Nanotoxicology pp 111-123 | Cite as

In Vitro Cytotoxicity Assays of Nanoparticles on Different Cell Lines

  • Patricia S. Melo
  • Priscyla D. Marcato
  • Daniele R. de Araújo
  • Nelson Durán
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


One of the greatest interests in the pharmaceutical and cosmetic industries today is the promising of new substances without adverse effects. Preclinical animal safety investigations and clinical trials increase the time necessary to bring a new candidate compound to the market and increase development costs and time dispensed in this process. Cell culture models are adequate for screening toxicity of several substances including nanomaterials. The data from those models can provide an indication of the safety use of these particles in humans since they are proven hazardous.


Autophagic Cell Death Trypan Blue Exclusion Test Lysosome Membrane Permeabilization Standard Cell Line Primary Alveolar Macrophage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supports from FAPESP, CNPq, INOMAT (MCTI/CNPq), NanoBioss (MCTI), and Brazilian Network on Nanotoxicology (MCTI/CNPq) are acknowledged.


  1. Acosta SA, Tajiri N, Shinozuka K et al (2013) Long-term upregulation of inflammation and suppression of cell proliferation in the brain of adult rats exposed to traumatic brain injury using the controlled cortical impact model. PLoS One 8:e53376PubMedCrossRefGoogle Scholar
  2. Ayaki M, Wasawa A, Niwano Y (2012) Cell viability score as an integrated indicator for cytotoxicity of benzalkonium chloride-containing antiglaucoma eyedrops. Biocontrol Sci 17:121–128PubMedCrossRefGoogle Scholar
  3. Balls M (2012) The conflict over animal experimentation: is the field of battle changing? Altern Lab Anim 40:189–191PubMedGoogle Scholar
  4. Breheny D, Oke O, Faux SP (2011) The use of in vitro systems to assess cancer mechanisms and the carcinogenic potential of chemicals. Altern Lab Anim 39:233–255PubMedGoogle Scholar
  5. Brunt KR, Weisel RD, Li RK (2012) Stem cells and regenerative medicine: future perspectives. Can J Physiol Pharmacol 90:327–335PubMedCrossRefGoogle Scholar
  6. Capes-Davis A, Theodosopoulos G, Atkin I et al (2010) Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer 127:1–8PubMedCrossRefGoogle Scholar
  7. Chandler KJ, Barrier M, Jeffay S et al (2011) Evaluation of 309 environmental chemicals using a mouse stem cell adherent cell differentiation and cytotoxicity assay. PLoS One 6:1–11CrossRefGoogle Scholar
  8. Clover AJ, O’Neil BL, Kumar AH (2012) Analysis of attitudes toward the source of progenitor cells in tissue-engineered products for use in burns compared with other disease states. Wound Repair Regen 20:311–316PubMedCrossRefGoogle Scholar
  9. Combes RD, Balls M (2011) Integrated testing strategies for toxicity employing new and existing technologies. Altern Lab Anim 39:213–225PubMedGoogle Scholar
  10. Costin GE, Raabe HA, Priston R et al (2011) Vaginal irritation models: the current status of available alternative and in vitro tests. Altern Lab Anim 39:317–337PubMedGoogle Scholar
  11. De Duve C, De Barsy T, Poole B et al (1974) Commentary. Lysosomotropic agents. Biochem Pharmacol 23:2495–2531PubMedCrossRefGoogle Scholar
  12. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149PubMedCrossRefGoogle Scholar
  13. Fang JY, Al-Suwayeh SA (2012) Nanoparticles as delivery carriers for anticancer prodrugs. Expert Opin Drug Deliv 9:657–669PubMedCrossRefGoogle Scholar
  14. Freshney RI (ed) (1994) Culture of animal cells: a manual of basic technique. Wiley, Hoboken, NJGoogle Scholar
  15. Freshney RI (2005) Culture of animal cells: a manual of basic technique. Wiley, Hoboken, NJ, p 649CrossRefGoogle Scholar
  16. Frohlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591PubMedCrossRefGoogle Scholar
  17. Fukazawa H, Suzuki T, Wakita T et al (2012) A cell-based, microplate colorimetric screen identifies7,8-benzoflavone and green tea gallate catechins as inhibitors of the hepatitis C virus. Biol Pharm Bull 35:1320–1327PubMedCrossRefGoogle Scholar
  18. Galluzzi L, Vitale I, Abrams JM et al (2012) Molecular definitions of cell death subroutines: recommendations on the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120PubMedCrossRefGoogle Scholar
  19. Gao W, Lai JCK, Leung SW (2012) Functional enhancement of chitosan and nanoparticles in cell culture, tissue engineering, and pharmaceutical applications. Front Physiol 3:1–12CrossRefGoogle Scholar
  20. Han X, Corson N, Wade-Mercer P et al (2012) Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297:1–9PubMedCrossRefGoogle Scholar
  21. Harris C (2012) Overview of in vitro models in developmental toxicology. Methods Mol Biol 889:105–113PubMedCrossRefGoogle Scholar
  22. Jang J, Yoo JE, Lee JA, Lee DR et al (2012) Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery. Exp Mol Med 44:202–213PubMedCrossRefGoogle Scholar
  23. Johnson-Lyles DN, Peifley K, Lockett S et al (2010) Fullerenol cytotoxicity in kidney cells is associated with cytoskeleton disruption, autophagic vacuole accumulation, and mitochondrial dysfunction. Toxicol Appl Pharmacol 248:249–258PubMedCrossRefGoogle Scholar
  24. Jonhston HJ, Hutchison GR, Christensen FM et al (2009) Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol 6:33–60CrossRefGoogle Scholar
  25. Kim YH, Fazlollahi F, Kennedy IM et al (2010) Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am J Respir Crit Care Med 182:1398–13409PubMedCrossRefGoogle Scholar
  26. Kroll A, Dierker C, Rommel C et al (2011) Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8:1–19CrossRefGoogle Scholar
  27. L’Azou B, Jorly J, On D et al (2008) In vitro effects of nanoparticles on renal cells. Part Fibre Toxicol 5:22–36PubMedCrossRefGoogle Scholar
  28. Lanone S, Rogerieux F, Geys J et al (2009) Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6(14):26Google Scholar
  29. LeCluyse EL, Witek RP, Andersen ME et al (2012) Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 42:501–548PubMedCrossRefGoogle Scholar
  30. Liang XJ, Chen C, Zhao Y et al (2008) Biopharmaceutics and therapeutic potential of engineered nanomaterials. Curr Drug Metab 9:697–709PubMedCrossRefGoogle Scholar
  31. Machana S, Weerapreeyakul N, Barusrux S (2011) Cytotoxic and apoptotic effects of six herbal plants against the human hepatocarcinoma (HepG2) cell line. Chin Med 6:39PubMedCrossRefGoogle Scholar
  32. Mahato R, Tai W, Cheng K (2011) Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev 63:659–670PubMedCrossRefGoogle Scholar
  33. Martin MT, Judson RS, Reif DM et al (2009) Profiling chemicals based on chronic toxicity results from the U.S. EPA ToxRefDatabase. Environ Health Perspect 117:392–399PubMedGoogle Scholar
  34. McKim JM Jr (2010) Building a tiered approach to in vitro predictive toxicity screening: a focus on assays with in vivo relevance. Comb Chem High Throughput Screen 13:188–206PubMedCrossRefGoogle Scholar
  35. Melo PS, Durán N, Haun M (2002) Derivatives of dehydrocrotonin, a diterpene lactone isolated from Croton cajucara: cytotoxicity in rat cultured hepatocytes and V79 cells. Hum Exp Toxicol 21:273–280CrossRefGoogle Scholar
  36. Mizushima N (2004) Methods for monitoring autophagy. Int J Biochem Cell Biol 36:2491–2502PubMedCrossRefGoogle Scholar
  37. Moller P, Jacobsen NR, Folkmann JK et al (2010) Role of oxidative damage in toxicity of particulates. Free Radic Res 44:1–46PubMedCrossRefGoogle Scholar
  38. Olabisi RM, Lazard ZW, Franco CL et al (2010) Hydrogel microsphere encapsulation of a cell-based gene therapy system increases cell survival of injected cells, transgene expression, and bone volume in a model of heterotropic ossification. Tissue Eng 16:3727–3736CrossRefGoogle Scholar
  39. Park EJ, Yi L, Chung KH et al (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180:222–229PubMedCrossRefGoogle Scholar
  40. Pernot M, Vanderesse R, Frochot C et al (2011) Stability of peptides and therapeutic success in cancer. Expert Opin Drug Metab Toxicol 7:793–802PubMedCrossRefGoogle Scholar
  41. Pintus F, Floris G, Rufini A (2012) Nutrient availability links mitochondria, apoptosis, and obesity. Aging 4:734–741PubMedGoogle Scholar
  42. Polchow B, Kebbel K, Schmiedeknecht G et al (2012) Cryopreservation of human vascular umbilical cord cells under good manufacturing practice conditions for culture cell banks. J Transl Med 10:98PubMedCrossRefGoogle Scholar
  43. Pujalté I, Passagne I, Brouillaud B et al (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10–26PubMedCrossRefGoogle Scholar
  44. Roguet R, Cotovio J, Gaetani Q et al (1993) Cytotoxicity of 28 MEIC chemicals to rat hepatocytes using two viability endpoints: correlation with acute toxicity data in rat and man. Altern Lab Anim 21:216–224Google Scholar
  45. Russell K (1969) Tissue culture: a brief historical review. Clio Med 4:109–119Google Scholar
  46. Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180PubMedCrossRefGoogle Scholar
  47. Sayes C, Reed K, Subramoney S et al (2009) Can in vitro assays substitute for in vivo studies in assessing the pulmonary hazards of fine and nanoscale materials? J Nanopart Res 11:421–431CrossRefGoogle Scholar
  48. Schneider P, Korolenko TA, Busch U (1997) A review of drug-induced lysosomal disorders of the liver in man and laboratory animals. Microsc Res Tech 36:253–275PubMedCrossRefGoogle Scholar
  49. Shahbazi MA, Santos HA (2013) Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication. Curr Drug Metab 14(1):28–56PubMedCrossRefGoogle Scholar
  50. Sittampalam GS, Gal-Edd N, Arkin M et al (eds) (2007) Assay guidance manual. Eli Lilly & Company, Bethesda, MDGoogle Scholar
  51. Sohaebuddin SK, Thevenot PT, Baker D et al (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22–39PubMedCrossRefGoogle Scholar
  52. Spielmann H, Genschow E, Leibsch M et al (1999) Determination of the starting dose for acute oral toxicity (LD50) testing in the up and down procedure (UDP) from cytotoxicity data. ATLA 27:957–966Google Scholar
  53. Stern ST, Johnson DN (2008) Role for nanomaterial-autophagy interaction in neurodegenerative disease. Autophagy 4:1097–1100PubMedGoogle Scholar
  54. Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 9:20–35PubMedCrossRefGoogle Scholar
  55. Tedesco S, Doyle H, Blasco J, Redmond G et al (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol 100:178–186PubMedCrossRefGoogle Scholar
  56. Tsai TL, Hou CC, Wang HC et al (2012) Nucleocytoplasmic transport blockage by SV40 peptide-modified gold nanoparticles induces cellular autophagy. Int J Nanomedicine 7:5215–5234PubMedGoogle Scholar
  57. Vevers WF, Jha AN (2008) Genotoxic and cytotoxic potential of titanium dioxide (TiO2) nanoparticles on fish cells in vitro. Ecotoxicology 17:410–420PubMedCrossRefGoogle Scholar
  58. Warheit DB, Sayes CM, Reed KL (2009) Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol 43:7939–7945PubMedCrossRefGoogle Scholar
  59. Wlodkowick D, Telford W, Skommer J et al (2011) Apoptosis and beyond: cytometry in studies of programmed cell death. Methods Cell Biol 03:55–98CrossRefGoogle Scholar
  60. Xin GZ, Qi LW, Shi ZQ et al (2011) Strategies for integral metabolism profile of multiple compounds in herbal medicines: pharmacokinetics, metabolites characterization and metabolic interactions. Curr Drug Metab 12:809–817PubMedCrossRefGoogle Scholar
  61. Yang D, Van S, Liu J et al (2011) Physicochemical properties and biocompatibility of a polymer-paclitaxel conjugate for cancer treatment. Int J Nanomedicine 6:2557–2566PubMedGoogle Scholar
  62. You C, Han C, Wang X et al (2012) The progress of silver nanoparticles in the anti-bacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39:9193–9201PubMedCrossRefGoogle Scholar
  63. Zhivotovsky B (2004) Apoptosis, necrosis and between. Cell Cycle 3:64–66Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Patricia S. Melo
    • 1
  • Priscyla D. Marcato
    • 2
  • Daniele R. de Araújo
    • 3
  • Nelson Durán
    • 4
    • 5
  1. 1.METROCAMP, Grupo IbmecCampinasBrazil
  2. 2.Faculty of Pharmaceutical Sciences of Riberão PretoUniversidade de São PauloRibeirão PretoBrazil
  3. 3.Centro de Ciências Naturais e HumanasUniversidade Federal do ABC – UFABCSanto AndréBrazil
  4. 4.Biological Chemistry Laboratory, Institute of ChemistryUniversidade Estadual de CampinasCampinasBrazil
  5. 5.Center of Natural and Human SciencesUniversidade Federal do ABC – UFABCSanto AndréBrazil

Personalised recommendations