF. Secretin stimulates exocytosis in isolated bile duct epithelial cells by a cyclic AMP-mediated mechanism. J Biol Chem. 1992;267(22):15523–9.

    PubMed  CAS  Google Scholar 

  221. Schrenk D, Eisenmann-Tappe I, Gebhardt R, Mayer D, el Mouelhi M, Rohrdanz E, et al. Drug metabolizing enzyme activities in rat liver epithelial cell lines, hepatocytes and bile duct cells. Biochem Pharmacol. 1991;41(11):1751–7.

    PubMed  CAS  Google Scholar 

  222. Marzioni M, Fava G, Alvaro D, Alpini G, Benedetti A. Control of cholangiocyte adaptive responses by visceral hormones and neuropeptides. Clin Rev Allergy Immunol. 2009;36(1):13–22.

    PubMed  CAS  PubMed Central  Google Scholar 

  223. Alvaro D, Cho WK, Mennone A, Boyer JL. Effect of secretion on intracellular pH regulation in isolated rat bile duct epithelial cells. J Clin Invest. 1993;92(3):1314–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  224. Naito M, Hasegawa G, Ebe Y, Yamamoto T. Differentiation and function of Kupffer cells. Med Electron Microsc. 2004;37(1):16–28.

    PubMed  CAS  Google Scholar 

  225. Naito M. Macrophage differentiation and function in health and disease. Pathol Int. 2008;58(3):143–55.

    PubMed  CAS  Google Scholar 

  226. Van Bossuyt H, Desmaretz C, Wisse E. The fate of lipopolysaccharide in cultured rat Kupffer cells. Virchows Arch B Cell Pathol Incl Mol Pathol. 1989;58(1):89–93.

    PubMed  Google Scholar 

  227. Seki S, Habu Y, Kawamura T, Takeda K, Dobashi H, Ohkawa T, et al. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responses. Immunol Rev. 2000;174:35–46.

    PubMed  CAS  Google Scholar 

  228. Thomas HC, McSween RN, White RG. Role of the liver in controlling the immunogenicity of commensal bacteria in the gut. Lancet. 1973;1(7815):1288–91.

    PubMed  CAS  Google Scholar 

  229. Wake K, Decker K, Kirn A, Knook DL, McCuskey RS, Bouwens L, et al. Cell biology and kinetics of Kupffer cells in the liver. Int Rev Cytol. 1989;118:173–229.

    PubMed  CAS  Google Scholar 

  230. Arthur MJ, Kowalski-Saunders P, Wright R. Effect of endotoxin on release of reactive oxygen intermediates by rat hepatic macrophages. Gastroenterology. 1988;95(6):1588–94.

    PubMed  CAS  Google Scholar 

  231. Rogoff TM, Lipsky PE. Role of the Kupffer cells in local and systemic immune responses. Gastroenterology. 1981;80(4):854–60.

    PubMed  CAS  Google Scholar 

  232. Arthur MJ. Reactive oxygen intermediates and liver injury. J Hepatol. 1988;6(1):125–31.

    PubMed  CAS  Google Scholar 

  233. Thurman II RG. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am J Physiol. 1998;275(4 Pt 1):G605–11.

    PubMed  CAS  Google Scholar 

  234. Brouwer A, Hendriks HF, Knook DL. The role of eicosanoids in the acute phase response. J Hepatol. 1990;11(3):283–6.

    PubMed  CAS  Google Scholar 

  235. You Q, Cheng L, Kedl RM, Ju C. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology. 2008;48(3):978–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  236. Maemura K, Zheng Q, Wada T, Ozaki M, Takao S, Aikou T, et al. Reactive oxygen species are essential mediators in antigen presentation by Kupffer cells. Immunol Cell Biol. 2005;83(4):336–43.

    PubMed  CAS  Google Scholar 

  237. Rubinstein D, Roska AK, Lipsky PE. Liver sinusoidal lining cells express class II major histocompatibility antigens but are poor stimulators of fresh allogeneic T lymphocytes. J Immunol. 1986;137(6):1803–10.

    PubMed  CAS  Google Scholar 

  238. Doherty DG, O’Farrelly C. Innate and adaptive lymphoid cells in the human liver. Immunol Rev. 2000;174:5–20.

    PubMed  CAS  Google Scholar 

  239. Tu Z, Bozorgzadeh A, Crispe IN, Orloff MS. The activation state of human intrahepatic lymphocytes. Clin Exp Immunol. 2007;149(1):186–93.

    PubMed  CAS  PubMed Central  Google Scholar 

  240. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376.

    PubMed  CAS  Google Scholar 

  241. Shi FD, Ljunggren HG, La CA, Van KL. Organ-specific features of natural killer cells. Nat Rev Immunol. 2011;11(10):658–71.

    PubMed  CAS  PubMed Central  Google Scholar 

  242. Wisse E, Luo D, Vermijlen D, Kanellopoulou C, De ZR, Braet F. On the function of pit cells, the liver-specific natural killer cells. Semin Liver Dis. 1997;17(4):265–86.

    PubMed  CAS  Google Scholar 

  243. Mehal W, Imaeda A. Cell death and fibrogenesis. Semin Liver Dis. 2010;30(3):226–31.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Larson MD, FACP, AGAF .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Larson, A.M., Hauswald, M. (2014). Normal Functional Biology of the Liver. In: Murray, K., Horslen, S. (eds) Diseases of the Liver in Children. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9005-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9005-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9004-3

  • Online ISBN: 978-1-4614-9005-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics