Wound Healing, Chronic Inflammation, and Immune Responses



The biocompatibility of orthopedic materials impacts the processes of wound healing, chronic inflammation, and immune responses. Metal alloys within the body present a complex problem, since they may take the form of solid components, particulate metal debris, and metallic ions. Biological responses to metals in particulate form share much in common with other stimuli of the inflammatory response, but metal ions have the capacity to both exert direct effects on cells and provoke the development of an immunological reaction. While wound healing, chronic inflammation, and the immune response share numerous common mediators and pathways, there are subtle variations between the processes that will influence the eventual biological resolution of any orthopedic biomaterial. The pathways pertinent to these basic responses are under genetic regulation, meaning that the precise reaction of any given patient to a particular biomaterial is difficult to predict. This chapter will review the primary pathways in cellular biology that regulate wound healing, inflammation, and immunity, with a particular focus upon common mediators that interact between the systems. We will further examine the current state of knowledge of the influence of metal in its various forms on these biological processes.


Aseptic Loosening Wear Debris Metal Debris Metal Sensitivity Metal Allergy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. Wooley is the Chief Scientific Officer of the National Center of Innovation for Biomaterials in Orthopaedic Research, inventor of the ArthrollergenTM biomaterial sensitivity test, consultant to Stryker Orthopaedics, Inc., and consultant to the legal representatives of Depuy, Inc. Dr. Wooley receives no financial benefit for these activities.


  1. 1.
    McKee GK, Charnley J, Hicks JH, Zarek JM (1957) Symposium: the use of metal in bone surgery. Proc R Soc Med 50(10):837–846Google Scholar
  2. 2.
    Black J (1992) Biological performance of materials; fundamentals of biocompatibility, 2nd edn. Decker, New YorkGoogle Scholar
  3. 3.
    Sinigaglia F (1994) The molecular basis of metal recognition by T cells. J Invest Dermatol 102(4):398–401Google Scholar
  4. 4.
    Berzofsky JH, Berkower IJ (1999) Immunogenicity and antigen structure. In: Paul WE (ed) Fundamental immunology, 4th ed. Lippencott, Philadelphia, pp 651–700Google Scholar
  5. 5.
    Jacobs JJ, Roebuck KA, Archibeck M, Hallab NJ, Glant TT (2001) Osteolysis: basic science. Clin Orthop Relat Res 2001(393):71–77Google Scholar
  6. 6.
    Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8(11):1227–1234Google Scholar
  7. 7.
    Park JY, Gemmell CH, Davies JE (2001) Platelet interactions with titanium: modulation of platelet activity by surface topography. BioMaterials 22(19):2671–2682Google Scholar
  8. 8.
    Smith BS, Popat KC (2012) Titania nanotube arrays as interfaces for blood-contacting implantable devices: a study evaluating the nanotopography-associated activation and expression of blood plasma components. J Biomed Nanotechnol 8(4):642–658Google Scholar
  9. 9.
    Tesfamariam B (2008) Platelet function in intravascular device implant-induced intimal injury. Cardiovasc Revasc Med 9(2):78–87Google Scholar
  10. 10.
    Nikolidakis D, Dolder J van den, Wolke JG, Stoelinga PJ, Jansen JA (2006) The effect of platelet-rich plasma on the bone healing around calcium phosphate-coated and non-coated oral implants in trabecular bone. Tissue Eng 12(9):2555–2563Google Scholar
  11. 11.
    Chaput CD, Patel KV, Brindley GW, Roux MA, Hu N, Dmitriev A et al (2007) Influence of a platelet concentrate on prosthetic bone ingrowth in a rabbit model. J Surg Orthop Adv 16(4):159–163Google Scholar
  12. 12.
    Grinnell F, Billingham RE, Burgess L (1981) Distribution of fibronectin during wound healing in vivo. J Invest Dermatol 76(3):181–189Google Scholar
  13. 13.
    Evangelista V, Manarini S, Sideri R, Rotondo S, Martelli N, Piccoli A et al (1999) Platelet/polymorphonuclear leukocyte interaction: P-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signaling molecule. Blood 93(3):876–885Google Scholar
  14. 14.
    Ishida Y, Kimura A, Kuninaka Y, Inui M, Matsushima K, Mukaida N et al (2012) Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing. J Clin Invest 122(2):711–721Google Scholar
  15. 15.
    Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15(11):599–607Google Scholar
  16. 16.
    Galliera E, Locati M, Mantovani A, Corsi MM (2008) Chemokines and bone remodeling. Int J Immunopathol Pharmacol 21(3):485–491Google Scholar
  17. 17.
    Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, Iwakura Y et al (2010) Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther 12(1):R29Google Scholar
  18. 18.
    Yu JJ, Ruddy MJ, Wong GC, Sfintescu C, Baker PJ, Smith JB et al (2007) An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals. Blood 109(9):3794–3802Google Scholar
  19. 19.
    Henson PM (2005) Dampening inflammation. Nat Immunol 6(12):1179–1181Google Scholar
  20. 20.
    Stroncek JD, Reichert WM (2008) Overview of wound healing in different tissue types. In: Reichert WM (ed) Indwelling neural implants: strategies for contending with the in vivo environment. CRC, Boca RatonGoogle Scholar
  21. 21.
    Preissner KT, Reuning U (2011) Vitronectin in vascular context: facets of a multitalented matricellular protein. Semin Thromb Hemost 37(4):408–424Google Scholar
  22. 22.
    Clark RA, Ashcroft GS, Spencer MJ, Larjava H, Ferguson MW (1996) Re-epithelialization of normal human excisional wounds is associated with a switch from alpha v beta 5 to alpha v beta 6 integrins. Br J Dermatol 135(1):46–51Google Scholar
  23. 23.
    Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276(5309):75–81Google Scholar
  24. 24.
    Gao F, Liu Y, He Y, Yang C, Wang Y, Shi X et al (2010) Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol 29(2):107–16Google Scholar
  25. 25.
    Doll B, Sfeir C, Winn S, Huard J, Hollinger J (2001) Critical aspects of tissue-engineered therapy for bone regeneration. Crit Rev Eukaryot Gene Expr 11(1–3):173–198Google Scholar
  26. 26.
    Lima AF, Rahal SC, Volpi RS, Granjeiro JM, Taga R, Cestari TM (2007) Effect of bovine bone morphogenetic proteins on radius fracture healing in rabbits. Acta Cir Bras 22(4):260–265Google Scholar
  27. 27.
    Smith-Adaline EA, Volkman SK, Ignelzi MA Jr, Slade J, Platte S, Goldstein SA (2004) Mechanical environment alters tissue formation patterns during fracture repair. J Orthop Res 22(5):1079–1085Google Scholar
  28. 28.
    Agerbaek MO, Eriksen EF, Kragstrup J, Mosekilde L, Melsen F (1991) A reconstruction of the remodelling cycle in normal human cortical iliac bone. Bone Miner 12(2):101–112Google Scholar
  29. 29.
    Stenbeck G (2002) Formation and function of the ruffled border in osteoclasts. Semin Cell Dev Biol 13(4):285–292Google Scholar
  30. 30.
    Tatsuyama K, Maezawa Y, Baba H, Imamura Y, Fukuda M (2000) Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur J Histochem 44(3):269–278Google Scholar
  31. 31.
    Hoemann CD, Lafantaisie-Favreau CH, Lascau-Coman V, Chen G, Guzman-Morales J (2012) The cartilage-bone interface. J Knee Surg 25(2):85–97Google Scholar
  32. 32.
    Bhogal RK, Stoica CM, McGaha TL, Bona CA (2005) Molecular aspects of regulation of collagen gene expression in fibrosis. J Clin Immunol 25(6):592–603Google Scholar
  33. 33.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363Google Scholar
  34. 34.
    Abe M, Yokoyama Y, Ishikawa O (2012) A possible mechanism of basic fibroblast growth factor-promoted scarless wound healing: the induction of myofibroblast apoptosis. Eur J Dermatol 22(1):46–53Google Scholar
  35. 35.
    Witte MB, Barbul A (1997) General principles of wound healing. Surg Clin North Am 77(3):509–528Google Scholar
  36. 36.
    Saxne T, Heinegard D, Wollheim FA (1988) Human arthritic synovial fluid influences proteoglycan biosynthesis and degradation in organ culture of bovine nasal cartilage. Collagen Relat Res 8:233–247Google Scholar
  37. 37.
    Boyce BF, Xing L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9(Suppl 1):S1Google Scholar
  38. 38.
    Negishi-Koga T, Takayanagi H (2009) Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 231(1):241–256Google Scholar
  39. 39.
    Nakamura I, Rodan GA, Duong lT (2003) Regulatory mechanism of osteoclast activation. J Electron Microsc (Tokyo) 52(6):527–533Google Scholar
  40. 40.
    Horne WC, Sanjay A, Bruzzaniti A, Baron R (2005) The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol Rev 208:106–125Google Scholar
  41. 41.
    Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11(4):219–227Google Scholar
  42. 42.
    Ishii M, Kikuta J (2013) Sphingosine-1-phosphate signaling controlling osteoclasts and bone homeostasis. Biochim Biophys Acta 1831(1):223–227Google Scholar
  43. 43.
    Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13(7):791–801Google Scholar
  44. 44.
    Takahashi N, Maeda K, Ishihara A, Uehara S, Kobayashi Y (2011) Regulatory mechanism of osteoclastogenesis by RANKL and Wnt signals. Front Biosci 16:21–30Google Scholar
  45. 45.
    Galli C, Passeri G, Macaluso GM (2010) Osteocytes and WNT: the mechanical control of bone formation. J Dent Res 89(4):331–343Google Scholar
  46. 46.
    Gordeladze JO, Djouad F, Brondello JM, Noel D, Duroux-Richard I, Apparailly F et al (2009) Concerted stimuli regulating osteo-chondral differentiation from stem cells: phenotype acquisition regulated by microRNAs. Acta Pharmacol Sin 30(10):1369–1384Google Scholar
  47. 47.
    Jee WS, Mori S, Li XJ, Chan S (1990) Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Bone 11(4):253–266Google Scholar
  48. 48.
    Greenhalgh DG (1998) The role of apoptosis in wound healing. Int J Biochem Cell Biol 30(9):1019–1130Google Scholar
  49. 49.
    Reddy SM, Hsiao KH, Abernethy VE, Fan H, Longacre A, Lieberthal W et al (2002) Phagocytosis of apoptotic cells by macrophages induces novel signaling events leading to cytokine-independent survival and inhibition of proliferation: activation of Akt and inhibition of extracellular signal-regulated kinases 1 and 2. J Immunol 169(2):702–713Google Scholar
  50. 50.
    Lenzo JC, Turner AL, Cook AD, Vlahos R, Anderson GP, Reynolds EC et al (2012) Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunol Cell Biol 90(4):429–440Google Scholar
  51. 51.
    Hamilton JA (2002) GM-CSF in inflammation and autoimmunity. Trends Immunol 23(8):403–408Google Scholar
  52. 52.
    Coll RC, O’Neill LA (2010) New insights into the regulation of signalling by toll-like receptors and nod-like receptors. J Innate Immun 2(5):406–421Google Scholar
  53. 53.
    Drexler SK, Foxwell BM (2010) The role of toll-like receptors in chronic inflammation. Int J Biochem Cell Biol 42(4):506–518Google Scholar
  54. 54.
    Huebener P, Schwabe RF (2013) Regulation of wound healing and organ fibrosis by toll-like receptors. Biochim Biophys Acta 1832(7):1005–1017Google Scholar
  55. 55.
    Santegoets KC, Bon BL van, Berg WB van den, Wenink MH, Radstake TR (2011) Toll-like receptors in rheumatic diseases: are we paying a high price for our defense against bugs? FEBS Lett 585(23):3660–3666Google Scholar
  56. 56.
    Yu L, Wang L, Chen S (2010) Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med 14(11):2592–603Google Scholar
  57. 57.
    Bottasso O, Docena G, Stanford JL, Grange JM (2009) Chronic inflammation as a manifestation of defects in immunoregulatory networks: implications for novel therapies based on microbial products. Inflammopharmacology 17(4):193–203Google Scholar
  58. 58.
    Hamilton JA (2003) Nondisposable materials, chronic inflammation, and adjuvant action. J Leukoc Biol 73(6):702–712Google Scholar
  59. 59.
    Hallab NJ, Cunningham BW, Jacobs JJ (2003) Spinal implant debris-induced osteolysis. Spine (Phila Pa 1976) 28(20):S125–S138Google Scholar
  60. 60.
    Weiss DJ, Greig B, Aird B, Geor RJ (1992) Inflammatory disorders of bone marro. Vet Clin Pathol 21(3):79–84Google Scholar
  61. 61.
    Meyer W (1950) Interstitial fibrinous inflammation as an example of dysoria (disordered permeability of the walls of the blood vessels). Klin Wochenschr 28(41–42):697–703Google Scholar
  62. 62.
    Menninger H, Stiegler A, Mohr W, Wessinghage D (1989) Detritus synovitis in chronic polyarthritis: a clinical and operation histologic evaluation. Z Rheumatol 48(2):89–94Google Scholar
  63. 63.
    Block W, Beckstroem J (1953) Ionometric investigation on tissue metallosis. Langenbecks Arch Klin Chir Ver Dtsch Z Chir 277(1):89–103Google Scholar
  64. 64.
    Straumann F, Steinemann S, Pohler O, Willenegger H, Schenk R (1963) Recent experimental and clinical results in metallosis. Langenbecks Arch Klin Chir Ver Dtsch Z Chir 305:21–28Google Scholar
  65. 65.
    Contzen H, Broghammer H (1964) Corrosion and metallosis. Bruns Beitr Klin Chir 208:75–84Google Scholar
  66. 66.
    Barceloux DG (1999) Cobalt. J Toxicol Clin Toxicol 37(2):201–206Google Scholar
  67. 67.
    Haddad FS, Thakrar RR, Hart AJ, Skinner JA, Nargol AV, Nolan JF et al (2011) Metal-on-metal bearings: the evidence so far. J Bone Joint Surg Br 93(5):572–579Google Scholar
  68. 68.
    Corradi M, Daniel J, Ziaee H, Alinovi R, Mutti A, McMinn DJ (2011) Early markers of nephrotoxicity in patients with metal-on-metal hip arthroplasty. Clin Orthop Relat Res 469(6):1651–1659Google Scholar
  69. 69.
    Huo MH, Romness DW, Huo SM (1997) Metallosis mimicking infection in a cemented total knee replacement. Orthopedics 20(5):466–470Google Scholar
  70. 70.
    Matziolis G, Perka C, Disch A (2003) Massive metallosis after revision of a fractured ceramic head onto a metal head. Arch Orthop Trauma Surg 123(1):48–50Google Scholar
  71. 71.
    O’Brien ST, Burnell CD, Hedden DR, Brandt JM (2013) Abrasive wear and metallosis associated with cross-linked polyethylene in total hip arthroplasty. J Arthroplasty 28(1):197–221Google Scholar
  72. 72.
    Natu S, Sidaginamale RP, Gandhi J, Langton DJ, Nargol AV (2012) Adverse reactions to metal debris: histopathological features of periprosthetic soft tissue reactions seen in association with failed metal on metal hip arthroplasties. J Clin Pathol 65(5):409–418Google Scholar
  73. 73.
    Macnair RD, Wynn-Jones H, Wimhurst JA, Toms A, Cahir J (2013) Metal ion levels not sufficient as a screening measure for adverse reactions in metal-on-metal hip arthroplasties. J Arthroplasty 28(1):78–83Google Scholar
  74. 74.
    Langkamer VG, Case CP, Watt I, Palmer M, Atkins RM (1999) Aggressive wear-debris pseudotumor following total hip replacement. Orthopedics 22(3):353–355Google Scholar
  75. 75.
    Murgatroyd SE (2012) Pseudotumor presenting as a pelvic mass: a complication of eccentric wear of a metal on polyethylene hip arthroplasty. J Arthroplasty 27(5):820–824Google Scholar
  76. 76.
    Mao X, Tay GH, Godbolt DB, Crawford RW (2012) Pseudotumor in a well-fixed metal-on-polyethylene uncemented hip arthroplasty. J Arthroplasty 27(3):493–497Google Scholar
  77. 77.
    Walsh AJ, Nikolaou VS, Antoniou J (2012) Inflammatory pseudotumor complicating metal-on-highly cross-linked polyethylene total hip arthroplasty. J Arthroplasty 27(2):324–328Google Scholar
  78. 78.
    Edelstein Y, Ohm H, Rosen Y (2011) Metallosis and pseudotumor after failed ORIF of a humeral fracture. Bull NYU Hosp Jt Dis 69(2):188–191Google Scholar
  79. 79.
    Patnana M, Sevrukov AB, Elsayes KM, Viswanathan C, Lubner M, Menias CO (2012) Inflammatory pseudotumor: the great mimicker. AJR Am J Roentgenol 198(3):W217–W227Google Scholar
  80. 80.
    Matthies AK, Skinner JA, Osmani H, Henckel J, Hart AJ (2012) Pseudotumors are common in well-positioned low-wearing metal-on-metal hips. Clin Orthop Relat Res 470(7):1895–1906Google Scholar
  81. 81.
    Hart AJ, Satchithananda K, Liddle AD, Sabah SA, McRobbie D, Henckel J et al (2012) Pseudotumors in association with well-functioning metal-on-metal hip prostheses: a case-control study using three-dimensional computed tomography and magnetic resonance imaging. J Bone Joint Surg Am 94(4):317–325Google Scholar
  82. 82.
    Davies AP, Willert HG, Campbell PA, Learmonth ID, Case CP (2005) An unusual lymphocytic perivascular infiltration in tissues around contemporary metal-on-metal joint replacements. J Bone Joint Surg Am 87(1):18–27Google Scholar
  83. 83.
    Fujishiro T, Moojen DJ, Kobayashi N, Dhert WJ, Bauer TW (2011) Perivascular and diffuse lymphocytic inflammation are not specific for failed metal-on-metal hip implants. Clin Orthop Relat Res 469(4):1127–1133Google Scholar
  84. 84.
    Ng VY, Lombardi AV Jr, Berend KR, Skeels MD, Adams JB (2011) Perivascular lymphocytic infiltration is not limited to metal-on-metal bearings. Clin Orthop Relat Res 469(2):523–529Google Scholar
  85. 85.
    Gordon S (1998) The role of the macrophage in immune regulation. Res Immunol 149(7–8):685–688Google Scholar
  86. 86.
    Dustin ML (2009) The cellular context of T cell signaling. Immunity 30(4):482–492Google Scholar
  87. 87.
    Veien NK (2011) Systemic contact dermatitis. Int J Dermatol 50(12):1445–1456Google Scholar
  88. 88.
    Boden SR, Wesley BA (2011) Anaphylaxis: a history with emphasis on food allergy. Immunol Rev 242(1):247–257Google Scholar
  89. 89.
    Uzzaman A, Cho SH (2012) Classification of hypersensitivity reactions. Allergy Asthma Proc 33(Suppl 1):S96–S99Google Scholar
  90. 90.
    Collington SJ, Williams TJ, Weller CL (2011) Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol 32(10):478–485Google Scholar
  91. 91.
    Cooper PJ (2009) Interactions between helminth parasites and allergy. Curr Opin Allergy Clin Immunol 9(1):29–37Google Scholar
  92. 92.
    Watanabe H, Unger M, Tuvel B, Wang B, Sauder DN (2002) Contact hypersensitivity: the mechanism of immune responses and T cell balance. J Interferon Cytokine Res 22(4):407–412Google Scholar
  93. 93.
    Incorvaia C, Frati F, Verna N, D’Alo S, Motolese A, Pucci S (2008) Allergy and the skin. Clin Exp Immunol 153(Suppl 1):27–29Google Scholar
  94. 94.
    Hogan AD, Burks AW (1995) Epidermal Langerhans’ cells and their function in the skin immune system. Ann Allergy Asthma Immunol 75(1):5–10Google Scholar
  95. 95.
    Cavani A (2008) T regulatory cells in contact hypersensitivity. Curr Opin Allergy Clin Immunol 8(4):294–298Google Scholar
  96. 96.
    Akbar M, Brewer JM, Grant MH (2011) Effect of chromium and cobalt ions on primary human lymphocytes in vitro. J Immunotoxicol 8(2):140–149Google Scholar
  97. 97.
    Caicedo MS, Pennekamp PH, McAllister K, Jacobs JJ, Hallab NJ (2010) Soluble ions more than particulate cobalt-alloy implant debris induce monocyte costimulatory molecule expression and release of proinflammatory cytokines critical to metal-induced lymphocyte reactivity. J Biomed Mater Res A 93(4):1312–1321Google Scholar
  98. 98.
    Liden C (1994) Occupational contact dermatitis due to nickel allergy. Sci Total Environ 148:283–285Google Scholar
  99. 99.
    Black J (1992) Biological performance of materials; fundamentals of biocompatibility, 2nd edn. Decker, New YorkGoogle Scholar
  100. 100.
    Fleming CJ, Burden AD, Forsyth A (1999) The genetics of allergic contact hypersensitivity to nickel. Contact Dermat 41:251–253Google Scholar
  101. 101.
    Arikan A, Kulak Y (1992) A study of chromium, nickel and cobalt hypersensitivity. J Marmara Univ Dent Fac 1:223–229Google Scholar
  102. 102.
    McDonagh AJ, Wright AL, Cork MJ, Gawkrodger DJ (1992) Nickel sensitivity: the influence of ear piercing and atopy. Br J Dermatol 126:16–18Google Scholar
  103. 103.
    Balato N, Costa L, Lembo G, Patruno C, Cuccurullo FM, Parascandolo F et al (1995) Allergic contact-dermatitis from orthopedic devices. Contact Dermat 32(5):314–315Google Scholar
  104. 104.
    Elves MW, Wilson JN, Scales JT, Kemp HB (1975) Incidence of metal sensitivity in patients with total joint replacements. Br Med J 4(5993):376–378Google Scholar
  105. 105.
    Evans EM (1974) Metal sensitivity as a cause of bone necrosis and loosening of the prosthesis in total joint replacement. J Bone Joint Surg Br 56-B(4):626–642Google Scholar
  106. 106.
    Liden C, Wahlberg JE (1994) Cross-reactivity to metal compounds studied in guinea pigs induced with chromate or cobalt. Acta Derm Venereol 74:341–343Google Scholar
  107. 107.
    Hallab N, Merritt K, Jacobs JJ (2001) Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am 83-A(3):428–436Google Scholar
  108. 108.
    Benson MK, Goodwin PG, Brostoff J (1975) Metal sensitivity in patients with joint replacement arthroplasties. Br Med J 4(5993):374–375Google Scholar
  109. 109.
    Gawkrodger DJ (1993) Nickel sensitivity and the implantation of orthopaedic prostheses. Contact Dermat 28:257–259Google Scholar
  110. 110.
    Rooker GD, Wilkinson JD (1980) Metal sensitivity in patients undergoing hip replacement. A prospective study. J Bone Joint Surg Br 62-B(4):502–505Google Scholar
  111. 111.
    Jacobs JJ, Goodman SB, Sumner DR, Hallab NJ (2000) Biologic response to orthopaedic implants. In: Buckwalter JA, Einhorn TA, Simon SR (eds) Orthopaedic basic science, 2nd edn. AAOS, Rosemont, pp 401–426Google Scholar
  112. 112.
    Lewin J, Lindgren U, Wahlberg JE (1982) Screw fixation in bone of guinea pigs sensitized to nickel and cobalt. Acta Orthop Scand 53(4):675–680Google Scholar
  113. 113.
    Lewin J, Lindgren JU, Wahlberg JE (1987) Apparent absence of local response to bone screws in guinea-pigs with contact sensitivity. J Orthop Res 5(4):604–608Google Scholar
  114. 114.
    Carlsson A, Moller H (1989) Implantation of orthopedic devices in patients with metal allergy. Acta Derm Venereol 69(1):62–66Google Scholar
  115. 115.
    Gao X, He RX, Yan SG, Wu LD (2011) Dermatitis associated with chromium following total knee arthroplasty. J Arthroplasty 26(4):665–666Google Scholar
  116. 116.
    Bjurholm A, al-Tawil NA, Marcusson JA, Netz P (1990) The lymphocyte response to nickel salt in patients with orthopedic implants. Acta Orthop Scand 61:248–250Google Scholar
  117. 117.
    Kubba R, Taylor JS, Marks KE (1981) Cutaneous complications of orthopedic implants. A two-year prospective study. Arch Dermatol 117(9):554–560Google Scholar
  118. 118.
    Lhotka CG, Szekeres T, Fritzer-Szekeres M, Schwarz G, Steffan I, Maschke M et al (1998) Are allergic reactions to skin clips associated with delayed wound healing? Am J Surg 176:320–323Google Scholar
  119. 119.
    Oakley AM, Ive FA, Carr MM (1987) Skin clips are contraindicated when there is nickel allergy. J R Soc Med 80(5):290–291Google Scholar
  120. 120.
    Ross IB, Warrington RJ, Halliday WC (1998) Cell-mediated allergy to a cerebral aneurysm clip: case report. Neurosurgery 43(5):1209–1211Google Scholar
  121. 121.
    Fine PG, Karwande SV (1990) Sternal wire-induced persistent chest pain: a possible hypersensitivity reaction. Ann Thorac Surg 49(1):135–136Google Scholar
  122. 122.
    Gordon PM, Buxton PK, McLaren KM, Aldridge RD (1996) Sensitivity to sternotomy wires may cause postoperative pruritus. Ann Thorac Surg 61(5):1514–1516Google Scholar
  123. 123.
    Bass JK, Fine H, Cisneros GJ (1993) Nickel hypersensitivity in the orthodontic patient. Am J Orthod Dentofacial Orthop 103(3):280–285Google Scholar
  124. 124.
    Jia W, Beatty MW, Reinhardt RA, Petro TM, Cohen DM, Maze CR et al (1999) Nickel release from orthodontic arch wires and cellular immune response to various nickel concentrations. J Biomed Mater Res 48:488–495Google Scholar
  125. 125.
    Basketter DA, Lea LJ, Cooper KJ, Ryan CA, Gerberick GF, Dearman RJ et al (1999) Identification of metal allergens in the local lymph node assay. Am J Contact Dermat 10:207–212Google Scholar
  126. 126.
    Bour H, Nicolas JF, Garrigue JL, Demidem A, Schmitt D (1994) Establishment of nickel-specific T cell lines from patients with allergic contact dermatitis: comparison of different protocols. Clin Immunol Immunopathol 73:142–145Google Scholar
  127. 127.
    Silvennoinen-Kassinen S, Ikaheimo I, Tiilikainen A (1997) TAP1 and TAP2 genes in nickel allergy. Int Arch Allergy Immunol 114:94–96Google Scholar
  128. 128.
    Cavani A, Mei D, Guerra E, Corinti S, Giani M, Pirrotta L et al (1998) Patients with allergic contact dermatitis to nickel and nonallergic individuals display different nickel-specific T cell responses. Evidence for the presence of effector CD8+ and regulatory CD4+ T cells. J Invest Dermatol 111:621–628Google Scholar
  129. 129.
    Sinigaglia F (1994) The molecular basis of metal recognition by T cells. J Invest Dermatol 102:398–401Google Scholar
  130. 130.
    Vollmer J, Weltzien HU, Moulon C (1999) TCR reactivity in human nickel allergy indicates contacts with complementarity-determining region 3 but excludes superantigen-like recognition. J Immunol 163:2723–2731Google Scholar
  131. 131.
    Vollmer J, Fritz M, Dormoy A, Weltzien HU, Moulon C (1997) Dominance of the BV17 element in nickel-specific human T cell receptors relates to severity of contact sensitivity. Eur J Immunol 27:1865–1874Google Scholar
  132. 132.
    Werfel T, Hentschel M, Kapp A, Renz H (1997) Dichotomy of blood- and skin-derived IL-4-producing allergen-specific T cells and restricted V beta repertoire in nickel-mediated contact dermatitis. J Immunol 158:2500–2505Google Scholar
  133. 133.
    Granchi D, Ciapetti G, Savarino L, Stea S, Filippini F, Sudanese A et al (2000) Expression of the CD69 activation antigen on lymphocytes of patients with hip prosthesis. BioMaterials 21(20):2059–2065Google Scholar
  134. 134.
    Bravo I, Carvalho GS, Barbosa MA, De Sousa M (1990) Differential effects of eight metal ions on lymphocyte differentiation antigens in vitro. J Biomed Mater Res 24:1059–1068Google Scholar
  135. 135.
    Akbar M, Brewer JM, Grant MH (2011) Effect of chromium and cobalt ions on primary human lymphocytes in vitro. J Immunotoxicol 8(2):140–149Google Scholar
  136. 136.
    Au A, Ha J, Hernandez M, Polotsky A, Hungerford DS, Frondoza CG (2006) Nickel and vanadium metal ions induce apoptosis of T-lymphocyte Jurkat cells. J Biomed Mater Res A 79(3):512–521Google Scholar
  137. 137.
    Merritt K, Rodrigo JJ (1996) Immune response to synthetic materials. Sensitization of patients receiving orthopaedic implants. Clin Orthop Relat Res 1996(326):71–79Google Scholar
  138. 138.
    Wooley PH, Petersen S, Song Z, Nasser S (1997) Cellular immune responses to orthopaedic implant materials following cemented total joint replacement. J Orthop Res 15:874–880Google Scholar
  139. 139.
    Wooley PH, Nasser S, Fitzgerald RH Jr (1996) The immune response to implant materials in humans. Clin Orthop Relat Res 326:63–70Google Scholar
  140. 140.
    Yang J, Merritt K (1994) Detection of antibodies against corrosion products in patients after Co-Cr total joint replacements. J Biomed Mater Res 28(11):1249–1258Google Scholar
  141. 141.
    Yang J, Merritt K (1996) Production of monoclonal antibodies to study corrosion products of CO-CR biomaterials. J Biomed Mater Res 31:71–80Google Scholar
  142. 142.
    Al-Saffar N, Khwaja HA, Kadoya Y, Revell PA (1996) Assessment of the role of GM-CSF in the cellular transformation and the development of erosive lesions 2 orthopaedic implants. Am J Clin Pathol 105(5):628–639Google Scholar
  143. 143.
    Thornhill TS, Ozuna RM, Shortkroff S, Keller K, Sledge CB, Spector M (1990) Biochemical and histological evaluation of the synovial-like tissue around failed (loose) total joint replacement prostheses in human subjects and a canine model. BioMaterials 11:69–72Google Scholar
  144. 144.
    Haynes DR, Rogers SD, Hay S, Pearcy MJ, Howie DW (1993) The differences in toxicity and release of bone-resorbing mediators induced by titanium and cobalt-chromium-alloy wear particles. J Bone Joint Surg Am 75:825–834Google Scholar
  145. 145.
    Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT (1996) Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro. BioMaterials 17:2233–2240Google Scholar
  146. 146.
    Witt JD, Swann M (1991) Metal wear and tissue response in failed titanium alloy total hip replacements. J Bone Joint Surg Br 73(4):559–563Google Scholar
  147. 147.
    Hildebrand HF, Veron C, Martin P (1988) Nickel, chromium, cobalt dental alloys and allergic reactions: an overview. In: Hildebrand HF, Champy M (eds) Biocompatibility of Co-Cr-Ni alloys. Plenum, New York, pp 201–223Google Scholar
  148. 148.
    Thyssen JP, Menne T (2010) Metal allergy—a review on exposures, penetration, genetics, prevalence, and clinical implications. Chem Res Toxicol 23(2):309–318Google Scholar
  149. 149.
    Lisby S, Hansen LH, Skov L, Menne T, Baadsgaard O (1999) Nickel-induced activation of T cells in individuals with negative patch test to nickel sulphate. Arch Dermatol Res 291:247–252Google Scholar
  150. 150.
    Milavec-Puretic V, Orlic D, Marusic A (1998) Sensitivity to metals in 40 patients with failed hip endoprosthesis. Arch Orthop Trauma Surg 117:383–386Google Scholar
  151. 151.
    Lacy SA, Merritt K, Brown SA, Puryear A (1996) Distribution of nickel and cobalt following dermal and systemic administration with in vitro and in vivo studies. J Biomed Mater Res 32(2):279–283Google Scholar
  152. 152.
    Sosroseno W (1995) The immunology of nickel-induced allergic contact dermatitis. Asian Pac J Allergy Immunol 13:173–181Google Scholar
  153. 153.
    Van Den Broeke LT, Heffler LC, Tengvall LM, Nilsson JL, Karlberg AT et al (1999) Direct Ni2+ antigen formation on cultured human dendritic cells. Immunology 96:578–585Google Scholar
  154. 154.
    Lansdown AB (1995) Physiological and toxicological changes in the skin resulting from the action and interaction of metal ions. Crit Rev Toxicol 25:397–462Google Scholar
  155. 155.
    Gusev EI, Ponosov VL, Kevorkov NN (1991) Interrelations of cellular and humoral immune response and different doses of sheep erythrocytes in mice. Biull Eksp Biol Med 112(9):271–273Google Scholar
  156. 156.
    Haudrechy P, Foussereau J, Mantout B, Baroux B (1994) Nickel release from nickel-plated metals and stainless steels. Contact Dermat 31:249–255Google Scholar
  157. 157.
    Haudrechy P, Mantout B, Frappaz A, Rousseau D, Chabeau G, Faure M et al (1997) Nickel release from stainless steels. Contact Dermat 37:113–117Google Scholar
  158. 158.
    Cramers M, Lucht U (1977) Metal sensitivity in patients treated for tibial fractures with plates of stainless steel. Acta Orthop Scand 48(3):245–249Google Scholar
  159. 159.
    Lin HY, Bumgardner JD (2004) In vitro biocorrosion of Co-Cr-Mo implant alloy by macrophage cells. J Orthop Res 22(6):1231–1236Google Scholar
  160. 160.
    Caicedo MS, Desai R, McAllister K, Reddy A, Jacobs JJ, Hallab NJ (2009) Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: a novel mechanism for implant debris reactivity. J Orthop Res 27(7):847–854Google Scholar
  161. 161.
    Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD Jr, Pellicci PM et al (1988) Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg Am 70(3):347–356Google Scholar
  162. 162.
    Kim KJ, Chiba J, Rubash HE (1994) In vivo and in vitro analysis of membranes from hip prostheses inserted without cement. J Bone Joint Surg Am 76(2):172–180Google Scholar
  163. 163.
    Munro-Ashman D, Miller AJ (1976) Rejection of metal to metal prosthesis and skin sensitivity to cobalt. Contact Dermat 2(2):65–67Google Scholar
  164. 164.
    Doorn PF, Campbell PA, Worrall J, Benya PD, McKellop HA, Amstutz HC (1998) Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J Biomed Mater Res 42(1):103–111Google Scholar
  165. 165.
    Langkamer VG, Case CP, Heap P, Taylor A, Collins C, Pearse M et al (1992) Systemic distribution of wear debris after hip replacement. A cause for concern? J Bone Joint Surg Br 74(6):831–839Google Scholar
  166. 166.
    Shinto Y, Uchida A, Yoshikawa H, Araki N, Kato T, Ono K (1993) Inguinal lymphadenopathy due to metal release from a prosthesis. A case report. J Bone Joint Surg Br 75(2):266–269Google Scholar
  167. 167.
    Urban RM, Jacobs JJ, Tomlinson MJ, Gavrilovic J, Black J, Peoc’h M (2000) Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J Bone Joint Surg Am 82(4):457–476Google Scholar
  168. 168.
    Willert HG, Buchhorn GH, Fayyazi A, Flury R, Windler M, Koster G et al (2005) Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am 87(1):28–36Google Scholar
  169. 169.
    Langton DJ, Joyce TJ, Jameson SS, Lord J, Van OM, Holland JP et al (2011) Adverse reaction to metal debris following hip resurfacing: the influence of component type, orientation and volumetric wear. J Bone Joint Surg Br 93(2):164–171Google Scholar
  170. 170.
    Campbell P, Ebramzadeh E, Nelson S, Takamura K, Smet KD, Amstutz HC (2010) Histological features of pseudotumor-like tissues from metal-on-metal hips. Clin Orthop Relat Res 468(9):2321–2327Google Scholar
  171. 171.
    Watters TS, Cardona DM, Menon KS, Vinson EN, Bolognesi MP, Dodd LG (2010) Aseptic lymphocyte-dominated vasculitis-associated lesion: a clinicopathologic review of an underrecognized cause of prosthetic failure. Am J Clin Pathol 134(6):886–893Google Scholar
  172. 172.
    Pandit H, Vlychou M, Whitwell D, Crook D, Luqmani R, Ostlere S et al (2008) Necrotic granulomatous pseudotumours in bilateral resurfacing hip arthoplasties: evidence for a type IV immune response. Virchows Arch 453(5):529–534Google Scholar
  173. 173.
    Brown GC, Lockshin MD, Salvati EA, Bullough PG (1977) Sensitivity to metal as a possible cause of sterile loosening after cobalt-chromium total hip-replacement arthroplasty. J Bone Joint Surg Am 59(2):164–168Google Scholar
  174. 174.
    Thomas P, Braathen LR, Dorig M, Aubock J, Nestle F, Werfel T et al (2009) Increased metal allergy in patients with failed metal-on-metal hip arthroplasty and peri-implant T-lymphocytic inflammation. Allergy 64(8):1157–1165Google Scholar
  175. 175.
    Niki Y, Matsumoto H, Otani T, Yatabe T, Kondo M, Yoshimine F et al (2005) Screening for symptomatic metal sensitivity: a prospective study of 92 patients undergoing total knee arthroplasty. BioMaterials 26(9):1019–1026Google Scholar
  176. 176.
    Amstutz HC, Grigoris P (1996) Metal on metal bearings in hip arthroplasty. Clin Orthop Relat Res 1996(329 Suppl):S11–S34Google Scholar
  177. 177.
    Hallab NJ, Caicedo M, Epstein R, McAllister K, Jacobs JJ (2010) In vitro reactivity to implant metals demonstrates a person-dependent association with both T-cell and B-cell activation. J Biomed Mater Res A 92(2):667–682Google Scholar
  178. 178.
    Delaunay C, Petit I, Learmonth ID, Oger P, Vendittoli PA (2010) Metal-on-metal bearings total hip arthroplasty: the cobalt and chromium ions release concern. Orthop Traumatol Surg Res 96(8):894–904Google Scholar
  179. 179.
    Schmalzried TP (2009) Metal-metal bearing surfaces in hip arthroplasty. Orthopedics 32(9)Google Scholar
  180. 180.
    Rajpura A, Porter ML, Gambhir AK, Freemont AJ, Board TN (2011) Clinical experience of revision of metal on metal hip arthroplasty for aseptic lymphocyte dominated vasculitis associated lesions (ALVAL). Hip Int 21(1):43–51Google Scholar
  181. 181.
    Nikolaou V, Bergeron SG, Huk OL, Zukor DJ, Antoniou J (2009) Evaluation of persistent pain after hip resurfacing. Bull NYU Hosp Jt Dis 67(2):168–172Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of Kansas Medical SchoolWichitaUSA
  2. 2.Orthopedic Analysis LLCChicagoUSA
  3. 3.BioEngineerng Solutions Inc.Oak ParkUSA
  4. 4.Department of Orthopedic SurgeryRush UniversityChicagoUSA

Personalised recommendations