Nanotoxicology pp 325-345 | Cite as

Cyto-, Geno-, and Ecotoxicity of Copper Nanoparticles

  • Mahendra Rai
  • Avinash Ingle
  • Indarchand Gupta
  • Swapnil Gaikwad
  • Aniket Gade
  • Olga Rubilar
  • Nelson Durán
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


Nanotechnology has been playing a crucial role in twenty-first century in solving various problems particularly in the field of agriculture, medicine, and electronics. Nanotechnology is a broad and interdisciplinary area of research that has been growing explosively worldwide. Due to the small size, surface tailor ability, improved solubility, and multifunctionality of nanoparticles it may open up new research avenues. Nanoparticles are being viewed as fundamental building blocks of nanotechnology. The synthesis of nanoparticles is an important component of rapidly growing research efforts in nanoscale science and engineering. The synthesis of copper nanoparticles (CuNPs) by physical method involves the mechanical grinding of bulk metals. Subsequently the resulting nanoparticles are to be stabilized by the addition of protecting agents. Whereas in case of chemical methods of synthesis copper salts use to be reduced to copper nanoparticles. Moreover, biological method of synthesis make use of biomolecules for the reduction and stabilization of nanoparticles.

The increasing use of nanoparticles leads to the release and accumulation of these particles in soil, air, and aquatic environment. Therefore, evaluation of nanotoxicity to the ecosystem must be considered. Nanoparticles with their distinct properties require development of methods, which will assess the possible benefits to possible risks and health hazards associated with exposure to nanomaterials as they are used in manufacturing and medicine. Common methods for toxicity evaluation include MTT Assay, Neutral Red Assay, LDH Assay, Comet Assay, and ROS Assay.

In the present chapter, we have briefly discussed the methods of synthesis of CuNPs, toxicity evaluation and harmful effects of CuNPs on plants, mice, fishes, and worms.


Comet Assay Nanocomposite Film Copper Nanoparticles Surface Plasmon Absorption Reactive Oxygen Species Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Support from FAPESP, CNPq, Brazilian Network on Nanotoxicology (MCTI/CNPq), INOMAT (MCTI/CNPq), and NanoBioss (MCTI) are acknowledged. IRG thanks Council of Scientific and Industrial Research, New Delhi, India for providing Junior Research Fellowship (CSIR-09/996(001)/2009-EMR-I).


  1. Amorim MJ, Scott-Fordsmand JJ (2012) Toxicity of copper nanoparticles and CuCl2 salt to Enchytraeus albidus worms: survival, reproduction and avoidance responses. Environ Pollut 164:164–168PubMedCrossRefGoogle Scholar
  2. Bai W, Tian W, Zhang Z, He X, Ma Y, Liu N, Chai Z (2010) Effects of copper nanoparticles on the development of zebrafish embryos. J Nanosci Nanotechnol 10(12):8670–8676PubMedCrossRefGoogle Scholar
  3. Barrabés N, Just J, Dafinov A et al (2006) Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor: the effect of copper nanoparticles. Appl Catal B Environ 62:77–85CrossRefGoogle Scholar
  4. Barstad R, Cortesi J, Janus J (1991) Use of Clonetics’ neutral red bioassay to optimize components of serum-free medium for normal human anchorage-dependent cells. In Vitro Cell Dev Biol 27:160–165Google Scholar
  5. Blaise C (1991) Microbiotests in aquatic ecotoxicology: characteristics, utility, and prospects. Environ Toxicol Water Qual 6:145–155CrossRefGoogle Scholar
  6. Blosi M, Albonetti S, Dondi M et al (2011) Microwave-assisted polyol synthesis of Cu nanoparticles. J Nanopart Res 13:127–138CrossRefGoogle Scholar
  7. Bopp SK, Lettieri T (2008) Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol 8:8. doi: 10.1186/1471-2210-8-8 PubMedCrossRefGoogle Scholar
  8. Borenfreund E, Puerner JA (1984) A simple quantitative procedure using monolayer culture for toxicity assays. J Tissue Cult Methods 9:7–9CrossRefGoogle Scholar
  9. Caux PY, Blaise C, Le Blanc P et al (1992) A phytoassay procedure using fluorescence induction. Environ Toxicol Chem 11:549–557CrossRefGoogle Scholar
  10. Chatterjee AK, Sarkar RK, Chattopadhyay AP et al (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:085103PubMedCrossRefGoogle Scholar
  11. Chen CC, Hong FC (2005) Structure and properties of diamond-like carbon nanocomposite films containing copper nanoparticles. Appl Surf Sci 242:261–269CrossRefGoogle Scholar
  12. Chen Z, Meng H, Xing G et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163:109–120PubMedCrossRefGoogle Scholar
  13. Cioffi N, Ditaranto N, Torsi L et al (2005) Analytical characterization of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Anal Bioanal Chem 381:607–616PubMedCrossRefGoogle Scholar
  14. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170PubMedCrossRefGoogle Scholar
  15. Cotelle S, Ferard JF (1999) Comet assay in genetic ecotoxicology: a review. Environ Mol Mutagen 35:206–221Google Scholar
  16. Decker T, Lohmann-Matthes M (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 15:61–69CrossRefGoogle Scholar
  17. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277PubMedCrossRefGoogle Scholar
  18. Dowling AP (2004) Development of nanotechnologies. Mat Today 7:30–35CrossRefGoogle Scholar
  19. Fairbairn DW, Olive PL, O’Neill KL (1995) The comet assay: a comprehensive review. Mutat Res 339:37–59PubMedCrossRefGoogle Scholar
  20. Fautz R, Husein H, Hechenberger C (1991) Application of the neutral red assay (NR Assay) to monolayer cultures of primary hepatocytes: rapid colorimetric viability determination for the unscheduled DNA synthesis test (UDS). Mutat Res 253:173–179PubMedCrossRefGoogle Scholar
  21. Freedman JH, Ciriola MR, Peisach J (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264:5598–5605PubMedGoogle Scholar
  22. Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2011) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45(21):9356–9362PubMedCrossRefGoogle Scholar
  23. Griffitt RJ, Weil R, Hyndman KA et al (2007) Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ Sci Technol 41:8178–8186PubMedCrossRefGoogle Scholar
  24. Harne S, Sharma A, Dhaygude M et al (2012) Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropisprocera L. latex and their cytotoxicity on tumor cells. Colloids Surf B Biointerfaces 95:284–288PubMedCrossRefGoogle Scholar
  25. Hasan S, Singh S, Parikh RY et al (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 8:3191–3196PubMedCrossRefGoogle Scholar
  26. Hernández-Ortiz M, Acosta-Torres LS, Hernández-Padrón G et al (2012) Biocompatibility of crystalline opal nanoparticles. Biomed Eng Online 11:78. doi: 10.1186/1475-925X-11-78 PubMedCrossRefGoogle Scholar
  27. Hillegass JM, Shukla A, Lathrop SA et al (2010) Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:219–231PubMedCrossRefGoogle Scholar
  28. Holsapple MP, Farland WH, Landry TD et al (2005) Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88:12–17PubMedCrossRefGoogle Scholar
  29. Huang HH, Yan FQ, Kek YM et al (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13:172–175CrossRefGoogle Scholar
  30. Jani PU, McCarthy DE, Florence AT (1994) Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm 105:157–168CrossRefGoogle Scholar
  31. Jesse B, Mary RL (2004) Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload. J Nutr Biochem 15:316–322CrossRefGoogle Scholar
  32. Johnson MD, Schilz J, Djordjevic MV, Rice JR, Shields PG (2009) Evaluation of in vitro assays for assessing the toxicity of cigarette smoke and smokeless tobacco. Cancer Epidemiol Biomarkers Prev 18(12):3263–3304PubMedCrossRefGoogle Scholar
  33. Jose GP, Santra S, Mandal SK, Sengupta TK (2011) Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnol 9:9. doi: 10.1186/1477-3155-9-9 CrossRefGoogle Scholar
  34. Kawata M, Suzuki KT (1983) Relation between metal and glutathione concentrations in mouse liver after cadmium, zinc or copper loading. Toxicol Lett 15:131–137PubMedCrossRefGoogle Scholar
  35. Kim YH, Lee DK, Jo BG et al (2006) Synthesis of oleate capped Cu nanoparticles by thermal decomposition. Colloid Surf A Physiochem Eng Aspects 284–285:364–368CrossRefGoogle Scholar
  36. Kim JS, Adamcakova-Dodd A, O’Shaughnessy PT et al (2011) Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model. Part Fibre Toxicol 8:29. doi: 10.1186/1743-8977-8-29 PubMedCrossRefGoogle Scholar
  37. Lee WM, An YJ, Yoon H et al (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticuma estivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921PubMedCrossRefGoogle Scholar
  38. Lee J, Lilly GD, Doty RC et al (2009) In vitro toxicity testing of nanoparticles in 3D cell culture. Small 5:1213–1221PubMedGoogle Scholar
  39. Lee HJ, Lee G, Jang NR et al (2011) Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1:371–374Google Scholar
  40. Li W, Kagan HM, Chou IN (1994) Alterations in cytoskeletal organization and homeostasis of cellular thiols in cadmium resistant cells. Toxicol Appl Pharmacol 126:114–123PubMedCrossRefGoogle Scholar
  41. Li J, Quabius ES, Bonga SEW et al (1998) Effects of water-borne copper on branchial chloride cells and Na+/K+-ATPase activities in Mozambiquetilapia (Oreochromis mossambicus). Aquat Toxicol 43:1–11CrossRefGoogle Scholar
  42. Lide D (1994) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC Press, Boca Raton, FLGoogle Scholar
  43. Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115:3887–3896CrossRefGoogle Scholar
  44. Liu Z, Bando Y (2003) A novel method for preparing copper nanorods and nanowires. Adv Mater 15:303–305CrossRefGoogle Scholar
  45. Liu G, Li X, Qin B et al (2004) Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol Lett 17:961–966CrossRefGoogle Scholar
  46. Liu Y, Gao Y, Zhang L et al (2009) Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol 9:6335–6343PubMedCrossRefGoogle Scholar
  47. Liu Q, Zhou D, Yamamoto Y et al (2012) Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method. Trans Nonferrous Met Soc China 22:117–123CrossRefGoogle Scholar
  48. Majumber DR (2012) Bioremediation: copper nanoparticles from electronic-waste. Int J Eng Sci Technol 4:4380–4389Google Scholar
  49. Malathi S, Balasubramanian S (2012) Synthesis of copper nanoparticles and their biomedical applications. Lambet Academic Publishers, SaarbruckenGoogle Scholar
  50. Manceau A, Nagy K, Marcus M et al (2008) Formation of metallic copper nanoparticles at the soil–root interface. Environ Sci Technol 42:1766–1772PubMedCrossRefGoogle Scholar
  51. Mandal D, Bolander ME, Mukhopadhyay D et al (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492PubMedCrossRefGoogle Scholar
  52. Marquis BJ, Love SA, Braun KL et al (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439PubMedCrossRefGoogle Scholar
  53. Mattie MD, Freedman JH (2001) Protective effects of aspirin and vitamin E (alpha-tocopherol) against copper and cadmium-induced toxicity. Biochem Biophys Res Commun 285:921–925PubMedCrossRefGoogle Scholar
  54. Meng H, Chen Z, Xing G et al (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175:102–110PubMedCrossRefGoogle Scholar
  55. Midander K, Cronholm P, Karlsson HL et al (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper (II) oxide particles: a cross-disciplinary study. Small 5:389–399PubMedCrossRefGoogle Scholar
  56. Minocha S, Mumper RJ (2012) Effect of carbon coating on the physico-chemical properties and toxicity of copper and nickel nanoparticles. Small 8(21):3289–3299PubMedCrossRefGoogle Scholar
  57. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  58. Morgan CD, Mills KC, Lefkowitz DL et al (1991) An improved colorimetric assay for tumor necrosis factor using WEHI 164 cells cultured on novel microtiter plates. J Immunol Methods 145:259–262PubMedCrossRefGoogle Scholar
  59. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63PubMedCrossRefGoogle Scholar
  60. Mukherjee P, Ahmad A, Mandal D et al (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588CrossRefGoogle Scholar
  61. Nakamura T, Tsukahara Y, Sakata T et al (2007a) Preparation of monodispersed Cu nanoparticles by microwave-assisted alcohol reduction. Bull Chem Soc Jpn 80:224–232CrossRefGoogle Scholar
  62. Nakamura T, Tsukahara Y, Yamauchi T et al (2007b) Preparation of Ag core–Cu shell nanoparticles by microwave-assisted alcohol reduction process. Chem Lett 36:154–155CrossRefGoogle Scholar
  63. Oberdorster G, Oberdorster E, Oberdorster J (2005) An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedCrossRefGoogle Scholar
  64. Olive PL, Banáth JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1(1):23–29PubMedCrossRefGoogle Scholar
  65. Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298PubMedCrossRefGoogle Scholar
  66. Prabhu BM, Ali SF, Murdock RC et al (2010) Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat. Nanotoxicology 4:150–160PubMedCrossRefGoogle Scholar
  67. Ramanathan R, Field MR, O’Mullane AP et al (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5(6):2300–2306. doi: 10.1039/c2nr32887a PubMedCrossRefGoogle Scholar
  68. Rastogi RP, Richa, Sinha RP (2009) Apoptosis: molecular mechanisms and pathogenicity. EXCLI J 8:155–181Google Scholar
  69. Repetto G, Anadel P, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131PubMedCrossRefGoogle Scholar
  70. Saris NE, Skulskii IA (1991) Interaction of copper with mitochondria. Acta Chem Scand 45:1042–1046PubMedCrossRefGoogle Scholar
  71. Sarkar A, Das J, Manna P et al (2011) Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology 290:208–217PubMedCrossRefGoogle Scholar
  72. Shimizu T, Numata T, Okada Y (2004) A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl− channel. Proc Natl Acad Sci U S A 101:6770–6773PubMedCrossRefGoogle Scholar
  73. Singh N, Manshian B, Jenkins GS et al (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:891–3914Google Scholar
  74. Singh AV, Patil R, Anand A, Milani P, Gade WN (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci 6:365–369CrossRefGoogle Scholar
  75. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefGoogle Scholar
  76. Steinebach OM, Wolterbeek HT (1994) Role of cytosolic copper, metallothionein and glutathione in copper toxicity in rat hepatoma tissue culture cells. Toxicology 92:75–90PubMedCrossRefGoogle Scholar
  77. Tarasov S, Kolubaev A, Belyaev S et al (2002) Study of friction reduction by nanocopper additives to motor oil. Wear 252:63–69CrossRefGoogle Scholar
  78. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262CrossRefGoogle Scholar
  79. Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87:316–321PubMedCrossRefGoogle Scholar
  80. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221PubMedCrossRefGoogle Scholar
  81. Trickler WJ, Lantz SM, Schrand AM et al (2012) Effects of copper nanoparticles on rat cerebral microvessel endothelial cells. Nanomedicine (Lond) 7:835–846CrossRefGoogle Scholar
  82. Tsuji JS, Maynard AD, Howard PC et al (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89:42–50PubMedCrossRefGoogle Scholar
  83. Turnlund JR, Scott KC, Peiffer GL et al (1997) Copper status of young men consuming a low-copper diet. Am J Clin Nutr 65:72–78PubMedGoogle Scholar
  84. Unrine JM, Tsyusko OV, Hunyadi SE et al (2010) Effects of particle size on chemical speciation and bioavailability of copper to earthworms (Eisenia fetida) exposed to copper nanoparticles. J Environ Qual 39:1942–1953PubMedCrossRefGoogle Scholar
  85. Valodkar M, Ravirajsinh NJ, Menaka CT et al (2011) Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells. Mater Chem Phys 128:83–89CrossRefGoogle Scholar
  86. Varshney R, Bhadauria S, Gaur MS et al (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM J Miner Met Mater Soc 62:102–104CrossRefGoogle Scholar
  87. Varshney R, Bhadauria S, Gaur MS et al (2011) Copper nanoparticles synthesis from electroplating industry effluent. Nano Biomed Eng 3:115–119CrossRefGoogle Scholar
  88. Varshney R, Bhadauria S, Gaur MS (2012) A review: biological synthesis of silver and copper nanoparticles. Nano Biomed Eng 4:99–106CrossRefGoogle Scholar
  89. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27(5–6):612–616PubMedCrossRefGoogle Scholar
  90. Willemsen A, Vaal MA, de Zwart D (1995) Microbiotests as tools for environmental monitoring. Report No. 9, 607,042,005. National Institute of Public Health and Environmental Planning (RIVM), The Netherlands, p 39Google Scholar
  91. Wu SH, Chen DH (2004) Synthesis of high-concentration. Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 273:165–169PubMedCrossRefGoogle Scholar
  92. Xiong J, Wu X-D, Xue Q-J (2013) Biomolecule-assisted synthesis of highly stable dispersions of water-soluble copper nanoparticles. J Colloid Interface Sci 390:41–46PubMedCrossRefGoogle Scholar
  93. Yoon KY, Byeon JH, Park JH et al (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575PubMedCrossRefGoogle Scholar
  94. Zemri K, Amar Y, Boutiba Z et al (2012) Use of chlorophyll fluorescence to evaluate the effect of chromium on activity photosystem II at the alga Scenedesmus obliquus. Int J Res Rev Appl Sci 12(2):304–314Google Scholar
  95. Zhang XF, Dong XL, Huang H et al (2007) High permittivity from defective carbon-coated Cu nanocapsules. Nanotechnology 18:275701. doi: 10.1088/0957-4484/18/27/275701 CrossRefGoogle Scholar
  96. Zhang QL, Yang ZM, Ding BJ et al (2010) Preparation of copper nanoparticles by chemical reduction method using potassium borohydride. Trans Nonferrous Met Soc China 20:s240–s244CrossRefGoogle Scholar
  97. Zhao Y, Meng H, Chen Z et al (2007) Dependence of nanotoxicity on nanoscale characteristics and strategies for reducing and eliminating nanotoxicity. In: Zhao YL, Nalwa HS (eds) Nanotoxicology. American Scientific, Stevenson Ranch, CAGoogle Scholar
  98. Zhu J, Li K, Chen H et al (2004) Highly dispersed CuO nanoparticles prepared by a novel quick precipitation method. Mater Lett 58:3324–3327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mahendra Rai
    • 1
    • 2
  • Avinash Ingle
    • 3
  • Indarchand Gupta
    • 3
    • 4
  • Swapnil Gaikwad
    • 3
  • Aniket Gade
    • 3
  • Olga Rubilar
    • 5
    • 6
  • Nelson Durán
    • 7
    • 8
  1. 1.Department of BiotechnologySant Gadge Baba Amravati UniversityAmravatiIndia
  2. 2.Biological Chemistry Laboratory, Institute of ChemistryUniversidade Estadual de CampinasCampinasBrazil
  3. 3.Department of BiotechnologySant Gadge Baba Amravati UniversityAmravatiIndia
  4. 4.Department of BiotechnologyInstitute of ScienceAurangabadIndia
  5. 5.Department of Chemical EngineeringUniversity of La FronteraTemucoChile
  6. 6.Scientifical & Technological Bioresource NucleusUniversity of La FronteraTemucoChile
  7. 7.Biological Chemistry Laboratory, Institute of ChemistryUniversidade Estadual de CampinasCampinasBrazil
  8. 8.Center of Natural and Human SciencesUniversidade Federal do ABC – UFABCSanto AndréBrazil

Personalised recommendations