Skip to main content

Cyto-, Geno-, and Ecotoxicity of Copper Nanoparticles

  • Chapter
  • First Online:
Book cover Nanotoxicology

Abstract

Nanotechnology has been playing a crucial role in twenty-first century in solving various problems particularly in the field of agriculture, medicine, and electronics. Nanotechnology is a broad and interdisciplinary area of research that has been growing explosively worldwide. Due to the small size, surface tailor ability, improved solubility, and multifunctionality of nanoparticles it may open up new research avenues. Nanoparticles are being viewed as fundamental building blocks of nanotechnology. The synthesis of nanoparticles is an important component of rapidly growing research efforts in nanoscale science and engineering. The synthesis of copper nanoparticles (CuNPs) by physical method involves the mechanical grinding of bulk metals. Subsequently the resulting nanoparticles are to be stabilized by the addition of protecting agents. Whereas in case of chemical methods of synthesis copper salts use to be reduced to copper nanoparticles. Moreover, biological method of synthesis make use of biomolecules for the reduction and stabilization of nanoparticles.

The increasing use of nanoparticles leads to the release and accumulation of these particles in soil, air, and aquatic environment. Therefore, evaluation of nanotoxicity to the ecosystem must be considered. Nanoparticles with their distinct properties require development of methods, which will assess the possible benefits to possible risks and health hazards associated with exposure to nanomaterials as they are used in manufacturing and medicine. Common methods for toxicity evaluation include MTT Assay, Neutral Red Assay, LDH Assay, Comet Assay, and ROS Assay.

In the present chapter, we have briefly discussed the methods of synthesis of CuNPs, toxicity evaluation and harmful effects of CuNPs on plants, mice, fishes, and worms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amorim MJ, Scott-Fordsmand JJ (2012) Toxicity of copper nanoparticles and CuCl2 salt to Enchytraeus albidus worms: survival, reproduction and avoidance responses. Environ Pollut 164:164–168

    Article  PubMed  CAS  Google Scholar 

  • Bai W, Tian W, Zhang Z, He X, Ma Y, Liu N, Chai Z (2010) Effects of copper nanoparticles on the development of zebrafish embryos. J Nanosci Nanotechnol 10(12):8670–8676

    Article  PubMed  CAS  Google Scholar 

  • Barrabés N, Just J, Dafinov A et al (2006) Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor: the effect of copper nanoparticles. Appl Catal B Environ 62:77–85

    Article  Google Scholar 

  • Barstad R, Cortesi J, Janus J (1991) Use of Clonetics’ neutral red bioassay to optimize components of serum-free medium for normal human anchorage-dependent cells. In Vitro Cell Dev Biol 27:160–165

    Google Scholar 

  • Blaise C (1991) Microbiotests in aquatic ecotoxicology: characteristics, utility, and prospects. Environ Toxicol Water Qual 6:145–155

    Article  Google Scholar 

  • Blosi M, Albonetti S, Dondi M et al (2011) Microwave-assisted polyol synthesis of Cu nanoparticles. J Nanopart Res 13:127–138

    Article  CAS  Google Scholar 

  • Bopp SK, Lettieri T (2008) Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol 8:8. doi:10.1186/1471-2210-8-8

    Article  PubMed  Google Scholar 

  • Borenfreund E, Puerner JA (1984) A simple quantitative procedure using monolayer culture for toxicity assays. J Tissue Cult Methods 9:7–9

    Article  Google Scholar 

  • Caux PY, Blaise C, Le Blanc P et al (1992) A phytoassay procedure using fluorescence induction. Environ Toxicol Chem 11:549–557

    Article  CAS  Google Scholar 

  • Chatterjee AK, Sarkar RK, Chattopadhyay AP et al (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:085103

    Article  PubMed  Google Scholar 

  • Chen CC, Hong FC (2005) Structure and properties of diamond-like carbon nanocomposite films containing copper nanoparticles. Appl Surf Sci 242:261–269

    Article  CAS  Google Scholar 

  • Chen Z, Meng H, Xing G et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120

    Article  PubMed  CAS  Google Scholar 

  • Cioffi N, Ditaranto N, Torsi L et al (2005) Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381:607–616

    Article  PubMed  CAS  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  PubMed  CAS  Google Scholar 

  • Cotelle S, Ferard JF (1999) Comet assay in genetic ecotoxicology: a review. Environ Mol Mutagen 35:206–221

    Google Scholar 

  • Decker T, Lohmann-Matthes M (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 15:61–69

    Article  Google Scholar 

  • Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277

    Article  PubMed  CAS  Google Scholar 

  • Dowling AP (2004) Development of nanotechnologies. Mat Today 7:30–35

    Article  Google Scholar 

  • Fairbairn DW, Olive PL, O’Neill KL (1995) The comet assay: a comprehensive review. Mutat Res 339:37–59

    Article  PubMed  CAS  Google Scholar 

  • Fautz R, Husein H, Hechenberger C (1991) Application of the neutral red assay (NR Assay) to monolayer cultures of primary hepatocytes: rapid colorimetric viability determination for the unscheduled DNA synthesis test (UDS). Mutat Res 253:173–179

    Article  PubMed  CAS  Google Scholar 

  • Freedman JH, Ciriola MR, Peisach J (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264:5598–5605

    PubMed  CAS  Google Scholar 

  • Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2011) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45(21):9356–9362

    Article  PubMed  CAS  Google Scholar 

  • Griffitt RJ, Weil R, Hyndman KA et al (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186

    Article  PubMed  CAS  Google Scholar 

  • Harne S, Sharma A, Dhaygude M et al (2012) Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropisprocera L. latex and their cytotoxicity on tumor cells. Colloids Surf B Biointerfaces 95:284–288

    Article  PubMed  CAS  Google Scholar 

  • Hasan S, Singh S, Parikh RY et al (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 8:3191–3196

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Ortiz M, Acosta-Torres LS, Hernández-Padrón G et al (2012) Biocompatibility of crystalline opal nanoparticles. Biomed Eng Online 11:78. doi:10.1186/1475-925X-11-78

    Article  PubMed  Google Scholar 

  • Hillegass JM, Shukla A, Lathrop SA et al (2010) Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:219–231

    Article  PubMed  CAS  Google Scholar 

  • Holsapple MP, Farland WH, Landry TD et al (2005) Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88:12–17

    Article  PubMed  CAS  Google Scholar 

  • Huang HH, Yan FQ, Kek YM et al (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13:172–175

    Article  CAS  Google Scholar 

  • Jani PU, McCarthy DE, Florence AT (1994) Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm 105:157–168

    Article  CAS  Google Scholar 

  • Jesse B, Mary RL (2004) Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload. J Nutr Biochem 15:316–322

    Article  Google Scholar 

  • Johnson MD, Schilz J, Djordjevic MV, Rice JR, Shields PG (2009) Evaluation of in vitro assays for assessing the toxicity of cigarette smoke and smokeless tobacco. Cancer Epidemiol Biomarkers Prev 18(12):3263–3304

    Article  PubMed  CAS  Google Scholar 

  • Jose GP, Santra S, Mandal SK, Sengupta TK (2011) Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnol 9:9. doi:10.1186/1477-3155-9-9

    Article  CAS  Google Scholar 

  • Kawata M, Suzuki KT (1983) Relation between metal and glutathione concentrations in mouse liver after cadmium, zinc or copper loading. Toxicol Lett 15:131–137

    Article  PubMed  CAS  Google Scholar 

  • Kim YH, Lee DK, Jo BG et al (2006) Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloid Surf A Physiochem Eng Aspects 284–285:364–368

    Article  Google Scholar 

  • Kim JS, Adamcakova-Dodd A, O’Shaughnessy PT et al (2011) Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model. Part Fibre Toxicol 8:29. doi:10.1186/1743-8977-8-29

    Article  PubMed  CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H et al (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticuma estivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lilly GD, Doty RC et al (2009) In vitro toxicity testing of nanoparticles in 3D cell culture. Small 5:1213–1221

    PubMed  CAS  Google Scholar 

  • Lee HJ, Lee G, Jang NR et al (2011) Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1:371–374

    CAS  Google Scholar 

  • Li W, Kagan HM, Chou IN (1994) Alterations in cytoskeletal organization and homeostasis of cellular thiols in cadmium resistant cells. Toxicol Appl Pharmacol 126:114–123

    Article  PubMed  CAS  Google Scholar 

  • Li J, Quabius ES, Bonga SEW et al (1998) Effects of water-borne copper on branchial chloride cells and Na+/K+-ATPase activities in Mozambiquetilapia (Oreochromis mossambicus). Aquat Toxicol 43:1–11

    Article  CAS  Google Scholar 

  • Lide D (1994) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115:3887–3896

    Article  CAS  Google Scholar 

  • Liu Z, Bando Y (2003) A novel method for preparing copper nanorods and nanowires. Adv Mater 15:303–305

    Article  CAS  Google Scholar 

  • Liu G, Li X, Qin B et al (2004) Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol Lett 17:961–966

    Article  CAS  Google Scholar 

  • Liu Y, Gao Y, Zhang L et al (2009) Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol 9:6335–6343

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Zhou D, Yamamoto Y et al (2012) Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method. Trans Nonferrous Met Soc China 22:117–123

    Article  CAS  Google Scholar 

  • Majumber DR (2012) Bioremediation: copper nanoparticles from electronic-waste. Int J Eng Sci Technol 4:4380–4389

    Google Scholar 

  • Malathi S, Balasubramanian S (2012) Synthesis of copper nanoparticles and their biomedical applications. Lambet Academic Publishers, Saarbrucken

    Google Scholar 

  • Manceau A, Nagy K, Marcus M et al (2008) Formation of metallic copper nanoparticles at the soil–root interface. Environ Sci Technol 42:1766–1772

    Article  PubMed  CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D et al (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  PubMed  CAS  Google Scholar 

  • Marquis BJ, Love SA, Braun KL et al (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439

    Article  PubMed  CAS  Google Scholar 

  • Mattie MD, Freedman JH (2001) Protective effects of aspirin and vitamin E (alpha-tocopherol) against copper and cadmium-induced toxicity. Biochem Biophys Res Commun 285:921–925

    Article  PubMed  CAS  Google Scholar 

  • Meng H, Chen Z, Xing G et al (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175:102–110

    Article  PubMed  CAS  Google Scholar 

  • Midander K, Cronholm P, Karlsson HL et al (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper (II) oxide particles: a cross-disciplinary study. Small 5:389–399

    Article  PubMed  CAS  Google Scholar 

  • Minocha S, Mumper RJ (2012) Effect of carbon coating on the physico-chemical properties and toxicity of copper and nickel nanoparticles. Small 8(21):3289–3299

    Article  PubMed  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Morgan CD, Mills KC, Lefkowitz DL et al (1991) An improved colorimetric assay for tumor necrosis factor using WEHI 164 cells cultured on novel microtiter plates. J Immunol Methods 145:259–262

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D et al (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Nakamura T, Tsukahara Y, Sakata T et al (2007a) Preparation of monodispersed Cu nanoparticles by microwave-assisted alcohol reduction. Bull Chem Soc Jpn 80:224–232

    Article  CAS  Google Scholar 

  • Nakamura T, Tsukahara Y, Yamauchi T et al (2007b) Preparation of Ag core–Cu shell nanoparticles by microwave-assisted alcohol reduction process. Chem Lett 36:154–155

    Article  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  CAS  Google Scholar 

  • Olive PL, Banáth JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1(1):23–29

    Article  PubMed  CAS  Google Scholar 

  • Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298

    Article  PubMed  CAS  Google Scholar 

  • Prabhu BM, Ali SF, Murdock RC et al (2010) Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 4:150–160

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan R, Field MR, O’Mullane AP et al (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5(6):2300–2306. doi:10.1039/c2nr32887a

    Article  PubMed  CAS  Google Scholar 

  • Rastogi RP, Richa, Sinha RP (2009) Apoptosis: molecular mechanisms and pathogenicity. EXCLI J 8:155–181

    Google Scholar 

  • Repetto G, Anadel P, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131

    Article  PubMed  CAS  Google Scholar 

  • Saris NE, Skulskii IA (1991) Interaction of copper with mitochondria. Acta Chem Scand 45:1042–1046

    Article  PubMed  CAS  Google Scholar 

  • Sarkar A, Das J, Manna P et al (2011) Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology 290:208–217

    Article  PubMed  Google Scholar 

  • Shimizu T, Numata T, Okada Y (2004) A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl− channel. Proc Natl Acad Sci U S A 101:6770–6773

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Manshian B, Jenkins GS et al (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:891–3914

    Google Scholar 

  • Singh AV, Patil R, Anand A, Milani P, Gade WN (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci 6:365–369

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  PubMed  CAS  Google Scholar 

  • Steinebach OM, Wolterbeek HT (1994) Role of cytosolic copper, metallothionein and glutathione in copper toxicity in rat hepatoma tissue culture cells. Toxicology 92:75–90

    Article  PubMed  CAS  Google Scholar 

  • Tarasov S, Kolubaev A, Belyaev S et al (2002) Study of friction reduction by nanocopper additives to motor oil. Wear 252:63–69

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87:316–321

    Article  PubMed  CAS  Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221

    Article  PubMed  CAS  Google Scholar 

  • Trickler WJ, Lantz SM, Schrand AM et al (2012) Effects of copper nanoparticles on rat cerebral microvessel endothelial cells. Nanomedicine (Lond) 7:835–846

    Article  CAS  Google Scholar 

  • Tsuji JS, Maynard AD, Howard PC et al (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50

    Article  PubMed  CAS  Google Scholar 

  • Turnlund JR, Scott KC, Peiffer GL et al (1997) Copper status of young men consuming a low-copper diet. Am J Clin Nutr 65:72–78

    PubMed  CAS  Google Scholar 

  • Unrine JM, Tsyusko OV, Hunyadi SE et al (2010) Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. J Environ Qual 39:1942–1953

    Article  PubMed  CAS  Google Scholar 

  • Valodkar M, Ravirajsinh NJ, Menaka CT et al (2011) Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells. Mater Chem Phys 128:83–89

    Article  CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS et al (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM J Miner Met Mater Soc 62:102–104

    Article  CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS et al (2011) Copper nanoparticles synthesis from electroplating industry effluent. Nano Biomed Eng 3:115–119

    Article  CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS (2012) A review: biological synthesis of silver and copper nanoparticles. Nano Biomed Eng 4:99–106

    Article  CAS  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27(5–6):612–616

    Article  PubMed  CAS  Google Scholar 

  • Willemsen A, Vaal MA, de Zwart D (1995) Microbiotests as tools for environmental monitoring. Report No. 9, 607,042,005. National Institute of Public Health and Environmental Planning (RIVM), The Netherlands, p 39

    Google Scholar 

  • Wu SH, Chen DH (2004) Synthesis of high-concentration. Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273:165–169

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Wu X-D, Xue Q-J (2013) Biomolecule-assisted synthesis of highly stable dispersions of water-soluble copper nanoparticles. J Colloid Interface Sci 390:41–46

    Article  PubMed  CAS  Google Scholar 

  • Yoon KY, Byeon JH, Park JH et al (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  PubMed  CAS  Google Scholar 

  • Zemri K, Amar Y, Boutiba Z et al (2012) Use of chlorophyll fluorescence to evaluate the effect of chromium on activity photosystem II at the alga Scenedesmus obliquus. Int J Res Rev Appl Sci 12(2):304–314

    Google Scholar 

  • Zhang XF, Dong XL, Huang H et al (2007) High permittivity from defective carbon-coated Cu nanocapsules. Nanotechnology 18:275701. doi:10.1088/0957-4484/18/27/275701

    Article  Google Scholar 

  • Zhang QL, Yang ZM, Ding BJ et al (2010) Preparation of copper nanoparticles by chemical reduction method using potassium borohydride. Trans Nonferrous Met Soc China 20:s240–s244

    Article  CAS  Google Scholar 

  • Zhao Y, Meng H, Chen Z et al (2007) Dependence of nanotoxicity on nanoscale characteristics and strategies for reducing and eliminating nanotoxicity. In: Zhao YL, Nalwa HS (eds) Nanotoxicology. American Scientific, Stevenson Ranch, CA

    Google Scholar 

  • Zhu J, Li K, Chen H et al (2004) Highly dispersed CuO nanoparticles prepared by a novel quick precipitation method. Mater Lett 58:3324–3327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from FAPESP, CNPq, Brazilian Network on Nanotoxicology (MCTI/CNPq), INOMAT (MCTI/CNPq), and NanoBioss (MCTI) are acknowledged. IRG thanks Council of Scientific and Industrial Research, New Delhi, India for providing Junior Research Fellowship (CSIR-09/996(001)/2009-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rai, M. et al. (2014). Cyto-, Geno-, and Ecotoxicity of Copper Nanoparticles. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_15

Download citation

Publish with us

Policies and ethics