Skip to main content

Wound Healing, Chronic Inflammation, and Immune Responses

  • Chapter
  • First Online:

Abstract

The biocompatibility of orthopedic materials impacts the processes of wound healing, chronic inflammation, and immune responses. Metal alloys within the body present a complex problem, since they may take the form of solid components, particulate metal debris, and metallic ions. Biological responses to metals in particulate form share much in common with other stimuli of the inflammatory response, but metal ions have the capacity to both exert direct effects on cells and provoke the development of an immunological reaction. While wound healing, chronic inflammation, and the immune response share numerous common mediators and pathways, there are subtle variations between the processes that will influence the eventual biological resolution of any orthopedic biomaterial. The pathways pertinent to these basic responses are under genetic regulation, meaning that the precise reaction of any given patient to a particular biomaterial is difficult to predict. This chapter will review the primary pathways in cellular biology that regulate wound healing, inflammation, and immunity, with a particular focus upon common mediators that interact between the systems. We will further examine the current state of knowledge of the influence of metal in its various forms on these biological processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McKee GK, Charnley J, Hicks JH, Zarek JM (1957) Symposium: the use of metal in bone surgery. Proc R Soc Med 50(10):837–846

    CAS  Google Scholar 

  2. Black J (1992) Biological performance of materials; fundamentals of biocompatibility, 2nd edn. Decker, New York

    Google Scholar 

  3. Sinigaglia F (1994) The molecular basis of metal recognition by T cells. J Invest Dermatol 102(4):398–401

    CAS  Google Scholar 

  4. Berzofsky JH, Berkower IJ (1999) Immunogenicity and antigen structure. In: Paul WE (ed) Fundamental immunology, 4th ed. Lippencott, Philadelphia, pp 651–700

    Google Scholar 

  5. Jacobs JJ, Roebuck KA, Archibeck M, Hallab NJ, Glant TT (2001) Osteolysis: basic science. Clin Orthop Relat Res 2001(393):71–77

    Google Scholar 

  6. Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8(11):1227–1234

    CAS  Google Scholar 

  7. Park JY, Gemmell CH, Davies JE (2001) Platelet interactions with titanium: modulation of platelet activity by surface topography. BioMaterials 22(19):2671–2682

    CAS  Google Scholar 

  8. Smith BS, Popat KC (2012) Titania nanotube arrays as interfaces for blood-contacting implantable devices: a study evaluating the nanotopography-associated activation and expression of blood plasma components. J Biomed Nanotechnol 8(4):642–658

    CAS  Google Scholar 

  9. Tesfamariam B (2008) Platelet function in intravascular device implant-induced intimal injury. Cardiovasc Revasc Med 9(2):78–87

    Google Scholar 

  10. Nikolidakis D, Dolder J van den, Wolke JG, Stoelinga PJ, Jansen JA (2006) The effect of platelet-rich plasma on the bone healing around calcium phosphate-coated and non-coated oral implants in trabecular bone. Tissue Eng 12(9):2555–2563

    CAS  Google Scholar 

  11. Chaput CD, Patel KV, Brindley GW, Roux MA, Hu N, Dmitriev A et al (2007) Influence of a platelet concentrate on prosthetic bone ingrowth in a rabbit model. J Surg Orthop Adv 16(4):159–163

    Google Scholar 

  12. Grinnell F, Billingham RE, Burgess L (1981) Distribution of fibronectin during wound healing in vivo. J Invest Dermatol 76(3):181–189

    CAS  Google Scholar 

  13. Evangelista V, Manarini S, Sideri R, Rotondo S, Martelli N, Piccoli A et al (1999) Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signaling molecule. Blood 93(3):876–885

    CAS  Google Scholar 

  14. Ishida Y, Kimura A, Kuninaka Y, Inui M, Matsushima K, Mukaida N et al (2012) Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing. J Clin Invest 122(2):711–721

    CAS  Google Scholar 

  15. Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15(11):599–607

    CAS  Google Scholar 

  16. Galliera E, Locati M, Mantovani A, Corsi MM (2008) Chemokines and bone remodeling. Int J Immunopathol Pharmacol 21(3):485–491

    CAS  Google Scholar 

  17. Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y et al (2010) Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther 12(1):R29

    Google Scholar 

  18. Yu JJ, Ruddy MJ, Wong GC, Sfintescu C, Baker PJ, Smith JB et al (2007) An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals. Blood 109(9):3794–3802

    CAS  Google Scholar 

  19. Henson PM (2005) Dampening inflammation. Nat Immunol 6(12):1179–1181

    CAS  Google Scholar 

  20. Stroncek JD, Reichert WM (2008) Overview of wound healing in different tissue types. In: Reichert WM (ed) Indwelling neural implants: strategies for contending with the in vivo environment. CRC, Boca Raton

    Google Scholar 

  21. Preissner KT, Reuning U (2011) Vitronectin in vascular context: facets of a multitalented matricellular protein. Semin Thromb Hemost 37(4):408–424

    CAS  Google Scholar 

  22. Clark RA, Ashcroft GS, Spencer MJ, Larjava H, Ferguson MW (1996) Re-epithelialization of normal human excisional wounds is associated with a switch from alpha v beta 5 to alpha v beta 6 integrins. Br J Dermatol 135(1):46–51

    CAS  Google Scholar 

  23. Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276(5309):75–81

    CAS  Google Scholar 

  24. Gao F, Liu Y, He Y, Yang C, Wang Y, Shi X et al (2010) Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol 29(2):107–16

    CAS  Google Scholar 

  25. Doll B, Sfeir C, Winn S, Huard J, Hollinger J (2001) Critical aspects of tissue-engineered therapy for bone regeneration. Crit Rev Eukaryot Gene Expr 11(1–3):173–198

    CAS  Google Scholar 

  26. Lima AF, Rahal SC, Volpi RS, Granjeiro JM, Taga R, Cestari TM (2007) Effect of bovine bone morphogenetic proteins on radius fracture healing in rabbits. Acta Cir Bras 22(4):260–265

    Google Scholar 

  27. Smith-Adaline EA, Volkman SK, Ignelzi MA Jr, Slade J, Platte S, Goldstein SA (2004) Mechanical environment alters tissue formation patterns during fracture repair. J Orthop Res 22(5):1079–1085

    CAS  Google Scholar 

  28. Agerbaek MO, Eriksen EF, Kragstrup J, Mosekilde L, Melsen F (1991) A reconstruction of the remodelling cycle in normal human cortical iliac bone. Bone Miner 12(2):101–112

    CAS  Google Scholar 

  29. Stenbeck G (2002) Formation and function of the ruffled border in osteoclasts. Semin Cell Dev Biol 13(4):285–292

    CAS  Google Scholar 

  30. Tatsuyama K, Maezawa Y, Baba H, Imamura Y, Fukuda M (2000) Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur J Histochem 44(3):269–278

    CAS  Google Scholar 

  31. Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzman-Morales J (2012) The cartilage-bone interface. J Knee Surg 25(2):85–97

    Google Scholar 

  32. Bhogal RK, Stoica CM, McGaha TL, Bona CA (2005) Molecular aspects of regulation of collagen gene expression in fibrosis. J Clin Immunol 25(6):592–603

    CAS  Google Scholar 

  33. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    CAS  Google Scholar 

  34. Abe M, Yokoyama Y, Ishikawa O (2012) A possible mechanism of basic fibroblast growth factor-promoted scarless wound healing: the induction of myofibroblast apoptosis. Eur J Dermatol 22(1):46–53

    CAS  Google Scholar 

  35. Witte MB, Barbul A (1997) General principles of wound healing. Surg Clin North Am 77(3):509–528

    CAS  Google Scholar 

  36. Saxne T, Heinegard D, Wollheim FA (1988) Human arthritic synovial fluid influences proteoglycan biosynthesis and degradation in organ culture of bovine nasal cartilage. Collagen Relat Res 8:233–247

    CAS  Google Scholar 

  37. Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1

    Google Scholar 

  38. Negishi-Koga T, Takayanagi H (2009) Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 231(1):241–256

    CAS  Google Scholar 

  39. Nakamura I, Rodan GA, Duong lT (2003) Regulatory mechanism of osteoclast activation. J Electron Microsc (Tokyo) 52(6):527–533

    CAS  Google Scholar 

  40. Horne WC, Sanjay A, Bruzzaniti A, Baron R (2005) The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 208:106–125

    CAS  Google Scholar 

  41. Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11(4):219–227

    Google Scholar 

  42. Ishii M, Kikuta J (2013) Sphingosine-1-phosphate signaling controlling osteoclasts and bone homeostasis. Biochim Biophys Acta 1831(1):223–227

    CAS  Google Scholar 

  43. Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13(7):791–801

    CAS  Google Scholar 

  44. Takahashi N, Maeda K, Ishihara A, Uehara S, Kobayashi Y (2011) Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front Biosci 16:21–30

    CAS  Google Scholar 

  45. Galli C, Passeri G, Macaluso GM (2010) Osteocytes and WNT: the mechanical control of bone formation. J Dent Res 89(4):331–343

    CAS  Google Scholar 

  46. Gordeladze JO, Djouad F, Brondello JM, Noel D, Duroux-Richard I, Apparailly F et al (2009) Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs. Acta Pharmacol Sin 30(10):1369–1384

    CAS  Google Scholar 

  47. Jee WS, Mori S, Li XJ, Chan S (1990) Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Bone 11(4):253–266

    CAS  Google Scholar 

  48. Greenhalgh DG (1998) The role of apoptosis in wound healing. Int J Biochem Cell Biol 30(9):1019–1130

    CAS  Google Scholar 

  49. Reddy SM, Hsiao KH, Abernethy VE, Fan H, Longacre A, Lieberthal W et al (2002) Phagocytosis of apoptotic cells by macrophages induces novel signaling events leading to cytokine-independent survival and inhibition of proliferation: activation of Akt and inhibition of extracellular signal-regulated kinases 1 and 2. J Immunol 169(2):702–713

    CAS  Google Scholar 

  50. Lenzo JC, Turner AL, Cook AD, Vlahos R, Anderson GP, Reynolds EC et al (2012) Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunol Cell Biol 90(4):429–440

    CAS  Google Scholar 

  51. Hamilton JA (2002) GM-CSF in inflammation and autoimmunity. Trends Immunol 23(8):403–408

    CAS  Google Scholar 

  52. Coll RC, O’Neill LA (2010) New insights into the regulation of signalling by toll-like receptors and nod-like receptors. J Innate Immun 2(5):406–421

    CAS  Google Scholar 

  53. Drexler SK, Foxwell BM (2010) The role of toll-like receptors in chronic inflammation. Int J Biochem Cell Biol 42(4):506–518

    CAS  Google Scholar 

  54. Huebener P, Schwabe RF (2013) Regulation of wound healing and organ fibrosis by toll-like receptors. Biochim Biophys Acta 1832(7):1005–1017

    Google Scholar 

  55. Santegoets KC, Bon BL van, Berg WB van den, Wenink MH, Radstake TR (2011) Toll-like receptors in rheumatic diseases: are we paying a high price for our defense against bugs? FEBS Lett 585(23):3660–3666

    Google Scholar 

  56. Yu L, Wang L, Chen S (2010) Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med 14(11):2592–603

    CAS  Google Scholar 

  57. Bottasso O, Docena G, Stanford JL, Grange JM (2009) Chronic inflammation as a manifestation of defects in immunoregulatory networks: implications for novel therapies based on microbial products. Inflammopharmacology 17(4):193–203

    CAS  Google Scholar 

  58. Hamilton JA (2003) Nondisposable materials, chronic inflammation, and adjuvant action. J Leukoc Biol 73(6):702–712

    CAS  Google Scholar 

  59. Hallab NJ, Cunningham BW, Jacobs JJ (2003) Spinal implant debris-induced osteolysis. Spine (Phila Pa 1976) 28(20):S125–S138

    Google Scholar 

  60. Weiss DJ, Greig B, Aird B, Geor RJ (1992) Inflammatory disorders of bone marro. Vet Clin Pathol 21(3):79–84

    Google Scholar 

  61. Meyer W (1950) Interstitial fibrinous inflammation as an example of dysoria (disordered permeability of the walls of the blood vessels). Klin Wochenschr 28(41–42):697–703

    CAS  Google Scholar 

  62. Menninger H, Stiegler A, Mohr W, Wessinghage D (1989) Detritus synovitis in chronic polyarthritis: a clinical and operation histologic evaluation. Z Rheumatol 48(2):89–94

    CAS  Google Scholar 

  63. Block W, Beckstroem J (1953) Ionometric investigation on tissue metallosis. Langenbecks Arch Klin Chir Ver Dtsch Z Chir 277(1):89–103

    CAS  Google Scholar 

  64. Straumann F, Steinemann S, Pohler O, Willenegger H, Schenk R (1963) Recent experimental and clinical results in metallosis. Langenbecks Arch Klin Chir Ver Dtsch Z Chir 305:21–28

    CAS  Google Scholar 

  65. Contzen H, Broghammer H (1964) Corrosion and metallosis. Bruns Beitr Klin Chir 208:75–84

    CAS  Google Scholar 

  66. Barceloux DG (1999) Cobalt. J Toxicol Clin Toxicol 37(2):201–206

    CAS  Google Scholar 

  67. Haddad FS, Thakrar RR, Hart AJ, Skinner JA, Nargol AV, Nolan JF et al (2011) Metal-on-metal bearings: the evidence so far. J Bone Joint Surg Br 93(5):572–579

    CAS  Google Scholar 

  68. Corradi M, Daniel J, Ziaee H, Alinovi R, Mutti A, McMinn DJ (2011) Early markers of nephrotoxicity in patients with metal-on-metal hip arthroplasty. Clin Orthop Relat Res 469(6):1651–1659

    Google Scholar 

  69. Huo MH, Romness DW, Huo SM (1997) Metallosis mimicking infection in a cemented total knee replacement. Orthopedics 20(5):466–470

    CAS  Google Scholar 

  70. Matziolis G, Perka C, Disch A (2003) Massive metallosis after revision of a fractured ceramic head onto a metal head. Arch Orthop Trauma Surg 123(1):48–50

    Google Scholar 

  71. O’Brien ST, Burnell CD, Hedden DR, Brandt JM (2013) Abrasive wear and metallosis associated with cross-linked polyethylene in total hip arthroplasty. J Arthroplasty 28(1):197–221

    Google Scholar 

  72. Natu S, Sidaginamale RP, Gandhi J, Langton DJ, Nargol AV (2012) Adverse reactions to metal debris: histopathological features of periprosthetic soft tissue reactions seen in association with failed metal on metal hip arthroplasties. J Clin Pathol 65(5):409–418

    Google Scholar 

  73. Macnair RD, Wynn-Jones H, Wimhurst JA, Toms A, Cahir J (2013) Metal ion levels not sufficient as a screening measure for adverse reactions in metal-on-metal hip arthroplasties. J Arthroplasty 28(1):78–83

    Google Scholar 

  74. Langkamer VG, Case CP, Watt I, Palmer M, Atkins RM (1999) Aggressive wear-debris pseudotumor following total hip replacement. Orthopedics 22(3):353–355

    CAS  Google Scholar 

  75. Murgatroyd SE (2012) Pseudotumor presenting as a pelvic mass: a complication of eccentric wear of a metal on polyethylene hip arthroplasty. J Arthroplasty 27(5):820–824

    Google Scholar 

  76. Mao X, Tay GH, Godbolt DB, Crawford RW (2012) Pseudotumor in a well-fixed metal-on-polyethylene uncemented hip arthroplasty. J Arthroplasty 27(3):493–497

    Google Scholar 

  77. Walsh AJ, Nikolaou VS, Antoniou J (2012) Inflammatory pseudotumor complicating metal-on-highly cross-linked polyethylene total hip arthroplasty. J Arthroplasty 27(2):324–328

    Google Scholar 

  78. Edelstein Y, Ohm H, Rosen Y (2011) Metallosis and pseudotumor after failed ORIF of a humeral fracture. Bull NYU Hosp Jt Dis 69(2):188–191

    Google Scholar 

  79. Patnana M, Sevrukov AB, Elsayes KM, Viswanathan C, Lubner M, Menias CO (2012) Inflammatory pseudotumor: the great mimicker. AJR Am J Roentgenol 198(3):W217–W227

    Google Scholar 

  80. Matthies AK, Skinner JA, Osmani H, Henckel J, Hart AJ (2012) Pseudotumors are common in well-positioned low-wearing metal-on-metal hips. Clin Orthop Relat Res 470(7):1895–1906

    Google Scholar 

  81. Hart AJ, Satchithananda K, Liddle AD, Sabah SA, McRobbie D, Henckel J et al (2012) Pseudotumors in association with well-functioning metal-on-metal hip prostheses: a case-control study using three-dimensional computed tomography and magnetic resonance imaging. J Bone Joint Surg Am 94(4):317–325

    Google Scholar 

  82. Davies AP, Willert HG, Campbell PA, Learmonth ID, Case CP (2005) An unusual lymphocytic perivascular infiltration in tissues around contemporary metal-on-metal joint replacements. J Bone Joint Surg Am 87(1):18–27

    CAS  Google Scholar 

  83. Fujishiro T, Moojen DJ, Kobayashi N, Dhert WJ, Bauer TW (2011) Perivascular and diffuse lymphocytic inflammation are not specific for failed metal-on-metal hip implants. Clin Orthop Relat Res 469(4):1127–1133

    Google Scholar 

  84. Ng VY, Lombardi AV Jr, Berend KR, Skeels MD, Adams JB (2011) Perivascular lymphocytic infiltration is not limited to metal-on-metal bearings. Clin Orthop Relat Res 469(2):523–529

    Google Scholar 

  85. Gordon S (1998) The role of the macrophage in immune regulation. Res Immunol 149(7–8):685–688

    CAS  Google Scholar 

  86. Dustin ML (2009) The cellular context of T cell signaling. Immunity 30(4):482–492

    CAS  Google Scholar 

  87. Veien NK (2011) Systemic contact dermatitis. Int J Dermatol 50(12):1445–1456

    CAS  Google Scholar 

  88. Boden SR, Wesley BA (2011) Anaphylaxis: a history with emphasis on food allergy. Immunol Rev 242(1):247–257

    CAS  Google Scholar 

  89. Uzzaman A, Cho SH (2012) Classification of hypersensitivity reactions. Allergy Asthma Proc 33(Suppl 1):S96–S99

    Google Scholar 

  90. Collington SJ, Williams TJ, Weller CL (2011) Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol 32(10):478–485

    CAS  Google Scholar 

  91. Cooper PJ (2009) Interactions between helminth parasites and allergy. Curr Opin Allergy Clin Immunol 9(1):29–37

    Google Scholar 

  92. Watanabe H, Unger M, Tuvel B, Wang B, Sauder DN (2002) Contact hypersensitivity: the mechanism of immune responses and T cell balance. J Interferon Cytokine Res 22(4):407–412

    CAS  Google Scholar 

  93. Incorvaia C, Frati F, Verna N, D’Alo S, Motolese A, Pucci S (2008) Allergy and the skin. Clin Exp Immunol 153(Suppl 1):27–29

    CAS  Google Scholar 

  94. Hogan AD, Burks AW (1995) Epidermal Langerhans’ cells and their function in the skin immune system. Ann Allergy Asthma Immunol 75(1):5–10

    CAS  Google Scholar 

  95. Cavani A (2008) T regulatory cells in contact hypersensitivity. Curr Opin Allergy Clin Immunol 8(4):294–298

    CAS  Google Scholar 

  96. Akbar M, Brewer JM, Grant MH (2011) Effect of chromium and cobalt ions on primary human lymphocytes in vitro. J Immunotoxicol 8(2):140–149

    CAS  Google Scholar 

  97. Caicedo MS, Pennekamp PH, McAllister K, Jacobs JJ, Hallab NJ (2010) Soluble ions more than particulate cobalt-alloy implant debris induce monocyte costimulatory molecule expression and release of proinflammatory cytokines critical to metal-induced lymphocyte reactivity. J Biomed Mater Res A 93(4):1312–1321

    Google Scholar 

  98. Liden C (1994) Occupational contact dermatitis due to nickel allergy. Sci Total Environ 148:283–285

    CAS  Google Scholar 

  99. Black J (1992) Biological performance of materials; fundamentals of biocompatibility, 2nd edn. Decker, New York

    Google Scholar 

  100. Fleming CJ, Burden AD, Forsyth A (1999) The genetics of allergic contact hypersensitivity to nickel. Contact Dermat 41:251–253

    CAS  Google Scholar 

  101. Arikan A, Kulak Y (1992) A study of chromium, nickel and cobalt hypersensitivity. J Marmara Univ Dent Fac 1:223–229

    CAS  Google Scholar 

  102. McDonagh AJ, Wright AL, Cork MJ, Gawkrodger DJ (1992) Nickel sensitivity: the influence of ear piercing and atopy. Br J Dermatol 126:16–18

    CAS  Google Scholar 

  103. Balato N, Costa L, Lembo G, Patruno C, Cuccurullo FM, Parascandolo F et al (1995) Allergic contact-dermatitis from orthopedic devices. Contact Dermat 32(5):314–315

    CAS  Google Scholar 

  104. Elves MW, Wilson JN, Scales JT, Kemp HB (1975) Incidence of metal sensitivity in patients with total joint replacements. Br Med J 4(5993):376–378

    CAS  Google Scholar 

  105. Evans EM (1974) Metal sensitivity as a cause of bone necrosis and loosening of the prosthesis in total joint replacement. J Bone Joint Surg Br 56-B(4):626–642

    CAS  Google Scholar 

  106. Liden C, Wahlberg JE (1994) Cross-reactivity to metal compounds studied in guinea pigs induced with chromate or cobalt. Acta Derm Venereol 74:341–343

    CAS  Google Scholar 

  107. Hallab N, Merritt K, Jacobs JJ (2001) Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 83-A(3):428–436

    CAS  Google Scholar 

  108. Benson MK, Goodwin PG, Brostoff J (1975) Metal sensitivity in patients with joint replacement arthroplasties. Br Med J 4(5993):374–375

    CAS  Google Scholar 

  109. Gawkrodger DJ (1993) Nickel sensitivity and the implantation of orthopaedic prostheses. Contact Dermat 28:257–259

    CAS  Google Scholar 

  110. Rooker GD, Wilkinson JD (1980) Metal sensitivity in patients undergoing hip replacement. A prospective study. J Bone Joint Surg Br 62-B(4):502–505

    CAS  Google Scholar 

  111. Jacobs JJ, Goodman SB, Sumner DR, Hallab NJ (2000) Biologic response to orthopaedic implants. In: Buckwalter JA, Einhorn TA, Simon SR (eds) Orthopaedic basic science, 2nd edn. AAOS, Rosemont, pp 401–426

    Google Scholar 

  112. Lewin J, Lindgren U, Wahlberg JE (1982) Screw fixation in bone of guinea pigs sensitized to nickel and cobalt. Acta Orthop Scand 53(4):675–680

    CAS  Google Scholar 

  113. Lewin J, Lindgren JU, Wahlberg JE (1987) Apparent absence of local response to bone screws in guinea-pigs with contact sensitivity. J Orthop Res 5(4):604–608

    CAS  Google Scholar 

  114. Carlsson A, Moller H (1989) Implantation of orthopedic devices in patients with metal allergy. Acta Derm Venereol 69(1):62–66

    CAS  Google Scholar 

  115. Gao X, He RX, Yan SG, Wu LD (2011) Dermatitis associated with chromium following total knee arthroplasty. J Arthroplasty 26(4):665–666

    Google Scholar 

  116. Bjurholm A, al-Tawil NA, Marcusson JA, Netz P (1990) The lymphocyte response to nickel salt in patients with orthopedic implants. Acta Orthop Scand 61:248–250

    CAS  Google Scholar 

  117. Kubba R, Taylor JS, Marks KE (1981) Cutaneous complications of orthopedic implants. A two-year prospective study. Arch Dermatol 117(9):554–560

    CAS  Google Scholar 

  118. Lhotka CG, Szekeres T, Fritzer-Szekeres M, Schwarz G, Steffan I, Maschke M et al (1998) Are allergic reactions to skin clips associated with delayed wound healing? Am J Surg 176:320–323

    CAS  Google Scholar 

  119. Oakley AM, Ive FA, Carr MM (1987) Skin clips are contraindicated when there is nickel allergy. J R Soc Med 80(5):290–291

    CAS  Google Scholar 

  120. Ross IB, Warrington RJ, Halliday WC (1998) Cell-mediated allergy to a cerebral aneurysm clip: case report. Neurosurgery 43(5):1209–1211

    CAS  Google Scholar 

  121. Fine PG, Karwande SV (1990) Sternal wire-induced persistent chest pain: a possible hypersensitivity reaction. Ann Thorac Surg 49(1):135–136

    CAS  Google Scholar 

  122. Gordon PM, Buxton PK, McLaren KM, Aldridge RD (1996) Sensitivity to sternotomy wires may cause postoperative pruritus. Ann Thorac Surg 61(5):1514–1516

    CAS  Google Scholar 

  123. Bass JK, Fine H, Cisneros GJ (1993) Nickel hypersensitivity in the orthodontic patient. Am J Orthod Dentofacial Orthop 103(3):280–285

    CAS  Google Scholar 

  124. Jia W, Beatty MW, Reinhardt RA, Petro TM, Cohen DM, Maze CR et al (1999) Nickel release from orthodontic arch wires and cellular immune response to various nickel concentrations. J Biomed Mater Res 48:488–495

    CAS  Google Scholar 

  125. Basketter DA, Lea LJ, Cooper KJ, Ryan CA, Gerberick GF, Dearman RJ et al (1999) Identification of metal allergens in the local lymph node assay. Am J Contact Dermat 10:207–212

    CAS  Google Scholar 

  126. Bour H, Nicolas JF, Garrigue JL, Demidem A, Schmitt D (1994) Establishment of nickel-specific T cell lines from patients with allergic contact dermatitis: comparison of different protocols. Clin Immunol Immunopathol 73:142–145

    CAS  Google Scholar 

  127. Silvennoinen-Kassinen S, Ikaheimo I, Tiilikainen A (1997) TAP1 and TAP2 genes in nickel allergy. Int Arch Allergy Immunol 114:94–96

    CAS  Google Scholar 

  128. Cavani A, Mei D, Guerra E, Corinti S, Giani M, Pirrotta L et al (1998) Patients with allergic contact dermatitis to nickel and nonallergic individuals display different nickel-specific T cell responses. Evidence for the presence of effector CD8+ and regulatory CD4+ T cells. J Invest Dermatol 111:621–628

    CAS  Google Scholar 

  129. Sinigaglia F (1994) The molecular basis of metal recognition by T cells. J Invest Dermatol 102:398–401

    CAS  Google Scholar 

  130. Vollmer J, Weltzien HU, Moulon C (1999) TCR reactivity in human nickel allergy indicates contacts with complementarity-determining region 3 but excludes superantigen-like recognition. J Immunol 163:2723–2731

    CAS  Google Scholar 

  131. Vollmer J, Fritz M, Dormoy A, Weltzien HU, Moulon C (1997) Dominance of the BV17 element in nickel-specific human T cell receptors relates to severity of contact sensitivity. Eur J Immunol 27:1865–1874

    CAS  Google Scholar 

  132. Werfel T, Hentschel M, Kapp A, Renz H (1997) Dichotomy of blood- and skin-derived IL-4-producing allergen-specific T cells and restricted V beta repertoire in nickel-mediated contact dermatitis. J Immunol 158:2500–2505

    CAS  Google Scholar 

  133. Granchi D, Ciapetti G, Savarino L, Stea S, Filippini F, Sudanese A et al (2000) Expression of the CD69 activation antigen on lymphocytes of patients with hip prosthesis. BioMaterials 21(20):2059–2065

    CAS  Google Scholar 

  134. Bravo I, Carvalho GS, Barbosa MA, De Sousa M (1990) Differential effects of eight metal ions on lymphocyte differentiation antigens in vitro. J Biomed Mater Res 24:1059–1068

    CAS  Google Scholar 

  135. Akbar M, Brewer JM, Grant MH (2011) Effect of chromium and cobalt ions on primary human lymphocytes in vitro. J Immunotoxicol 8(2):140–149

    CAS  Google Scholar 

  136. Au A, Ha J, Hernandez M, Polotsky A, Hungerford DS, Frondoza CG (2006) Nickel and vanadium metal ions induce apoptosis of T-lymphocyte Jurkat cells. J Biomed Mater Res A 79(3):512–521

    Google Scholar 

  137. Merritt K, Rodrigo JJ (1996) Immune response to synthetic materials. Sensitization of patients receiving orthopaedic implants. Clin Orthop Relat Res 1996(326):71–79

    Google Scholar 

  138. Wooley PH, Petersen S, Song Z, Nasser S (1997) Cellular immune responses to orthopaedic implant materials following cemented total joint replacement. J Orthop Res 15:874–880

    CAS  Google Scholar 

  139. Wooley PH, Nasser S, Fitzgerald RH Jr (1996) The immune response to implant materials in humans. Clin Orthop Relat Res 326:63–70

    Google Scholar 

  140. Yang J, Merritt K (1994) Detection of antibodies against corrosion products in patients after Co-Cr total joint replacements. J Biomed Mater Res 28(11):1249–1258

    CAS  Google Scholar 

  141. Yang J, Merritt K (1996) Production of monoclonal antibodies to study corrosion products of CO-CR biomaterials. J Biomed Mater Res 31:71–80

    CAS  Google Scholar 

  142. Al-Saffar N, Khwaja HA, Kadoya Y, Revell PA (1996) Assessment of the role of GM-CSF in the cellular transformation and the development of erosive lesions 2 orthopaedic implants. Am J Clin Pathol 105(5):628–639

    Google Scholar 

  143. Thornhill TS, Ozuna RM, Shortkroff S, Keller K, Sledge CB, Spector M (1990) Biochemical and histological evaluation of the synovial-like tissue around failed (loose) total joint replacement prostheses in human subjects and a canine model. BioMaterials 11:69–72

    CAS  Google Scholar 

  144. Haynes DR, Rogers SD, Hay S, Pearcy MJ, Howie DW (1993) The differences in toxicity and release of bone-resorbing mediators induced by titanium and cobalt-chromium-alloy wear particles. J Bone Joint Surg Am 75:825–834

    Google Scholar 

  145. Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT (1996) Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro. BioMaterials 17:2233–2240

    CAS  Google Scholar 

  146. Witt JD, Swann M (1991) Metal wear and tissue response in failed titanium alloy total hip replacements. J Bone Joint Surg Br 73(4):559–563

    Google Scholar 

  147. Hildebrand HF, Veron C, Martin P (1988) Nickel, chromium, cobalt dental alloys and allergic reactions: an overview. In: Hildebrand HF, Champy M (eds) Biocompatibility of Co-Cr-Ni alloys. Plenum, New York, pp 201–223

    Google Scholar 

  148. Thyssen JP, Menne T (2010) Metal allergy—a review on exposures, penetration, genetics, prevalence, and clinical implications. Chem Res Toxicol 23(2):309–318

    CAS  Google Scholar 

  149. Lisby S, Hansen LH, Skov L, Menne T, Baadsgaard O (1999) Nickel-induced activation of T cells in individuals with negative patch test to nickel sulphate. Arch Dermatol Res 291:247–252

    CAS  Google Scholar 

  150. Milavec-Puretic V, Orlic D, Marusic A (1998) Sensitivity to metals in 40 patients with failed hip endoprosthesis. Arch Orthop Trauma Surg 117:383–386

    CAS  Google Scholar 

  151. Lacy SA, Merritt K, Brown SA, Puryear A (1996) Distribution of nickel and cobalt following dermal and systemic administration with in vitro and in vivo studies. J Biomed Mater Res 32(2):279–283

    CAS  Google Scholar 

  152. Sosroseno W (1995) The immunology of nickel-induced allergic contact dermatitis. Asian Pac J Allergy Immunol 13:173–181

    CAS  Google Scholar 

  153. Van Den Broeke LT, Heffler LC, Tengvall LM, Nilsson JL, Karlberg AT et al (1999) Direct Ni2+ antigen formation on cultured human dendritic cells. Immunology 96:578–585

    CAS  Google Scholar 

  154. Lansdown AB (1995) Physiological and toxicological changes in the skin resulting from the action and interaction of metal ions. Crit Rev Toxicol 25:397–462

    CAS  Google Scholar 

  155. Gusev EI, Ponosov VL, Kevorkov NN (1991) Interrelations of cellular and humoral immune response and different doses of sheep erythrocytes in mice. Biull Eksp Biol Med 112(9):271–273

    Google Scholar 

  156. Haudrechy P, Foussereau J, Mantout B, Baroux B (1994) Nickel release from nickel-plated metals and stainless steels. Contact Dermat 31:249–255

    CAS  Google Scholar 

  157. Haudrechy P, Mantout B, Frappaz A, Rousseau D, Chabeau G, Faure M et al (1997) Nickel release from stainless steels. Contact Dermat 37:113–117

    CAS  Google Scholar 

  158. Cramers M, Lucht U (1977) Metal sensitivity in patients treated for tibial fractures with plates of stainless steel. Acta Orthop Scand 48(3):245–249

    CAS  Google Scholar 

  159. Lin HY, Bumgardner JD (2004) In vitro biocorrosion of Co-Cr-Mo implant alloy by macrophage cells. J Orthop Res 22(6):1231–1236

    CAS  Google Scholar 

  160. Caicedo MS, Desai R, McAllister K, Reddy A, Jacobs JJ, Hallab NJ (2009) Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: a novel mechanism for implant debris reactivity. J Orthop Res 27(7):847–854

    CAS  Google Scholar 

  161. Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD Jr, Pellicci PM et al (1988) Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg Am 70(3):347–356

    Google Scholar 

  162. Kim KJ, Chiba J, Rubash HE (1994) In vivo and in vitro analysis of membranes from hip prostheses inserted without cement. J Bone Joint Surg Am 76(2):172–180

    CAS  Google Scholar 

  163. Munro-Ashman D, Miller AJ (1976) Rejection of metal to metal prosthesis and skin sensitivity to cobalt. Contact Dermat 2(2):65–67

    CAS  Google Scholar 

  164. Doorn PF, Campbell PA, Worrall J, Benya PD, McKellop HA, Amstutz HC (1998) Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J Biomed Mater Res 42(1):103–111

    CAS  Google Scholar 

  165. Langkamer VG, Case CP, Heap P, Taylor A, Collins C, Pearse M et al (1992) Systemic distribution of wear debris after hip replacement. A cause for concern? J Bone Joint Surg Br 74(6):831–839

    CAS  Google Scholar 

  166. Shinto Y, Uchida A, Yoshikawa H, Araki N, Kato T, Ono K (1993) Inguinal lymphadenopathy due to metal release from a prosthesis. A case report. J Bone Joint Surg Br 75(2):266–269

    CAS  Google Scholar 

  167. Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h M (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 82(4):457–476

    CAS  Google Scholar 

  168. Willert HG, Buchhorn GH, Fayyazi A, Flury R, Windler M, Koster G et al (2005) Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am 87(1):28–36

    Google Scholar 

  169. Langton DJ, Joyce TJ, Jameson SS, Lord J, Van OM, Holland JP et al (2011) Adverse reaction to metal debris following hip resurfacing: the influence of component type, orientation and volumetric wear. J Bone Joint Surg Br 93(2):164–171

    CAS  Google Scholar 

  170. Campbell P, Ebramzadeh E, Nelson S, Takamura K, Smet KD, Amstutz HC (2010) Histological features of pseudotumor-like tissues from metal-on-metal hips. Clin Orthop Relat Res 468(9):2321–2327

    Google Scholar 

  171. Watters TS, Cardona DM, Menon KS, Vinson EN, Bolognesi MP, Dodd LG (2010) Aseptic lymphocyte-dominated vasculitis-associated lesion: a clinicopathologic review of an underrecognized cause of prosthetic failure. Am J Clin Pathol 134(6):886–893

    Google Scholar 

  172. Pandit H, Vlychou M, Whitwell D, Crook D, Luqmani R, Ostlere S et al (2008) Necrotic granulomatous pseudotumours in bilateral resurfacing hip arthoplasties: evidence for a type IV immune response. Virchows Arch 453(5):529–534

    CAS  Google Scholar 

  173. Brown GC, Lockshin MD, Salvati EA, Bullough PG (1977) Sensitivity to metal as a possible cause of sterile loosening after cobalt-chromium total hip-replacement arthroplasty. J Bone Joint Surg Am 59(2):164–168

    CAS  Google Scholar 

  174. Thomas P, Braathen LR, Dorig M, Aubock J, Nestle F, Werfel T et al (2009) Increased metal allergy in patients with failed metal-on-metal hip arthroplasty and peri-implant T-lymphocytic inflammation. Allergy 64(8):1157–1165

    CAS  Google Scholar 

  175. Niki Y, Matsumoto H, Otani T, Yatabe T, Kondo M, Yoshimine F et al (2005) Screening for symptomatic metal sensitivity: a prospective study of 92 patients undergoing total knee arthroplasty. BioMaterials 26(9):1019–1026

    CAS  Google Scholar 

  176. Amstutz HC, Grigoris P (1996) Metal on metal bearings in hip arthroplasty. Clin Orthop Relat Res 1996(329 Suppl):S11–S34

    Google Scholar 

  177. Hallab NJ, Caicedo M, Epstein R, McAllister K, Jacobs JJ (2010) In vitro reactivity to implant metals demonstrates a person-dependent association with both T-cell and B-cell activation. J Biomed Mater Res A 92(2):667–682

    Google Scholar 

  178. Delaunay C, Petit I, Learmonth ID, Oger P, Vendittoli PA (2010) Metal-on-metal bearings total hip arthroplasty: the cobalt and chromium ions release concern. Orthop Traumatol Surg Res 96(8):894–904

    CAS  Google Scholar 

  179. Schmalzried TP (2009) Metal-metal bearing surfaces in hip arthroplasty. Orthopedics 32(9)

    Google Scholar 

  180. Rajpura A, Porter ML, Gambhir AK, Freemont AJ, Board TN (2011) Clinical experience of revision of metal on metal hip arthroplasty for aseptic lymphocyte dominated vasculitis associated lesions (ALVAL). Hip Int 21(1):43–51

    Google Scholar 

  181. Nikolaou V, Bergeron SG, Huk OL, Zukor DJ, Antoniou J (2009) Evaluation of persistent pain after hip resurfacing. Bull NYU Hosp Jt Dis 67(2):168–172

    Google Scholar 

Download references

Acknowledgment

Dr. Wooley is the Chief Scientific Officer of the National Center of Innovation for Biomaterials in Orthopaedic Research, inventor of the ArthrollergenTM biomaterial sensitivity test, consultant to Stryker Orthopaedics, Inc., and consultant to the legal representatives of Depuy, Inc. Dr. Wooley receives no financial benefit for these activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. Wooley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wooley, P., Hallab, N. (2014). Wound Healing, Chronic Inflammation, and Immune Responses. In: Jones, L., Haggard, W., Greenwald, A. (eds) Metal-on-Metal Bearings. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8999-3_7

Download citation

Publish with us

Policies and ethics