Skip to main content

Genetic Studies on the Effects of Nanomaterials

  • Chapter
  • First Online:

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

The aim of this chapter is to present some of the principal methodologies used to study the effects of toxic substances on DNA, which can be used to analyze aspects of nanomaterial toxicity. It is not the intention here to undertake an in-depth survey of the topic, but rather to highlight the techniques that can be used in nanotoxicity studies. The available methods for evaluating effects on DNA include genotoxicity tests such as (1) the Allium cepa chromosome aberration test, (2) the comet analysis, (3) the micronucleus test, and (4) the cytogenetic analysis. In addition, this chapter also described the methodologies for analysis of gene expression that can be applied to the effects of nanomaterials. A description of the characteristics of each method is provided, together with results of selected studies that have evaluated the effects of nanomaterials, and a critical discussion of the main advantages and disadvantages of each technique. The chapter also highlights the challenges and future perspectives for studies of the effects of nanostructured materials on DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul Khaliq R, Kafafy R, Salleh HM et al (2012) Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes. Nanotechnology 23:455106

    Article  PubMed  CAS  Google Scholar 

  • Akhmedov AT, Frei C, Tsai-Pflugfelder M et al (1998) Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure. J Biol Chem 273:24088–24094

    Article  PubMed  CAS  Google Scholar 

  • Al Hussain TO, Akhtar M (2013) Molecular basis of urinary bladder cancer. Adv Anat Pathol 20:53–60

    Article  PubMed  CAS  Google Scholar 

  • Amara S, Slama IB, Omri K, et al (2013) Effects of nanoparticle zinc oxide on emotional behavior and trace element homeostasis in rat brain. Toxicol Ind Health. doi: 10.1177/0748233713491802

  • Batchelor E, Loewer A, Lahav G (2009) The ups and downs of p53: understanding protein dynamics in single cells. Nat Rev Cancer 9:371–377

    Article  PubMed  CAS  Google Scholar 

  • Ben-Moshe T, Sammy Frenk S, Dror I et al (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646

    Article  PubMed  CAS  Google Scholar 

  • Benton MG, Glasser NR, Palecek SP (2007) The utilization of a Saccharomyces cerevisiae HUG1P-GFP promoter-reporter construct for the selective detection of DNA damage. Mutat Res 633:21–34

    Article  PubMed  CAS  Google Scholar 

  • Benton MG, Glasser NR, Palecek SP (2008) Deletion of MAG1 and MRE11 enhances the sensitivity of the Saccharomyces cerevisiae HUG1P-GFP promoter-reporter construct to genotoxicity. Biosens Bioelectron 24:736–741

    Article  PubMed  CAS  Google Scholar 

  • Bleda M, Medina I, Alonso R et al (2012) Inferring the regulatory network behind a gene expression experiment. Nucleic Acids Res 40:168–172

    Article  Google Scholar 

  • Bouraoui S, Mougou S, Brahem A et al (2013) A combination of micronucleus assay and fluorescence in situ hybridization analysis to evaluate the genotoxicity of formaldehyde. Arch Environ Contam Toxicol 64:337–344

    Article  PubMed  CAS  Google Scholar 

  • Cabrera GL, Rodriguez DMG (1999) Genotoxicity of soil from farmland irrigated with wastewater using three plant biossays. Mutat Res 426:211–214

    Google Scholar 

  • Chew WS, Poh KW, Siddiqi NJ et al (2012) Short- and long-term changes in blood miRNA levels after nanogold injection in rats–potential biomarkers of nanoparticle exposure. Biomarkers 17:750–757

    Article  PubMed  CAS  Google Scholar 

  • Dinant C, Houtsmuller AB, Vermeulen W (2008) Chromatin structure and DNA damage repair. Epigenetics Chromatin 1:9

    Article  PubMed  Google Scholar 

  • Eastman PS, Ruan W, Doctolero M et al (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6:1059–1064

    Article  PubMed  CAS  Google Scholar 

  • Ema M, Tanaka J, Kobayashi N et al (2012) Genotoxicity evaluation of fullerene C60 nanoparticles in a comet assay using lung cells of intratracheally instilled rats. Regul Toxicol Pharmacol 62:419–424

    Article  PubMed  CAS  Google Scholar 

  • Flower NAL, Brabu B, Revathy M et al (2012) Characterization of synthesized silver nanoparticles and assessment of its genotoxicity potentials using the alkaline comet assay. Mutat Res 742:61–65

    Article  PubMed  CAS  Google Scholar 

  • Foster SS, De S, Johnson LK, Petrini JH et al (2012) Cell cycle- and DNA repair pathway-specific effects of apoptosis on tumor suppression. Proc Natl Acad Sci U S A 109:9953–9958

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Horie M, Kato H et al (2009a) Effects of ultrafine TiO2 particles on gene expression profile in human keratinocytes without illumination: involvement of extracellular matrix and cell adhesion. Toxicol Lett 191:109–117

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Morimoto Y, Ogami A et al (2009b) Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles. Toxicology 258:47–55

    Article  PubMed  CAS  Google Scholar 

  • Gajjar P, Pettee B, Britt DW et al (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:1–13

    Article  Google Scholar 

  • Gardener BBM, Weller DM (2001) Changes in populations of rhizosphere bacteria associated with take-all disease of wheat. Appl Environ Microbiol 67:4414–4425

    Article  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78:6749–6758

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere 81:1253–1262

    Article  PubMed  CAS  Google Scholar 

  • Giono LE, Manfredi JJ (2006) The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209:13–20

    Article  PubMed  CAS  Google Scholar 

  • Goetze S, Mateos-Langerak J, van Driel R (2007) Three-dimensional genome organization in interphase and its relation to genome function. Semin Cell Dev Biol 18:707–714

    Article  PubMed  CAS  Google Scholar 

  • Gomes SI, Soares AM, Scott-Fordsmand JJ et al (2013) Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile. J Hazard Mater 254–255:336–344

    Article  PubMed  Google Scholar 

  • González-González M, Muñoz-Bellvis L, Mackintosh C et al (2012) Prognostic impact of del(17p) and del(22q) as assessed by interphase FISH in sporadic colorectal carcinomas. PLoS One 7:e42683

    Article  PubMed  Google Scholar 

  • Guccini S, Lombardi S, Pisani A et al (2012) Effects of spindle poisons in peripheral human lymphocytes by the in vitro cytokinesis-block micronucleus assay. Mutagenesis 27:749–758

    Article  PubMed  CAS  Google Scholar 

  • Han Z, Wei W, Dunaway S, Darnowski JW et al (2002) Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J Biol Chem 277:17154–17160

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  PubMed  CAS  Google Scholar 

  • Herzog CR, Bodon N, Pittman B et al (2004) Carcinogen-specific targeting of chromosome 12 for loss of heterozygosity in mouse lung adenocarcinomas: implications for chromosome instability and tumor progression. Oncogene 23:3033–3039

    Article  PubMed  CAS  Google Scholar 

  • Herzog CR, Desai D, Amin S (2006) Array CGH analysis reveals chromosomal aberrations in mouse lung adenocarcinomas induced by the human lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Biochem Biophys Res Commun 341:856–863

    Article  PubMed  CAS  Google Scholar 

  • Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  PubMed  CAS  Google Scholar 

  • Huanga Y, Gao H, Gou M et al (2010) Acute toxicity and genotoxicity studies on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) nanomaterials. Mutat Res 696:101–106

    Article  Google Scholar 

  • Hubner MR, Spector DL (2010) Chromatin dynamics. Annu Rev Biophys 39:471–489

    Article  PubMed  CAS  Google Scholar 

  • Hudler P (2012) Genetic aspects of gastric cancer instability. ScientificWorldJournal 2012:761909

    Article  PubMed  Google Scholar 

  • Husain M, Saber AT, Guo C et al (2013) Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation. Toxicol Appl Pharmacol 269:250–262

    Article  PubMed  CAS  Google Scholar 

  • Jabbur JR, Huang P, Zhang W (2000) DNA damage-induced phosphorylation of p53 at serine 20 correlates with p21 and Mdm-2 induction in vivo. Oncogene 19:6203–6208

    Article  PubMed  CAS  Google Scholar 

  • Jeon SY, Park JS, Yang HN et al (2012) Co-delivery of SOX9 genes and anti-Cbfa-1 siRNA coated onto PLGA nanoparticles for chondrogenesis of human MSCs. Biomaterials 3:4413–4423

    Article  Google Scholar 

  • Kadota M, Sato M, Duncan D et al (2009) Identification of novel gene amplifications in breast cancer and coexistence of gene amplification with an activating mutation of PIK3CA. Cancer Res 69:7357–7365

    Article  PubMed  CAS  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  PubMed  CAS  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S et al (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621

    Article  PubMed  CAS  Google Scholar 

  • Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  • Liao M, Liu H (2012) Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ Toxicol Pharmacol 34:67–80

    Article  PubMed  CAS  Google Scholar 

  • Lima R, Feitosa L, Pereira AES et al (2010) Evaluation of the genotoxicity of chitosan nanoparticles for use in food packaging films. J Food Sci 75:N89–N96

    Article  PubMed  Google Scholar 

  • Lima R, Pereira AES, Porto RM et al (2011) Evaluation of cyto- and genotoxicity of poly(lactide-co-glycolide) nanoparticles. J Polym Environ 19:196–202

    Article  CAS  Google Scholar 

  • Lima R, Feitosa LO, Maruyama CR et al (2012a) Evaluation of the genotoxicity of cellulose nanofibers. Int J Nanomedicine 7:3555–3565

    Article  PubMed  Google Scholar 

  • Lima R, Seabra AB, Durán N (2012b) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32:867–879

    Article  PubMed  CAS  Google Scholar 

  • Ma TH, Cabrera GL, Owens E (2005) Genotoxic agents detected by plant bioassays. Rev Environ Health 20:1–13

    Article  PubMed  CAS  Google Scholar 

  • Mateuca R, Lombaert N, Aka PV et al (2006) Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie 88:1515–1531

    Article  PubMed  CAS  Google Scholar 

  • Merhia M, Dombua CY, Brient A et al (2012) Study of serum interaction with a cationic nanoparticle: implications for in vitro endocytosis, cytotoxicity and genotoxicity. Int J Pharm 423:37–44

    Article  Google Scholar 

  • Migliore L, Migheli F, Spisni R, et al (2011) Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol ID 792362:1–19

    Google Scholar 

  • Mitchell RJ, Gu MB (2004) An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage. Appl Microbiol Biotechnol 64:46–52

    Article  PubMed  CAS  Google Scholar 

  • Mo Y, Wan R, Zhang Q (2012) Application of reverse transcription-PCR and real-time PCR in nanotoxicity research. Methods Mol Biol 926:99–112

    Article  PubMed  CAS  Google Scholar 

  • Moore AS, Faisal A, Castro DG et al (2012) Selective FLT3 inhibition of FLT3-ITD + acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns. Leukemia 26:1462–1470

    Article  PubMed  CAS  Google Scholar 

  • Neri G, Opitz JM (2009) Down syndrome: comments and reflections on the 50th anniversary of Lejeune’s discovery. Am J Med Genet 149A:2647–2654

    Article  PubMed  Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos T et al (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350

    Article  PubMed  CAS  Google Scholar 

  • Paino IMM, Marangoni VS, Oliveira RCS et al (2012) Cyto- and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells. Toxicol Lett 215:119–125

    Article  PubMed  CAS  Google Scholar 

  • Papis E, Gornati R, Prati M et al (2007) Gene expression in nanotoxicology research: analysis by differential display in BALB3T3 fibroblasts exposed to cobalt particles and ions. Toxicol Lett 170:185–192

    Article  PubMed  CAS  Google Scholar 

  • Perreault F, Melegari SP, Costa CH et al (2012) Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures. Sci Total Environ 441:117–124

    Article  PubMed  CAS  Google Scholar 

  • Piazza R, Valletta S, Winkelmann N et al (2012) Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet 45:18–24

    Article  PubMed  Google Scholar 

  • Rao CV, Yamada HY (2013) Genomic instability and colon carcinogenesis: from the perspective of genes. Front Oncol 3:130. doi:10.3389/fonc.2013.00130

    Article  PubMed  Google Scholar 

  • Ravikumar S, Pham VD, Lee SH et al (2012) Modification of CusSR bacterial two-component systems by the introduction of an inducible positive feedback loop. J Ind Microbiol Biotechnol 39:861–868

    Article  PubMed  CAS  Google Scholar 

  • Roylance R, Endesfelder D, Gorman P et al (2011) Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol Biomarkers Prev 20:2183–2194

    Article  PubMed  Google Scholar 

  • Schwieger F, Tebbe CC (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in Rhizospheres of a Target Plant (Medicago sativa) and a non-target plant (Chenopodium album)-linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Environ Microbiol 66:3556–3565

    Article  PubMed  CAS  Google Scholar 

  • Shin HJ, Park HH, Lim WK (2005) Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J Biotechnol 119:36–43

    Article  PubMed  CAS  Google Scholar 

  • Skinner SO, Sepúlveda LA, Xu H et al (2013) Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat Protoc 8:1100–1113

    Article  PubMed  CAS  Google Scholar 

  • Soria G, Polo SE, Almouznil (2012) Prime, repair, restore: the active role of chromatin in the DNA damage response. Mol Cell 46(6):722–734

    Article  PubMed  CAS  Google Scholar 

  • Stirling PC, Bloom MS, Solanki-Patil T et al (2011) The complete spectrum of yeast chromosome instability genes identifies candidate CIN cancer genes and functional roles for ASTRA complex components. PLoS Genet 7:e1002057

    Article  PubMed  CAS  Google Scholar 

  • Strachan T, Read AP (1999) Human molecular genetics, 2nd edn. Wiley-Liss, New York. http://www.ncbi.nlm.nih.gov/books/NBK7580/

  • Sun X, Sheng Z, Liu Y (2012) Effects of silver nanoparticles on microbial community structure in activated sludge. Sci Total Environ 443:828–835

    Article  PubMed  Google Scholar 

  • Szendi K, Varga C (2008) Lack of genotoxicity of carbon nanotubes in a pilot study. Anticancer Res 28:349–352

    PubMed  CAS  Google Scholar 

  • Tsaousi A, Jones E, Case CP (2010) The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. Mutat Res 697:1–9

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos DS, da Silva FP, Quintana LG, et al (2013) Numerical aberrations of chromosome 17 and TP53 in brain metastases derived from breast cancer. Genet Mol Res 12. http://iah.iec.pa.gov.br/iah/fulltext/pc/artigos/2013/genetmol res2013prelo.pdf

    Google Scholar 

  • Veschure PJ (2006) Chromosome organization and gene control: it is difficult to see the picture when you are inside the frame. J Cell Biochem 99:24–35

    Google Scholar 

  • Wang J, Yi X, Tang H et al (2012) Direct quantification of microRNA at low picomolar level in sera of glioma patients using a competitive hybridization followed by amplified voltammetric detection. Anal Chem 84:6400–6406

    Article  PubMed  CAS  Google Scholar 

  • Wilkins G (2013) DNA: Twin strands solved the structure. Nature 496:434. doi:10.1038/496434b

    Article  PubMed  CAS  Google Scholar 

  • Xiu ZM, Gregory KB, Lowry GV et al (2010) Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol 44:7647–7651

    Article  PubMed  CAS  Google Scholar 

  • Yagi K (2007) Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 73:1251–1258

    Article  PubMed  CAS  Google Scholar 

  • Yagur-Kroll S, Bilic B, Belkin S (2010) Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation. Bioeng Bugs 1:151–153

    Article  PubMed  Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408:433–439

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by FAPESP, CNPq, Brazilian Network on Nanotoxicology (MCTI/CNPq), INOMAT (CNPq), NanoBioss (CMTI/CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata de Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Lima, R., Fraceto, L.F. (2014). Genetic Studies on the Effects of Nanomaterials. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_8

Download citation

Publish with us

Policies and ethics