Skip to main content

Toxicity of Nanomaterials to Microorganisms: Mechanisms, Methods, and New Perspectives

  • Chapter
  • First Online:
Nanotoxicology

Abstract

In the last few years, several nanomaterials with unique physicochemical properties have been developing. Specially, nano-sized materials such as silver and zinc nanoparticles, carbon nanotubes, and graphene oxide have been attracting great attention due to their potential as novel antimicrobial agents. Worldwide, the constant and indiscriminate use of conventional antibiotics has been responsible for the development of several resistant microbial species. In this context, there is a real and increasing demand for new antimicrobial agents. Nanomaterials offer several benefits due to their small size (high aspect volume/area) that provides to nanoparticles great ability to get through physical barriers such as membranes and cellular walls. Henceforth, the aim of this present chapter is to discuss the toxicological aspects of nanomaterials to microorganisms, describing the methods to evaluate their antimicrobial activity and highlighting their implications on the microbial communities of soil and water environments. We also stress the main industrial applications of antimicrobial-engineered nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    PubMed  CAS  Google Scholar 

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative ecotoxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    PubMed  CAS  Google Scholar 

  • Ahmed F, Santos CM, Vergara RAMV et al (2012) Antimicrobial applications of electroactive PVK-SWNT nanocomposites. Environ Sci Technol 46:1804–1810

    PubMed  CAS  Google Scholar 

  • Alongi DM (1994) The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. Hydrobiologia 285:19–32

    CAS  Google Scholar 

  • Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348

    PubMed  CAS  Google Scholar 

  • Amann R, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Angert ER (2005) Alternatives to binary fission in bacteria. Nat Rev Microbiol 3:214–224

    PubMed  CAS  Google Scholar 

  • Applerot G, Lipovsky A, Dror R et al (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19:842–852

    CAS  Google Scholar 

  • Armon R (2011) Soil bacteria and bacteriophages. In: Witzany G (ed) Biocommunication in soil microorganisms soil biology. Springer, Berlin, pp 67–112

    Google Scholar 

  • Atkins PW, Jones L (2010) Chemical principles: the quest for insight, 5th edn. WH Freeman, New York

    Google Scholar 

  • Barreto JA, O’Malley W, Kubeil M et al (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23:H18–H40

    PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108

    PubMed  CAS  Google Scholar 

  • Benincasa M, Pacor S, Wu W et al (2011) Antifungal activity of amphotericin B conjugated to carbon nanotubes. ACS Nano 5:199–208

    PubMed  CAS  Google Scholar 

  • Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152

    PubMed  CAS  Google Scholar 

  • Blackwell M, Hibbett DS, Taylor JW et al (2006) Research coordination networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia 98:829–837

    PubMed  Google Scholar 

  • Blecher K, Nasir A, Friedman A (2011) The growing role of nanotechnology in combating infectious disease. Virulence 2:395–401

    PubMed  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight-polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66:1007–1019

    PubMed  CAS  Google Scholar 

  • Boulos L, Prévost M, Barbeau B et al (1999) LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37:77–86

    PubMed  CAS  Google Scholar 

  • Bradford A, Handy RD, Readman JW et al (2009) Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Technol 43:4530–4536

    PubMed  CAS  Google Scholar 

  • Brady-Estévez AS, Kang S, Elimelech M (2008) A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4:481–484

    PubMed  Google Scholar 

  • Branda S, Vik S, Friedman L et al (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    PubMed  CAS  Google Scholar 

  • Brar SK, Verma M, Tyagi RD et al (2010) Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Manag 30:504–520

    PubMed  CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N et al (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    PubMed  CAS  Google Scholar 

  • Brunet L, Lyon DY, Hotze EM et al (2009) Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol 43:4355–4360

    PubMed  CAS  Google Scholar 

  • Carpio IEM, Santos CM, Wei X et al (2012) Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 4:4746–4756

    Google Scholar 

  • Carter J, Saunders V (2007) Virology: principles and applications. Wiley, West Sussex

    Google Scholar 

  • Chmielewski RAN, Frank JF (2003) Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf 2:22–32

    CAS  Google Scholar 

  • Choi O, Yu CP, Esteban Fernández G et al (2010) Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res 44:6095–6103

    PubMed  CAS  Google Scholar 

  • Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Tech 16:600–607

    CAS  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    PubMed  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE et al (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    PubMed  CAS  Google Scholar 

  • Curtis TP, Sloan WT (2004) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Opin Microbiol 7:221–226

    PubMed  Google Scholar 

  • Dahllöf I (2002) Molecular community analysis of microbial diversity. Curr Opin Biotechnol 13:213–217

    PubMed  Google Scholar 

  • Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci 166:119–135

    PubMed  CAS  Google Scholar 

  • Das MR, Sarma RK, Saikia R et al (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B Biointerfaces 83:16–22

    PubMed  CAS  Google Scholar 

  • De Lima R, Seabra AB, Durán N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32:867–879

    PubMed  CAS  Google Scholar 

  • Desprez-Loustau M-L, Robin C, Buée M et al (2007) The fungal dimension of biological invasions. Trends Ecol Evol 22:472–480

    PubMed  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478

    PubMed  CAS  Google Scholar 

  • Donlan R (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    PubMed  Google Scholar 

  • Dror-Ehre A, Adin A, Markovich G et al (2010) Control of biofilm formation in water using molecularly capped silver nanoparticles. Water Res 44:2601–2609

    PubMed  CAS  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    PubMed  CAS  Google Scholar 

  • Durán N, Marcato PD, De Souza GIH et al (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208

    Google Scholar 

  • Durán N, Marcato PD, Conti R et al (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc 21:949–959

    Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR et al (2005) Interaction of silver nanoparticles with HIV-1, J Nanobiotechnology 3:1–10

    Google Scholar 

  • El-Rafie MH, Mohamed AA, Shaheen TI et al (2010) Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr Polym 80:779–782

    CAS  Google Scholar 

  • Emamifar A, Kadivar M, Shahedi M et al (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innov Food Sci Emerg Technol 11:742–748

    CAS  Google Scholar 

  • Espitia PJP, Soares NFF, Coimbra JSR et al (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    CAS  Google Scholar 

  • Fabrega J, Zhang R, Renshaw JC et al (2011) Impact of silver nanoparticles on natural marine biofilm bacteria. Chemosphere 85:961–966

    PubMed  CAS  Google Scholar 

  • Faria AF, Martinez DST, Moraes ACM et al (2012) Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles. Chem Mater 24:4080–4087

    CAS  Google Scholar 

  • Fedorova NE, Klimova RR, Tulenev YA et al (2012) Carboxylic fullerene C60 derivatives: efficient microbicides against herpes simplex virus and cytomegalovirus infections in vitro. Mendeleev Commun 22:254–256

    CAS  Google Scholar 

  • Furno F, Morley KS, Wong B et al (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024

    PubMed  CAS  Google Scholar 

  • Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78:60–72

    CAS  Google Scholar 

  • Gao D, Tao Y (2012) Current molecular biologic techniques for characterizing environmental microbial community. Front Environ Sci Eng 6:82–97

    Google Scholar 

  • Gao G-H, Lei Y-H, Dong L-H et al (2012) Synthesis of nanocomposites of silver nanoparticles with medical stone and carbon nanotubes for their antibacterial applications. Mater Express 2:85–93

    CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    PubMed  CAS  Google Scholar 

  • Gitai Z (2005) The new bacterial cell biology: moving parts and subcellular architecture. Cell 120:577–586

    PubMed  CAS  Google Scholar 

  • Goyal D, Zhang XJ, Rooney-Varga JN (2010) Impacts of single-walled carbon nanotubes on microbial community structure in activated sludge. Lett Appl Microbiol 51:428–435

    PubMed  CAS  Google Scholar 

  • Harris SD (2008) Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia 100:823–832

    PubMed  Google Scholar 

  • Hawker LE (1965) Fine structure of fungi as revealed by electron microscopy. Biol Rev 40:52–91

    PubMed  CAS  Google Scholar 

  • Hernandez-Delgadillo R, Velasco-Arias D, Diaz D et al (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomedicine 7:2109–2113

    PubMed  CAS  Google Scholar 

  • Hill GT, Mitkowski NA, Aldrich-Wolfeb L et al (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15:25–36

    Google Scholar 

  • Hu W, Peng C, Luo W et al (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    PubMed  CAS  Google Scholar 

  • Huang L, Terakawa M, Zhiyentayev T et al (2010) Innovative cationic fullerenes as broad-spectrum light-activated antimicrobials. Nanomedicine 6:442–452

    PubMed  CAS  Google Scholar 

  • Huh AJ, Kwon YJ (2011) Nanoantibiotics: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156:128–145

    PubMed  CAS  Google Scholar 

  • Jay JM, Loessner MJ, Golden DA (2005) Modern food microbiology, 7th edn. Springer, New York

    Google Scholar 

  • Jung WK, Koo HC, Kim KW et al (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178

    PubMed  CAS  Google Scholar 

  • Jusko J (2009) Information please. Government agencies, concerned about potential health and environmental risks, are stepping up efforts to gather data on nanomaterials. Ind Week 29:1–2

    Google Scholar 

  • Kamat JP, Devasagayam TP, Priyadarsini KI et al (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155:55–61

    PubMed  CAS  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD et al (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    PubMed  CAS  Google Scholar 

  • Kang S, Herzberg M, Rodrigues DF et al (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24:6409–6413

    PubMed  CAS  Google Scholar 

  • Kang S, Mauter MS, Elimelech M (2009) Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environ Sci Technol 43:2648–2653

    PubMed  CAS  Google Scholar 

  • Kim J, Kuk E, Yu K et al (2007) Antimicrobial effects of silver nanoparticles. Nanomed-Nanotechnol 3:95–101

    CAS  Google Scholar 

  • Kirschling TL, Gregory KB, Minkley JREG et al (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44:3474–3480

    PubMed  CAS  Google Scholar 

  • Kiser MA, Westerhoff P, Benn T et al (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757–6763

    PubMed  CAS  Google Scholar 

  • Kitts CL (2001) Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2:17–25

    PubMed  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    PubMed  CAS  Google Scholar 

  • Klaine SJ, Koelmans AA, Horne N et al (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31:3–14

    PubMed  CAS  Google Scholar 

  • Koch A (2003) Bacterial wall as target for attack: past, present, and the future research. Clin Microbiol Rev 16:673–687

    PubMed  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S et al (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76:50–56

    PubMed  CAS  Google Scholar 

  • Kumar A, Menon SK (2009) Fullerene derivatized s-triazine analogues as antimicrobial agents. Eur J Med Chem 44:2178–2183

    PubMed  CAS  Google Scholar 

  • Kunzmann A, Andersson B, Thurnherr T et al (2011) Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta 1810:361–373

    PubMed  CAS  Google Scholar 

  • Lee N, Nielsen PH, Andreasen KH (1999) Combination of fluorescent in situ hybridization and microautoradiography—a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297

    PubMed  CAS  Google Scholar 

  • Lee J, Mahendra S, Alvarez PJJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4:3580–3590

    PubMed  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY et al (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    PubMed  CAS  Google Scholar 

  • Li C, Wang X, Chen F et al (2013) The antifungal activity of graphene oxide–silver nanocomposites. Biomaterials 34:3882–3890

    PubMed  CAS  Google Scholar 

  • Liu W-T, Marsh TL, Cheng H et al (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed  CAS  Google Scholar 

  • Liu B-R, Jia G-M, Chen J et al (2006) A review of methods for studying microbial diversity in soils. Pedosphere 16:18–24

    CAS  Google Scholar 

  • Liu Y, He L, Mustapha A et al (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J Appl Microbiol 107:1193–1201

    PubMed  CAS  Google Scholar 

  • Liu S, Ng AK, Xu R et al (2010) Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale 2:2744–2750

    PubMed  CAS  Google Scholar 

  • Liu S, Zeng TH, Hofmann M et al (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    PubMed  CAS  Google Scholar 

  • Liu S, Hu M, Zeng TH et al (2012) Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28:12364–12372

    PubMed  CAS  Google Scholar 

  • Ludwig W, Bauer SH, Bauer M et al (1997) Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190

    PubMed  CAS  Google Scholar 

  • Lyon DY, Adams LK, Falkner JC et al (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40:4360–4366

    PubMed  CAS  Google Scholar 

  • Lyon DY, Brunet L, Hinkal GW et al (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543

    PubMed  CAS  Google Scholar 

  • Ma J, Zhang J, Xiong Z et al (2011) Preparation, characterization and antibacterial properties of silver-modified graphene oxide. J Mater Chem 21:3350–3352

    CAS  Google Scholar 

  • Maier RM, Pepper IL, Gerba CP (2009) Environmental microbiology, 2nd edn. Academic, San Diego

    Google Scholar 

  • Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    CAS  Google Scholar 

  • Marsh TL (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2:323–327

    PubMed  CAS  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N et al (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    PubMed  CAS  Google Scholar 

  • Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F et al (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10:1343–1348

    Google Scholar 

  • Martinko JM, Madigan MT (2005) Brock biology of microorganisms, 11th edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Matthews L, Kanwar RK, Zhou S et al (2010) Applications of nanomedicine in antibacterial medical therapeutics and diagnostics. Open Trop Med J 3:1–9

    CAS  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    PubMed  CAS  Google Scholar 

  • Maynard AD (2007) Nanotechnologies: overview and issues. In: Simeonova PP, Opopol N, Luster MI (eds) Nanotechnology—toxicological issues and environmental safety and environmental safety. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Meng H, Xia T, George S et al (2009) A predictive toxicological paradigm for the safety assessment of nanomaterials. ACS Nano 3:1620–1627

    PubMed  CAS  Google Scholar 

  • Mirhosseini M, Firouzabadi FB (2012) Antibacterial activity of zinc oxide nanoparticle suspensions on food-borne pathogens. Int J Dairy Technol 65:1–5

    Google Scholar 

  • Miyako E, Nagata H, Hirano K et al (2008) Photoinduced antiviral carbon nanohorns. Nanotechnology 19:1–6

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    PubMed  CAS  Google Scholar 

  • Morris RM, Rappé MS, Connon SA et al (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    PubMed  CAS  Google Scholar 

  • Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112

    PubMed  CAS  Google Scholar 

  • Mu H, Chen Y (2011) Long-term effect of ZnO nanoparticles on waste activated sludge anaerobic digestion. Water Res 45:5612–5620

    PubMed  CAS  Google Scholar 

  • Mu L, Sprando RL (2010) Application of nanotechnology in cosmetics. Pharm Res 27:1746–1749

    PubMed  CAS  Google Scholar 

  • Musee N, Thwalaa M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13:1164–1183

    PubMed  CAS  Google Scholar 

  • Muyzer G, Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Wat Sci Technol 32:1–9

    CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127–141

    PubMed  CAS  Google Scholar 

  • Muyzer G, Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Nakamura S, Mashino T (2009) Biological activities of water-soluble fullerene derivatives. J Phys Conf Ser 159:012003

    Google Scholar 

  • Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed-Nanotechnol 5:452–456

    CAS  Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos T et al (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350

    PubMed  CAS  Google Scholar 

  • Nyberg L, Turco RF, Nies L (2008) Assessing the impact of nanomaterials on anaerobic microbial communities. Environ Sci Technol 42:1938–1943

    PubMed  CAS  Google Scholar 

  • Osiewacz HD (2002) Genes, mitochondria and aging in filamentous fungi. Ageing Res Rev 3:425–442

    Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:1–7

    Google Scholar 

  • Page K, Palgrave RG, Parkin IP et al (2007) Titania and silver–titania composite films on glass–potent antimicrobial coatings. J Mater Chem 17:95–104

    CAS  Google Scholar 

  • Pakrashi S, Dalai S, Sabat D et al (2011) Cytotoxicity of Al2O3 nanoparticles at low exposure levels to a freshwater bacterial isolate. Chem Res Toxicol 24:1899–1904

    PubMed  CAS  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    PubMed  CAS  Google Scholar 

  • Panacek A, Kolar M, Vecerova R et al (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340

    PubMed  CAS  Google Scholar 

  • Park HJ, Kim JY, Kim J et al (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1034

    PubMed  CAS  Google Scholar 

  • Park S, Mohanty N, Suk JW et al (2010) Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite. Adv Mater 22:1736–1740

    PubMed  CAS  Google Scholar 

  • Park H, Park HJ, Kim JA et al (2011) Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J Microbiol Methods 84:41–45

    PubMed  CAS  Google Scholar 

  • Paul EA (2007) Soil microbiology, ecology and biochemistry, 3rd edn. Elsevier, Fort Collins, CO

    Google Scholar 

  • Pelczar MJ, Chan ECS, Krieg NR (1993) Microbiology, 5th edition, McGraw Hill Book Company, NY, USA

    Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    PubMed  CAS  Google Scholar 

  • Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293

    PubMed  CAS  Google Scholar 

  • Qi X, Poernomo G, Wang K et al (2011) Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties. Nanoscale 3:1874–1880

    PubMed  CAS  Google Scholar 

  • Raffi M, Hussain F, Bhatti TM et al (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196

    CAS  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    PubMed  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    PubMed  CAS  Google Scholar 

  • Rodrigues DF, Elimelech M (2010) Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. Environ Sci Technol 44:4583–4589

    PubMed  CAS  Google Scholar 

  • Rodrigues F, Ludovico P, Leão C (2006) Sugar metabolism in yeasts: an overview of aerobic and anaerobic glucose catabolism (chap 6). In: Péter G, Rosa C (eds) Biodiversity and ecophysiology of yeasts, Springer, Berlin, pp 101–121

    Google Scholar 

  • Roossinck MJ (2010) Lifestyles of plant viruses. Phil Trans R Soc B 365:1899–1905

    PubMed  Google Scholar 

  • Ruiz ON, Fernando KAS, Wang B et al (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5:8100–8107

    PubMed  CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP et al (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    PubMed  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2:3

    PubMed  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342

    CAS  Google Scholar 

  • Sayara T, Borràs E, Caminal G et al (2011) Bioremediation of PAHs-contaminated soil through composting: influence of bioaugmentation and biostimulation on contaminant biodegradation. Int Biodeter Biodegr 65:859–865

    CAS  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  CAS  Google Scholar 

  • Schönhuber W, Fuchs B, Juretschko S et al (1997) Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidase-labeled oligonucleotides and tyramide signal amplification. Appl Environ Microbiol 63:3268–3273

    PubMed  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767–2781

    PubMed  CAS  Google Scholar 

  • Silva IS, Santos EC, Menezes CR et al (2009) Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresour Technol 100:4669–4675

    PubMed  CAS  Google Scholar 

  • Simon-Deckers A, Loo S, Mayne-L’hermite M et al (2009) Size composition and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429

    PubMed  CAS  Google Scholar 

  • Some S, Ho S-M, Dua P et al (2012) Graphene derivative-poly-L-lysine composites to inhibit bacteria and support human cells. ACS Nano 6:7151–7161

    PubMed  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    PubMed  CAS  Google Scholar 

  • Souza-Filho AG, Fagan SB (2007) Funcionalização de nanotubos de carbono. Quim Nova 30:1695–1703

    Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    PubMed  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG et al (2002) Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209

    PubMed  CAS  Google Scholar 

  • Strauss JH, Strauss EG (2008) Viruses and human disease, 2nd edn. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Su C, Lei L, Duan Y et al (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93:993–1003

    PubMed  CAS  Google Scholar 

  • Sun X, Sheng Z, Liu Y (2013) Effects of silver nanoparticles on microbial community structure in activated sludge. Sci Total Environ 443:828–835

    PubMed  CAS  Google Scholar 

  • Sylvester PW (2011) Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol Biol 716:157–168

    PubMed  CAS  Google Scholar 

  • Tielens AG, Rotte C, van Hellemond JJ et al (2002) Mitochondria as we don’t know them. Trends Biochem Sci 27:564–572

    PubMed  CAS  Google Scholar 

  • Tong ZH, Bischoff M, Nies L et al (2007) Impact of fullerene (C-60) on a soil microbial community. Environ Sci Technol 41:2985–2991

    PubMed  CAS  Google Scholar 

  • Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities—a review. J Ind Microbiol 17:170–178

    CAS  Google Scholar 

  • Tortora GJ, Funke BR, Case CL (2010) Microbiology: An introduction, 10th edn. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  • Tringe SG, Mering C, Kobayashi A et al (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    PubMed  CAS  Google Scholar 

  • Turco RF, Bischoff M, Tong ZH et al (2011) Environmental implications of nanomaterials: are we studying the right thing? Curr Opin Biotechnol 22:527–532

    PubMed  CAS  Google Scholar 

  • Vecitis CD, Schnoor MH, Rahaman MS et al (2011) Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ Sci Technol 45:3672–3679

    PubMed  CAS  Google Scholar 

  • Veses V, Gow NAR (2009) Pseudohypha budding patterns of Candida albicans. Med Mycol 47:268–275

    PubMed  Google Scholar 

  • Wiesner MR, Lowry GV, Alvarez P et al (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40:4336–4345

    PubMed  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    PubMed  CAS  Google Scholar 

  • Yan S, Subramanian S, Tyagi R et al (2010) Emerging contaminants of environmental concern: source, transport, fate, and treatment. Waste Manag 14:2–20

    CAS  Google Scholar 

  • Yang G, Xie J, Hong F et al (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845

    CAS  Google Scholar 

  • Yoon K, Byeon J, Park J et al (2008) Antimicrobial characteristics of silver aerosol nanoparticles against Bacillus subtilis bioaerosols. Environ Eng Sci 25:289–293

    CAS  Google Scholar 

  • Zan L, Fa W, Peng TP et al (2007) Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus. J Photochem Photobiol B 86:165–169

    PubMed  CAS  Google Scholar 

  • Zare-Zardini H, Amiri A, Shanbedi M et al (2013) Studying of antifungal activity of functionalized multiwalled carbon nanotubes by microwave-assisted technique. Surf Interface Anal 45:751–755

    CAS  Google Scholar 

  • Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol 3:191–192

    PubMed  CAS  Google Scholar 

  • Zheng X, Chen Y, Wu R (2011) Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environ Sci Technol 45:7284–7290

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreia Fonseca de Faria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Faria, A.F., de Moraes, A.C.M., Alves, O.L. (2014). Toxicity of Nanomaterials to Microorganisms: Mechanisms, Methods, and New Perspectives. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_17

Download citation

Publish with us

Policies and ethics