Skip to main content

Polymeric Nanoparticles: In Vivo Toxicological Evaluation, Cardiotoxicity, and Hepatotoxicity

  • Chapter
  • First Online:
Nanotoxicology

Abstract

The applications of nanoparticles (NPs) in therapeutics have motivated the increasing development of studies in the field of nanotoxicology. This chapter focused to provide a critical analysis of the available literature about the toxicity and safety of biodegradable polymeric nanoparticles, particularly in terms of cardiotoxicity and hepatotoxicity. The most commonly applied methods in NP toxicity studies are also discussed, and their limitations concerning the specific properties of NPs, once a key point to obtain accurate and reliable in vitro and in vivo toxicological evaluations, are to guarantee an appropriate physicochemical characterization of the nanoparticles. Large surface area, high absorption capacity, the aggregation state, and surface coating of nanoparticles are also intrinsic properties of NPs that can interfere with the results. For further studies, a challenge to be overcome is the standardization of experiments, especially regarding the consensus in the way to express the administered dose of nanoparticles. Finally, a diagram for a nanotoxicological evaluation using in vitro and in vivo models is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Belyanskaya L, Manser P, Spohn P et al (2007) The reliability and limits of the MTT reduction assay for carbon nanotubes–cell interaction. Carbon 45:2643–2648

    Article  CAS  Google Scholar 

  • Bernardi A, Frozza RL, Jager E et al (2008) Selective cytotoxicity of indomethacin and indomethacin ethyl ester-loaded nanocapsules against glioma cell lines: an in vitro study. Eur J Pharmacol 586:24–34

    Article  PubMed  CAS  Google Scholar 

  • Bernardi A, Braganhol E, Jager E et al (2009) Indomethacin-loaded nanocapsules treatment reduces in vivo glioblastoma growth in a rat glioma model. Cancer Lett 281:53–63

    Article  PubMed  CAS  Google Scholar 

  • Blasi E, Heyen J, Patyna S et al (2012) Sunitinib, a receptor tyrosine kinase inhibitor, increases blood pressure in rats without associated changes in cardiac structure and function. Cardiovasc Ther 30:287–294

    Article  PubMed  CAS  Google Scholar 

  • Brannon-Peppas L (1995) Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int J Pharm 16(1):1–9

    Article  Google Scholar 

  • Bulcão RP, Freitas FA, Venturini CG et al (2012) Acute and subchronic toxicity evaluation of poly(epsilon-caprolactone) lipid-core nanocapsules in rats. Toxicol Sci 132:162–176

    Article  PubMed  Google Scholar 

  • Cai S, Thati S, Bagby TR et al (2010) Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. J Control Release 146:212–218

    Article  PubMed  CAS  Google Scholar 

  • Casey A, Herzog E, Davoren M et al (2007) Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 45:1425–1432

    Article  CAS  Google Scholar 

  • Clift MJ, Gehr P, Rothen-Rutishauser B (2011) Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Arch Toxicol 85:723–731

    Article  PubMed  CAS  Google Scholar 

  • Das S, Roy P, Auddy RG et al (2011) Silymarin nanoparticle prevents paracetamol-induced hepatotoxicity. Int J Nanomedicine 6:1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Devalapally H, Duan Z, Seiden MV et al (2008) Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin Cancer Res 14:3193–3203

    Article  PubMed  CAS  Google Scholar 

  • Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605

    Article  PubMed  CAS  Google Scholar 

  • Fang F, Gong CY, Dong PW et al (2009) Acute toxicity evaluation of in situ gel-forming controlled drug delivery system based on biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymer. Biomed Mater 4:025002

    Article  PubMed  Google Scholar 

  • Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571

    Article  PubMed  CAS  Google Scholar 

  • Frozza RL, Bernardi A, Paese K et al (2010) Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol 6:694–703

    Article  PubMed  CAS  Google Scholar 

  • Gong C, Shi S, Dong P et al (2009) Synthesis and characterization of PEG-PCL-PEG thermosensitive hydrogel. Int J Pharm 365:89–99

    Article  PubMed  CAS  Google Scholar 

  • Greish K, Thiagarajan G, Herd H et al (2012) Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology 6:713–723

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Von Dem Bussche A, Buechner M et al (2008) Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 4:721–727

    Article  PubMed  CAS  Google Scholar 

  • Guyon JR, Steffen LS, Howell MH et al (2007) Modeling human muscle disease in zebrafish. Biochim Biophys Acta 1772:205–215

    Article  PubMed  CAS  Google Scholar 

  • Han X, Corson N, Wade-Mercer P et al (2012) Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology 297:1–9

    Article  PubMed  CAS  Google Scholar 

  • Hartung T (2011) From alternative methods to a new toxicology. Eur J Pharm Biopharm 77:338–349

    Article  PubMed  CAS  Google Scholar 

  • Heiden TC, Dengler E, Kao WJ et al (2007) Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 225:70–79

    Article  PubMed  Google Scholar 

  • Hu YL, Qi W, Han F et al (2011) Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomedicine 6:3351–3359

    PubMed  CAS  Google Scholar 

  • Huang Y, Gao H, Gou M et al (2010) Acute toxicity and genotoxicity studies on poly-(epsilon-caprolactone)- poly(ethyleneglycol)-poly(epsilon-caprolactone) nanomaterials. Mutat Res 696:101–106

    Article  PubMed  CAS  Google Scholar 

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (2001) In: S7A: safety pharmacology studies for human pharmaceuticals, Geneva

    Google Scholar 

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (2005) In: S7B: the nonclinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals, Geneva

    Google Scholar 

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) (2009) In: S9: nonclinical evaluation for anticancer pharmaceuticals, Geneva

    Google Scholar 

  • Jain A, Agarwal A, Majumder S et al (2010) Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release 148:359–367

    Article  PubMed  CAS  Google Scholar 

  • Jain AK, Swarnakar NK, Das M et al (2011a) Augmented anticancer efficacy of doxorubicin-loaded polymeric nanoparticles after oral administration in a breast cancer induced animal model. Mol Pharm 8:1140–1151

    Article  PubMed  CAS  Google Scholar 

  • Jain AK, Swarnakar NK, Godugu C et al (2011b) The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials 32:503–515

    Article  PubMed  CAS  Google Scholar 

  • Johnston H, Brown D, Kermanizadeh A et al (2012) Investigating the relationship between nanomaterial hazard and physicochemical properties: informing the exploitation of nanomaterials within therapeutic and diagnostic applications. J Control Release 164:307–313

    Article  PubMed  CAS  Google Scholar 

  • Kaminskas LM, McLeod VM, Kelly BD et al (2012) A comparison of changes to doxorubicin pharmacokinetics, antitumor activity, and toxicity mediated by PEGylated dendrimer and PEGylated liposome drug delivery systems. Nanomedicine 8:103–111

    Article  PubMed  CAS  Google Scholar 

  • Kandarova H, Letasiova S (2011) Alternative methods in toxicology: pre-validated and validated methods. Interdiscip Toxicol 4:107–113

    Article  PubMed  Google Scholar 

  • Kari G, Rodeck U, Dicker AP (2007) Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 82:70–80

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Lee YM, Baik DJ et al (2003) Toxic characteristics of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) nanospheres; in vitro and in vivo studies in the normal mice. Biomaterials 24:55–63

    Article  PubMed  CAS  Google Scholar 

  • Kroll A, Pillukat MH, Hahn D et al (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72:370–377

    Article  PubMed  CAS  Google Scholar 

  • Kroll A, Dierker C, Rommel C et al (2011) Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 8:9

    Article  PubMed  CAS  Google Scholar 

  • Laurent S, Burtea C, Thirifays C et al (2012) Crucial ignored parameters on nanotoxicology: the importance of toxicity assay modifications and “cell vision”. PLoS One 7:e29997

    Article  PubMed  CAS  Google Scholar 

  • Lee AL, Wang Y, Ye WH et al (2008) Efficient intracellular delivery of functional proteins using cationic polymer core/shell nanoparticles. Biomaterials 29:1224–1232

    Article  PubMed  CAS  Google Scholar 

  • Lee IH, Yu MK, Kim IH et al (2011) A duplex oligodeoxynucleotide-dendrimer bioconjugate as a novel delivery vehicle for doxorubicin in in vivo cancer therapy. J Control Release 155:88–95

    Article  PubMed  CAS  Google Scholar 

  • Leite EA, Grabe-Guimaraes A, Guimaraes HN et al (2007) Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sci 80:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Li YF, Chen C (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7:2965–2980

    Article  PubMed  CAS  Google Scholar 

  • Liang HF, Yang TF, Huang CT et al (2005) Preparation of nanoparticles composed of poly(gamma-glutamic acid)-poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J Control Release 105:213–225

    Article  PubMed  CAS  Google Scholar 

  • Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  PubMed  CAS  Google Scholar 

  • Lim SM, Kim TH, Jiang HH et al (2011) Improved biological half-life and anti-tumor activity of TNF-related apoptosis-inducing ligand (TRAIL) using PEG-exposed nanoparticles. Biomaterials 32:3538–3546

    Article  PubMed  CAS  Google Scholar 

  • Liu ZC, Chang TM (2008) Long-term effects on the histology and function of livers and spleens in rats after 33% toploading of PEG-PLA-nano artificial red blood cells. Artif Cells Blood Substit Immobil Biotechnol 36:513–524

    Article  PubMed  Google Scholar 

  • Liu M, Fréchet JMJ (1999) Designing dendrimers for drug delivery. Pharm Sci Technol Today 2(10):393–401

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Li R, Zhu Z et al (2012) Enhanced antitumor efficacy, biodistribution and penetration of docetaxel-loaded biodegradable nanoparticles. Int J Pharm 430:350–358

    Article  PubMed  CAS  Google Scholar 

  • Lynch I, Dawson K (2008) Protein–nanoparticle interactions. Nanotoday 3:40–47

    Article  CAS  Google Scholar 

  • MacDonald JS, Robertson RT (2009) Toxicity testing in the 21st century: a view from the pharmaceutical industry. Toxicol Sci 110:40–46

    Article  PubMed  CAS  Google Scholar 

  • Mann EE, Thompson LC, Shannahan JH et al (2012) Changes in cardiopulmonary function induced by nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:691–702

    Article  PubMed  CAS  Google Scholar 

  • Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385(1–2):113–142

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee SP, Davoren M, Byrne HJ (2010) In vitro mammalian cytotoxicological study of PAMAM dendrimers—towards quantitative structure activity relationships. Toxicol In Vitro 24:169–177

    Article  PubMed  CAS  Google Scholar 

  • Pohlmann AR, Fonseca FN, Paese K, Detoni CB, Coradini K, Beck RCR, Guterres SS (2013) Poly(ε-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin Drug Deliv 10(5):623–638. doi:10.1517/17425247.2013.769956

    Article  PubMed  CAS  Google Scholar 

  • Pramanik D, Campbell NR, Das S et al (2012) A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy. Oncotarget 3:640–650

    PubMed  Google Scholar 

  • Qiu L, Chen Y, Gao M et al (2013) Phagocytic uptake and ROS-mediated cytotoxicity in human hepatic cell line of amphiphilic polyphosphazene nanoparticles. J Biomed Mater Res A 101:285–297

    PubMed  Google Scholar 

  • Qureshi ZP, Seoane-Vazquez E, Rodriguez-Monguio R et al (2011) Market withdrawal of new molecular entities approved in the United States from 1980 to 2009. Pharmacoepidemiol Drug Saf 20:772–777

    Article  PubMed  Google Scholar 

  • Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J Biomed Mater Res 30:53–65

    Article  PubMed  CAS  Google Scholar 

  • Russel W, Burch R (eds) (1959) The principles of humane experimental technique. Methuen & Co., London

    Google Scholar 

  • Sadekar S, Ghandehari H (2012) Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev 64:571–588

    Article  PubMed  CAS  Google Scholar 

  • Santos NPS, Nascimento SC, Wanderley MS et al (2006) Nanoencapsulation of usnic acid: an attempt to improve antitumour activity and reduce hepatotoxicity. Eur J Pharm Biopharm 64:154–160

    Article  Google Scholar 

  • Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180

    Article  PubMed  CAS  Google Scholar 

  • Schnackenberg LK, Sun J, Beger RD (2012) Metabolomics techniques in nanotoxicology studies. Methods Mol Biol 926:141–156

    Article  PubMed  CAS  Google Scholar 

  • Semete B, Booysen LI, Kalombo L et al (2010) In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol 249:158–165

    Article  PubMed  CAS  Google Scholar 

  • Shell SA, Wappel R, Turner JR et al (2011) Early safety testing for oncology therapies. Drug Discov Dev 14:24–26

    CAS  Google Scholar 

  • Wang K, Fu SZ, Gu YC et al (2009) Synthesis and characterization of biodegradable pH-sensitive hydrogels based on poly(3-caprolactone), methacrylic acid, and poly(ethylene glycol). Polym Degrad Stab 94:730–734

    Article  CAS  Google Scholar 

  • Wesche DL, Schuster BG, Wang WX et al (2000) Mechanism of cardiotoxicity of halofantrine. Clin Pharmacol Ther 67:521–529

    Article  PubMed  CAS  Google Scholar 

  • Worle-Knirsch JM, Pulskamp K, Krug HF (2006) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Xiao K, Luo J, Li Y et al (2011) PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma. J Control Release 155:272–281

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Papoian T (2012) Tyrosine kinase inhibitor (TKI)-induced cardiotoxicity: approaches to narrow the gaps between preclinical safety evaluation and clinical outcome. J Appl Toxicol 32:945–951

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Hu Z, Ye M et al (2007) Effect of poly(ethylene glycol)-block-polylactide nanoparticles on hepatic cells of mouse: low cytotoxicity, but efflux of the nanoparticles by ATP-binding cassette transporters. Eur J Pharm Biopharm 66:268–280

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Gou M, Zhou S et al (2011) Antitumor activity of monomethoxy poly(ethylene glycol)-poly (epsilon-caprolactone) micelle-encapsulated doxorubicin against mouse melanoma. Oncol Rep 25:1557–1564

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange C. Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garcia, S.C., Guterres, S.S., Bubols, G.B., Bulcão, R.P., Charão, M.F., Pohlmann, A.R. (2014). Polymeric Nanoparticles: In Vivo Toxicological Evaluation, Cardiotoxicity, and Hepatotoxicity. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_14

Download citation

Publish with us

Policies and ethics