Overview of Metal-on-Metal Implants

  • Lynne C. Jones
  • Warren O. Haggard
  • A. Seth Greenwald
Chapter

Abstract

Hip prostheses with metal-on-metal articulations have been used since the advent of hip arthroplasty. The long-term outcomes of these metal-on-metal initial implants were primarily compromised by a high rate of loosening. Based on improved metallurgical techniques and implant designs, a second wave of metal-on-metal implants were developed in the 2000s. Reports of adverse tissue reactions surrounding this generation of metal-on-metal implants have again raised the question of whether metal-on-metal implants are an appropriate bearing couple for joint arthroplasty. The answer to this bearing couple question will be found in an open discussion of the scientific, technical, and clinical research. The chapters contained within this practicum provide a review of the current information and should serve as a stimulus for these discussions.

Keywords

Carbide Chromium Cobalt Polyethylene 

References

  1. 1.
    McKee GK, Chen SC (1973) The statistics of the McKee-Farrar method of total hip replacement. Clin Orthop Relat Res 1973(95):26–33Google Scholar
  2. 2.
    Jacobsson SA, Djerf K, Wahlstrom O (1996) Twenty-year results of McKee-Farrar versus Charnley prosthesis. Clin Orthop Relat Res 1996(329 Suppl):S60–68Google Scholar
  3. 3.
    Gul R et al (2001) Revision of a 30-year-old ring total hip prosthesis. Ir J Med Sci 170(4):264CrossRefGoogle Scholar
  4. 4.
    Schmalzried TP et al (1996) Long-duration metal-on-metal total hip arthroplasties with low wear of the articulating surfaces. J Arthroplasty 11(3):322–331CrossRefGoogle Scholar
  5. 5.
    Cuckler JM (2005) The rationale for metal-on-metal total hip arthroplasty. Clin Orthop Relat Res 441:132–136CrossRefGoogle Scholar
  6. 6.
    Howie DW et al (2005) The long-term wear of retrieved McKee-Farrar metal-on-metal total hip prostheses. J Arthroplasty 20(3):350–357Google Scholar
  7. 7.
    Lapaj L et al (2012) 30-year survival of a McKee-Farrar hip prosthesis—case report and microscopic analysis of bearing surface. Pol Orthop Traumatol 77:17–20Google Scholar
  8. 8.
    DeSmet K, Campbell P, Streeten CVd (eds) (2013) The hip resurfacing handbook. Woodhead, CambridgeGoogle Scholar
  9. 9.
    Kurtz SM et al (eds) (2013) Metal-on-metal total hip replacement devices. ASTM, PhiladelphiaGoogle Scholar
  10. 10.
    Fabi D et al (2012) Metal-on-metal total hip arthroplasty: causes and high incidence of early failure. Orthopedics 35(7):e1009–1016Google Scholar
  11. 11.
    Wright T, Goodman S (eds) (1995) Implant wear: the future of total joint replacement. AAOS, RosemontGoogle Scholar
  12. 12.
    Bozic KJ et al (2009) The epidemiology of bearing surface usage in total hip arthroplasty in the United States. J Bone Joint Surg Am 91(7):1614–1620CrossRefGoogle Scholar
  13. 13.
    Tucker K et al (2011) Monitoring the introduction and performance of a joint replacement: the United Kingdom metal-on-metal alert. J Bone Joint Surg Am 93(Suppl 3):37–42CrossRefGoogle Scholar
  14. 14.
    Treacy RB et al (2011) Birmingham hip resurfacing: a minimum follow-up of ten years. J Bone Joint Surg Br 93(1):27–33Google Scholar
  15. 15.
    Vigler M et al (2010) Early results of total hip replacement with the Metasul metal-on-metal cementless prosthesis. Bull NYU Hosp Jt Dis 68(1):11–14Google Scholar
  16. 16.
    Sandiford NA et al (2009) Early results of the Birmingham mid-head resection arthroplasty. Surg Technol Int 18:195–200Google Scholar
  17. 17.
    Clarke MT et al (2003) Levels of metal ions after small- and large-diameter metal-on-metal hip arthroplasty. J Bone Joint Surg Br 85(6):913–917Google Scholar
  18. 18.
    Savarino L et al (2003) Ion release in stable hip arthroplasties using metal-on-metal articulating surfaces: a comparison between short- and medium-term results. J Biomed Mater Res A 66(3):450–456CrossRefGoogle Scholar
  19. 19.
    MacDonald SJ et al (2003) Metal-on-metal versus polyethylene in hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 2003(406):282–296Google Scholar
  20. 20.
    Jacobs JJ et al (2003) Metal degradation products: a cause for concern in metal-metal bearings? Clin Orthop Relat Res 417:139–147Google Scholar
  21. 21.
    AOA (2008) Australian Orthopaedic Association National Joint Replacement Registry annual report. AOA, AdelaideGoogle Scholar
  22. 22.
    Gruber FW et al (2007) Cystic lesion of the groin due to metallosis: a rare long-term complication of metal-on-metal total hip arthroplasty. J Arthroplasty 22(6):923–927CrossRefGoogle Scholar
  23. 23.
    Clayton RA et al (2008) Inflammatory pseudotumor associated with femoral nerve palsy following metal-on-metal resurfacing of the hip. A case report. J Bone Joint Surg Am 90(9):1988–1993CrossRefGoogle Scholar
  24. 24.
    Pandit H et al (2008) Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br 90(7):847–851Google Scholar
  25. 25.
    British Orthopaedic Society (2010) Metal-on-metal hip replacement and hip resurfacing arthroplasty: what does the MHRA medical device alert mean?Google Scholar
  26. 26.
    American Academy of Orthopaedic Surgery (2011) Modern metal-on-metal hip implants. A technology overview. American Academy of Orthopaedic Surgery, RosemontGoogle Scholar
  27. 27.
    FDA (2013) Concerns about metal-on-metal hip implants. http://www.fda.gov/Medicaldevices/productsandmedicalprocedures/implantsandprosthetics/metalonmetalhipimplants/ucm241604.htm. Last accessed 17 Jan 2013
  28. 28.
    Hannemann F et al (2013) European multidisciplinary consensus statement on the use and monitoring of metal-on-metal bearings for total hip replacement and hip resurfacing. Orthop Traumatol Surg Res 99(3):263–271CrossRefGoogle Scholar
  29. 29.
    Goldberg JR et al (2002) A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin Orthop Relat Res 2002(401):149–161Google Scholar
  30. 30.
    Collier JP et al (1991) Corrosion at the interface of cobalt-alloy heads on titanium-alloy stems. Clin Orthop Relat Res 1991(271):305–312Google Scholar
  31. 31.
    Gilbert JL, Buckley CA, Jacobs JJ (1993) In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling. J Biomed Mater Res 27(12):1533–1544CrossRefGoogle Scholar
  32. 32.
    Cooper HJ et al. (2012) Corrosion at the head–neck taper as a cause for adverse local tissue reactions after total hip arthroplasty. J Bone Joint Surg Am 94(18):1655–1661CrossRefGoogle Scholar
  33. 33.
    Urban RM et al (1994) Migration of corrosion products from modular hip prostheses. Particle microanalysis and histopathological findings. J Bone Joint Surg Am 76(9):1345–1359Google Scholar
  34. 34.
    Polyzois I et al (2012) Local and systemic toxicity of nanoscale debris particles in total hip arthroplasty. J Appl Toxicol 32:255–269CrossRefGoogle Scholar
  35. 35.
    Nakashima Y et al (1999) Signaling pathways for tumor necrosis factor-alpha and interleukin-6 expression in human macrophages exposed to titanium-alloy particulate debris in vitro. J Bone Joint Surg Am 81(5):603–615Google Scholar
  36. 36.
    Hallab NJ, Jacobs JJ (2009) Biologic effects of implant debris. Bull NYU 67:182–188Google Scholar
  37. 37.
    Wooley PH, Nasser S, Fitzgerald RH Jr (1996) The immune response to implant materials in humans. Clin Orthop Relat Res 1996(326):63–70Google Scholar
  38. 38.
    Fujishiro T et al (2011) Perivascular and diffuse lymphocytic inflammation are not specific for failed metal-on-metal hip implants. Clin Orthop Relat Res 469(4):1127–1133CrossRefGoogle Scholar
  39. 39.
    Dee KC, Puleo DA, Bizios R (2002) An introduction to tissue–biomaterial interactions. Wiley-Liss, Hoboken, p 228CrossRefGoogle Scholar
  40. 40.
    Hallab NJ, Jacobs JJ (2013) Orthopaedic applications. In: Ratner BD et al (eds) Biomaterials science. An introduction to materials in medicine. Elsevier, Waltham, pp 841–882Google Scholar
  41. 41.
    Sharkey PF et al (2000) The bearing surface in total hip arthroplasty: evolution or revolution. Instr Course Lect 49:41–56Google Scholar
  42. 42.
    Reynolds LA, Tansey EM (eds) (2006) Early development of total hip replacement. Wellcome Trust Center, London (Witness seminar held by the Wellcome Trust Centre for the history of medicine at UCL)Google Scholar
  43. 43.
    Pramanik P, Agarwal AK, Rai KN (2005) Chronology of total hip joint replacement and materials development. Trends Biomater Artif Organs 19:15–26Google Scholar
  44. 44.
    Steinberg M (2008–2009) Total hip replacement arthroplasty—past, present and future. Univ Penn Orthop J 19Google Scholar
  45. 45.
    Charnley J (1961) Arthroplasty of the hip. A new operation. Lancet 1(7187):1129–1132Google Scholar
  46. 46.
    Huntley JS, Christie J (2004) Surface replacement of the hip: a late revision. Can J Surg 47(4):302–303 (Journal canadien de chirurgie)Google Scholar
  47. 47.
    Urban JA et al (2001) Ceramic-on-polyethylene bearing surfaces in total hip arthroplasty. Seventeen to twenty-one-year results. J Bone Joint Surg Am 83-A(11):1688–1694Google Scholar
  48. 48.
    Dowling JM et al (1978) The characteristics of acetabular cups worn in the human body. J Bone Joint Surg Br 60-B(3):375–382Google Scholar
  49. 49.
    DeLaunay C (1998) The Charnley total hip replacement. The gold standard of primary hip replacement, 36 years onGoogle Scholar
  50. 50.
    Judet T, Judet H (1991) A collection of portraits of Judet prostheses. http://www.maitrise-orthop.com/corpusmaitri/orthopaedic/judet_synth/judet_synthus.shtml
  51. 51.
    Bettin D et al (1995) Long term results of uncemented Judet hip endoprostheses. Int Orthop 19(3):144–150CrossRefGoogle Scholar
  52. 52.
    Smith RD (1970) Total hip replacement. Clin Orthop Relat Res 72:177–185Google Scholar
  53. 53.
    Ring PA (1968) Complete replacement arthroplasty of the hip by the ring prosthesis. J Bone Joint Surg Br 50(4):720–731Google Scholar
  54. 54.
    McKellop H (1982) Erratum. Friction and wear properties of polymer, metal, and ceramic prosthetic joint materials evaluated on a multichannel screening device. J Biomed Mater Res 16:177CrossRefGoogle Scholar
  55. 55.
    Wilson JN, Scales JT (1973) The Stanmore metal on metal total hip prosthesis using a three pin type cup. A follow-up of 100 arthroplasties over nine years. Clin Orthop Relat Res 1973(95):239–249Google Scholar
  56. 56.
    Goldie IF, Raner C (1979) Total hip replacement with a trunnion bearing prosthesis. Biomechanical principles and preliminary clinical results. Acta Orthop Scand 50(2):205–216CrossRefGoogle Scholar
  57. 57.
    Fowler JL et al (1988) Experience with the Exeter total hip replacement since 1970. Orthop Clin North Am 19(3):477–489Google Scholar
  58. 58.
    Sedel L (2000) Total hip arthroplasty using a ceramic prosthesis. Pierre Boutin 379:3–11Google Scholar
  59. 59.
    Clarke IC (1992) Role of ceramic implants. Design and clinical success with total hip prosthetic ceramic-to-ceramic bearings. Clin Orthop Relat Res 1992(282):19–30Google Scholar
  60. 60.
    Gerard Y (1978) Hip arthroplasty by matching cups. Clin Orthop Relat Res 1978(134):25–35Google Scholar
  61. 61.
    Willems WJ et al (1988) Histopathologic evaluation in failed Gerard double cup arthroplasty. Clin Orthop Relat Res 1988(228):123–133Google Scholar
  62. 62.
    Oonishi H, Kadoya Y, Masuda S (2001) Gamma-irradiated cross-linked polyethylene in total hip replacements—analysis of retrieved sockets after long-term implantation. J Biomed Mater Res 58(2):167–171CrossRefGoogle Scholar
  63. 63.
    Amstutz HC et al (1977) Total hip articular replacement by internal eccentric shells: the “tharies” approach to total surface replacement arthroplasty. Clin Orthop Relat Res 1977(128):261–284Google Scholar
  64. 64.
    Sarmiento A et al (1979) Clinical experiences with a titanium alloy total hip prosthesis: a posterior approach. Clin Orthop Relat Res 1979(144):166–173Google Scholar
  65. 65.
    Farizon F et al (1988) Results with a cementless alumina-coated cup with dual mobility. A twelve-year follow-up study. Int Orthop 22(4):219–224CrossRefGoogle Scholar
  66. 66.
    Amstutz HC, Le Duff MJ (2006) Background of metal-on-metal resurfacing. J Eng Med 220(2):85–94 (Proceedings of the Institution of Mechanical Engineers, Part H)CrossRefGoogle Scholar
  67. 67.
    Lombardi AV Jr et al (1989) Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. J Bone Joint Surg Am 71(9):1337–1342Google Scholar
  68. 68.
    Lord G et al (1988) Cementless revisions of failed aseptic cemented and cementless total hip arthroplasties. 284 cases. Clin Orthop Relat Res 1988(235):67–74Google Scholar
  69. 69.
    Tateiwa T et al (2008) Ceramic total hip arthroplasty in the United States: safety and risk issues revisited. Am J Orthop (Belle Mead NJ) 37(2):E26–31Google Scholar
  70. 70.
    Chmell MJ et al (1996) Early failure of Hylamer acetabular inserts due to eccentric wear. J Arthroplasty 11(3):351–353CrossRefGoogle Scholar
  71. 71.
    Kurtz SM, Gawel HA, Patel JD (2011) History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res 469(8):2262–2277CrossRefGoogle Scholar
  72. 72.
    Richardson K, Chang W (2005) Smith & Nephew Executive Recovers the Good Life with Zirconium in ATI Outlook. p 2–3Google Scholar
  73. 73.
    DePuy Synthes (2013) http://www.depuy.com/indiapatient. Last accessed 20 June 2013
  74. 74.
    D’Antonio JA, Capello WN, Ramakrishnan R (2012) Second-generation annealed highly cross-linked polyethylene exhibits low wear. Clin Orthop Relat Res 470(6):1696–1704Google Scholar
  75. 75.
    FDA (2013) DePuy Ceramax Ceramic Total Hip SystemGoogle Scholar
  76. 76.
    Weber BG, Rieker BC (2002) The history of metasul. Acta Chir Orthop Traumatol Cech 69(5):277–284Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Lynne C. Jones
    • 1
  • Warren O. Haggard
    • 2
  • A. Seth Greenwald
    • 3
  1. 1.Department of Orthopaedic SurgeryJohns Hopkins University School of MedicineBaltimoreUS
  2. 2.Biomedical Engineering DepartmentThe University of MemphisMemphisUS
  3. 3.Orthopaedic Research LaboratoriesClevelandUSA

Personalised recommendations