Skip to main content

From Combinatorial Display Techniques to Microarray Technology: New Approaches to the Development and Toxicological Profiling of Targeted Nanomedicines

  • Chapter
  • First Online:
Nanotoxicology

Abstract

Advances in genome scale analysis provide an alternative tool to combine large-scale screening of chemicals with detailed mechanistic studies, in which expression signatures for specific factors can be used as predictors of response or serve as new therapeutic targets in vitro and in vivo. Recently, the possibility of analyzing the effects of nanomaterials on a large number of genes has led to toxicogenomic studies in nanotechnology. Furthermore, expression signatures are providing potential targets for the design of ligand-mediated tumor targeting. In this respect, the integration of phage display technique with nanotechnology has been explored as a new approach to generate cancer-targeted nanomedicines. In this chapter we outline advances in microarray technology and in the selection of peptides and antibodies by display techniques. Furthermore, we add insights into their application in the field of toxicogenomics and in the development of targeted nanomedicines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750–763

    Article  PubMed  CAS  Google Scholar 

  • Allison DB, Cui X, Page GP, Sabripour M (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7(1):55–65

    Article  PubMed  CAS  Google Scholar 

  • Amorim MJ, Novais SC, Van Der Ven K et al (2011) Development of a microarray for Enchytraeus albidus (Oligochaeta): preliminary tool with diverse applications. Environ Toxicol Chem 30(6):1395–1402

    Article  PubMed  CAS  Google Scholar 

  • Bar H, Yacoby I, Benhar I (2008) Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnol 8:37

    Article  PubMed  Google Scholar 

  • Baugh LR, Hill AA, Brown EL et al (2001) Quantitative analysis of mRNA amplification by in vitro transcription. Nucleic Acids Res 29(5):E29

    Article  PubMed  CAS  Google Scholar 

  • Benucci M, Saviola G, Manfredi M et al (2012) Tumor necrosis factors blocking agents: analogies and differences. Acta Biomed 83(1):72–80

    PubMed  CAS  Google Scholar 

  • Bertschinger J, Neri D (2004) Covalent DNA display as a novel tool for directed evolution of proteins in vitro. Protein Eng Des Sel 17(9):699–707

    Article  PubMed  CAS  Google Scholar 

  • Bezalel S, Asher I, Elbirt D et al (2012) Novel biological treatments for systemic lupus erythematosus: current and future modalities. Isr Med Assoc J 14(8):508–514

    PubMed  Google Scholar 

  • Bowers PM, Horlick RA, Neben TY et al (2011) Coupling mammalian cell surface display with somatic hypermutation for the discovery and maturation of human antibodies. Proc Natl Acad Sci U S A 108(51):20455–20460

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Zurita AJ, Ardelt PU et al (2004) Design and validation of a bifunctional ligand display system for receptor targeting. Chem Biol 11(8):1081–1091

    Article  PubMed  CAS  Google Scholar 

  • Clementi N, Mancini N, Solforosi L et al (2012) Phage display-based strategies for cloning and optimization of monoclonal antibodies directed against human pathogens. Int J Mol Sci 13(7):8273–8292

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Liu H, Ze Y et al (2012) Gene expression in liver injury caused by long-term exposure to titanium dioxide nanoparticles in mice. Toxicol Sci 128(1):171–185

    Article  PubMed  CAS  Google Scholar 

  • Damoiseaux R, George S, Li M et al (2011) No time to lose—high throughput screening to assess nanomaterial safety. Nanoscale 3(4):1345–1360

    Article  PubMed  CAS  Google Scholar 

  • Dantas-Barbosa C, de Macedo Brigido M, Maranhao AQ (2012) Antibody phage display libraries: contributions to oncology. Int J Mol Sci 13(5):5420–5440

    Article  PubMed  CAS  Google Scholar 

  • Deramchia K, Jacobin-Valat MJ, Vallet A et al (2012) In vivo phage display to identify new human antibody fragments homing to atherosclerotic endothelial and subendothelial tissues [corrected]. Am J Pathol 180(6):2576–2589

    Article  PubMed  CAS  Google Scholar 

  • Ferreira C, Sartori-da-Silva M, Justo G (2011) Zebrafish as a suitable model for evaluating nanocosmetics and nanomedicines. In: Beck R, Guterres S, Pohlmann A (eds) Nanocosmetics and nanomedicines. Springer, Berlin, pp 239–251

    Chapter  Google Scholar 

  • Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18(6):565–571

    Article  PubMed  CAS  Google Scholar 

  • Fisichella M, Berenguer F, Steinmetz G et al (2012) Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in caco-2 cells. Part Fibre Toxicol 9:18

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald K (2000) In vitro display technologies—new tools for drug discovery. Drug Discov Today 5(6):253–258

    Article  PubMed  CAS  Google Scholar 

  • Foldbjerg R, Irving ES, Hayashi Y et al (2012) Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 130:145–157

    Article  PubMed  CAS  Google Scholar 

  • Froehlicher M, Liedtke A, Groh KJ et al (2009) Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquat Toxicol 95(4):307–319

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Morimoto Y, Endoh S et al (2010) Identification of potential biomarkers from gene expression profiles in rat lungs intratracheally instilled with C(60) fullerenes. Toxicology 274:34–41

    Article  PubMed  CAS  Google Scholar 

  • Gagne F, Andre C, Skirrow R et al (2012) Toxicity of silver nanoparticles to rainbow trout: a toxicogenomic approach. Chemosphere 89(5):615–622

    Article  PubMed  CAS  Google Scholar 

  • Gesteira TF, Coulson-Thomas VJ, Taunay-Rodrigues A et al (2011) Inhibitory peptides of the sulfotransferase domain of the heparan sulfate enzyme, N-deacetylase-N-sulfotransferase-1. J Biol Chem 286(7):5338–5346

    Article  PubMed  CAS  Google Scholar 

  • Giordano RJ, Cardo-Vila M, Lahdenranta J et al (2001) Biopanning and rapid analysis of selective interactive ligands. Nat Med 7(11):1249–1253

    Article  PubMed  CAS  Google Scholar 

  • Gomes SI, Novais SC, Scott-Fordsmand JJ et al (2012) Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): differential gene expression through microarray analysis. Comp Biochem Physiol C Toxicol Pharmacol 155(2):219–227

    Article  PubMed  CAS  Google Scholar 

  • Gomes SI, Soares AM, Scott-Fordsmand JJ et al (2013) Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta): survival, reproduction and gene expression profile. J Hazard Mater 254–255:336–344

    Article  PubMed  Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND et al (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107(2):404–415

    Article  PubMed  CAS  Google Scholar 

  • Griffitt RJ, Feswick A, Weil R et al (2011) Investigation of acute nanoparticulate aluminum toxicity in zebrafish. Environ Toxicol 26(5):541–551

    Article  PubMed  CAS  Google Scholar 

  • Groves M, Lane S, Douthwaite J et al (2006) Affinity maturation of phage display antibody populations using ribosome display. J Immunol Methods 313(1–2):129–139

    Article  PubMed  CAS  Google Scholar 

  • Gu J, Liu X, Li Y et al (2012) A method for generation phage cocktail with great therapeutic potential. PLoS One 7(3):e31698

    Article  PubMed  CAS  Google Scholar 

  • Gui S, Zhang Z, Zheng L et al (2011) Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. J Hazard Mater 195:365–370

    Article  PubMed  CAS  Google Scholar 

  • Gui S, Sang X, Zheng L et al (2013) Intragastric exposure to titanium dioxide nanoparticles induced nephrotoxicity in mice, assessed by physiological and gene expression modifications. Part Fibre Toxicol 10:4

    Article  PubMed  CAS  Google Scholar 

  • Haas BJ, Zody MC (2010) Advancing RNA-Seq analysis. Nat Biotechnol 28(5):421–423

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  • Hanes J, Pluckthun A (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A 94(10):4937–4942

    Article  PubMed  CAS  Google Scholar 

  • Haq IU, Chaudhry WN, Akhtar MN et al (2012) Bacteriophages and their implications on future biotechnology: a review. Virol J 9:9. doi:10.1186/1743-422X-9-9

    Article  PubMed  Google Scholar 

  • Hashemi H, Pouyanfard S, Bandehpour M et al (2012) Immunization with M2e-displaying T7 bacteriophage nanoparticles protects against influenza A virus challenge. PLoS One 7(9):e45765

    Article  PubMed  CAS  Google Scholar 

  • Jayanna PK, Bedi D, Gillespie JW et al (2010) Landscape phage fusion protein-mediated targeting of nanomedicines enhances their prostate tumor cell association and cytotoxic efficiency. Nanomedicine 6(4):538–546

    Article  PubMed  CAS  Google Scholar 

  • Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61(6):438–456

    Article  PubMed  CAS  Google Scholar 

  • Kalive M, Zhang W, Chen Y, Capco DG (2012) Human intestinal epithelial cells exhibit a cellular response indicating a potential toxicity upon exposure to hematite nanoparticles. Cell Biol Toxicol 28:343–368

    Article  PubMed  CAS  Google Scholar 

  • Lammers T, Hennink WE, Storm G (2008) Tumour-targeted nanomedicines: principles and practice. Br J Cancer 99(3):392–397

    Article  PubMed  CAS  Google Scholar 

  • Lee TL, Raitano JM, Rennert OM et al (2012) Accessing the genomic effects of naked nanoceria in murine neuronal cells. Nanomedicine 8:599–608

    Article  PubMed  CAS  Google Scholar 

  • Lettieri T (2006) Recent applications of DNA microarray technology to toxicology and ecotoxicology. Environ Health Perspect 114(1):4–9

    PubMed  CAS  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Article  PubMed  CAS  Google Scholar 

  • Liao M, Liu H (2012) Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ Toxicol Pharmacol 34:67–80

    Article  PubMed  CAS  Google Scholar 

  • Lipovsek D, Pluckthun A (2004) In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 290(1–2):51–67

    Article  PubMed  CAS  Google Scholar 

  • Mattheakis LC, Bhatt RR, Dower WJ (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci U S A 91(19):9022–9026

    Article  PubMed  CAS  Google Scholar 

  • Mazumdar S (2009) Raxibacumab. MAbs 1(6):531–538

    Article  PubMed  Google Scholar 

  • Miller AV, Ranatunga SK (2012) Immunotherapies in rheumatologic disorders. Med Clin North Am 96(3):475–496

    Article  PubMed  CAS  Google Scholar 

  • Niazi JH, Sang BI, Kim YS et al (2011) Global gene response in Saccharomyces cerevisiae exposed to silver nanoparticles. Appl Biochem Biotechnol 164(8):1278–1291

    Article  PubMed  CAS  Google Scholar 

  • Noble CO, Kirpotin DB, Hayes ME et al (2004) Development of ligand-targeted liposomes for cancer therapy. Expert Opin Ther Targets 8(4):335–353

    Article  PubMed  CAS  Google Scholar 

  • Odegrip R, Coomber D, Eldridge B et al (2004) CIS display: in vitro selection of peptides from libraries of protein-DNA complexes. Proc Natl Acad Sci U S A 101(9):2806–2810

    Article  PubMed  CAS  Google Scholar 

  • Peano C, Severgnini M, Cifola I et al (2006) Transcriptome amplification methods in gene expression profiling. Expert Rev Mol Diagn 6(3):465–480

    Article  PubMed  CAS  Google Scholar 

  • Petrenko V (2008) Evolution of phage display: from bioactive peptides to bioselective nanomaterials. Expert Opin Drug Deliv 5(8):825–836

    Article  PubMed  CAS  Google Scholar 

  • Porto G, Giordano RJ, Marti LC et al (2011) Identification of novel immunoregulatory molecules in human thymic regulatory CD4+ CD25+ T cells by phage display. PLoS One 6(8):e21702

    Article  PubMed  CAS  Google Scholar 

  • Poynton HC, Vulpe CD (2009) Ecotoxicogenomics: emerging technologies for emerging contaminants. J Am Water Resour Assoc 45(1):83–96

    Article  CAS  Google Scholar 

  • Poynton HC, Lazorchak JM, Impellitteri CA et al (2011) Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45(2):762–768

    Article  PubMed  CAS  Google Scholar 

  • Poynton HC, Lazorchak JM, Impellitteri CA et al (2012) Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles. Environ Sci Technol 46(11):6288–6296

    Article  PubMed  CAS  Google Scholar 

  • Prisco A, De Berardinis P (2012) Filamentous bacteriophage fd as an antigen delivery system in vaccination. Int J Mol Sci 13(4):5179–5194

    Article  PubMed  CAS  Google Scholar 

  • Pritchard L, Corne D, Kell D et al (2005) A general model of error-prone PCR. J Theor Biol 234(4):497–509

    Article  PubMed  CAS  Google Scholar 

  • Rothe A, Hosse RJ, Power BE (2006) In vitro display technologies reveal novel biopharmaceutics. FASEB J 20(10):1599–1610

    Article  PubMed  CAS  Google Scholar 

  • Sergeeva A, Kolonin MG, Molldrem JJ et al (2006) Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 58(15):1622–1654

    Article  PubMed  CAS  Google Scholar 

  • Shim W, Paik MJ, Nguyen DT et al (2012) Analysis of changes in gene expression and metabolic profiles induced by silica-coated magnetic nanoparticles. ACS Nano 6:7665–7680

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Kanamori T, Ueda T (2005) Protein synthesis by pure translation systems. Methods 36(3):299–304

    Article  PubMed  CAS  Google Scholar 

  • Simon DF, Domingos RF, Hauser C et al (2013) RNA-Seq analysis of the effects of metal nanoparticle exposure on the transcriptome of Chlamydomonas reinhardtii. Appl Environ Microbiol 79(16):4774–4785

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Nalwa HS (2007) Nanotechnology and health safety—toxicity and risk assessments of nanostructured materials on human health. J Nanosci Nanotechnol 7(9):3048–3070

    Article  PubMed  CAS  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Staquicini FI, Ozawa MG, Moya CA et al (2011) Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. J Clin Invest 121(1):161–173

    Article  PubMed  CAS  Google Scholar 

  • Tabata N, Sakuma Y, Honda Y et al (2009) Rapid antibody selection by mRNA display on a microfluidic chip. Nucleic Acids Res 37(8):e64

    Article  PubMed  Google Scholar 

  • Tonelli RR, Colli W, Alves MJ (2013) Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro. Front Immunol 3:419. doi:10.3389/fimmu.2012.00419

    Article  PubMed  Google Scholar 

  • Torchilin VP (2010) Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol 197:3–53

    Article  PubMed  CAS  Google Scholar 

  • Tuteja R, Tuteja N (2004) Serial analysis of gene expression (SAGE): application in cancer research. Med Sci Monit 10(6):RA132–RA140

    PubMed  CAS  Google Scholar 

  • Van Den Hondel CA, Schoenmakers JG (1976) Cleavage maps of the filamentous bacteriophages M13, fd, fl, and ZJ/2. J Virol 18:1024–1039

    Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Kulkarni N, Bedi D et al (2011a) In vitro optimization of liposomal nanocarriers prepared from breast tumor cell specific phage fusion protein. J Drug Target 19(8):597–605

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Kulkarni N, D’Souza GG et al (2011b) On the mechanism of targeting of phage fusion protein-modified nanocarriers: only the binding peptide sequence matters. Mol Pharm 8(5):1720–1728

    Article  PubMed  CAS  Google Scholar 

  • Wei Z, Maeda Y, Matsui H (2011) Discovery of catalytic peptides for inorganic nanocrystal synthesis by a combinatorial phage display approach. Angew Chem Int Ed Engl 50(45):10585–10588

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Li X, Takemura T et al (2012) Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. J Nanobiotechnol 10:16

    Article  CAS  Google Scholar 

  • Yabe R, Suzuki R, Kuno A et al (2007) Tailoring a novel sialic acid-binding lectin from a ricin-B chain-like galactose-binding protein by natural evolution-mimicry. J Biochem 141(3):389–399

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Wakatsuki T, Hada A et al (2001) Use of serial analysis of gene expression (SAGE) technology. J Immunol Methods 250(1–2):45–66

    Article  PubMed  CAS  Google Scholar 

  • Yauk CL, Berndt ML (2007) Review of the literature examining the correlation among DNA microarray technologies. Environ Mol Mutagen 48(5):380–394

    Article  PubMed  CAS  Google Scholar 

  • Zawada JF (2012) Preparation and testing of E. coli S30 in vitro transcription translation extracts. Methods Mol Biol 805:31–41

    Article  PubMed  CAS  Google Scholar 

  • Ze Y, Hu R, Wang X et al (2013) Neurotoxicity and gene-expressed profile in brain-injured mice caused by exposure to titanium dioxide nanoparticles. J Biomed Mater Res A. doi:10.1002/jbm.a.34705 [Epub ahead of print]

  • Zhou C, Jacobsen FW, Cai L et al (2010) Development of a novel mammalian cell surface antibody display platform. MAbs 2(5):508–518

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our research in this field is supported by the government agencies Fundação de Amparo à pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Brazilian Network on Nanotoxicology (MCTI/CNPq).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giselle Z. Justo or Maria Aparecida S. Pinhal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Justo, G.Z., Suarez, E.R., Melo, C., Lima, M.A., Nader, H.B., Pinhal, M.A.S. (2014). From Combinatorial Display Techniques to Microarray Technology: New Approaches to the Development and Toxicological Profiling of Targeted Nanomedicines. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_7

Download citation

Publish with us

Policies and ethics