Skip to main content

Cytotoxicity and Genotoxicity of Biogenically Synthesized Silver Nanoparticles

  • Chapter
  • First Online:
Nanotoxicology

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

In recent years, the development of nanotechnology has been focused on the development of protocols to synthesize important technological and medical metallic nanoparticles, such as silver nanoparticles, based on clean, nontoxic, biocompatible, and environmentally friendly approaches. “Green” synthesis of nanoparticles can be successfully performed extracellularly or intracellularly by organisms such as bacteria, yeast, fungi, algae, and plant extracts. Only in the recent past, biogenic syntheses of metal nanoparticles have gained significant attention. Silver nanoparticles (AgNPs) are considered one of the most important and commonly used metallic nanoparticles, in particular in medical applications, due to their known antimicrobial activities. In this scenario, this chapter discusses the recent developments on the biogenic synthesis of AgNPs by bacteria, yeast, fungi, algae and plants, highlighting the advantages and drawbacks of biogenic syntheses methods. Moreover, in order to propose any biological applications of AgNPs, it is mandatory to detailed investigate the toxicity of this nanomaterial. In this context, this chapter also discusses recent progress on the in vitro and in vivo cytotoxicity and genotoxicity of biogenic and chemically synthesized AgNPs. Although important progresses have been reached in this domain, there is still a necessity of more and detailed studies on the toxicity of AgNPs, in particular on biogenic AgNPs. Therefore, this chapter hopes to be a source of inspiration for more studies on the biogenic syntheses of AgNPs and the fully characterization of their toxic effects on humans and on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Mukherjee P, Senapati S et al (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318

    CAS  Google Scholar 

  • Ahmed M, Karns M, Goodson M et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410

    Google Scholar 

  • Antony JJ, Sivalingam P, Siva D et al (2011) Comparative evaluation of antibacterial activity of silver nanoparticles synthesized using Rhizophora apiculata and glucose. Colloids Surf B Biointerfaces 88:134–140

    PubMed  CAS  Google Scholar 

  • Arora S, Jain J, Rajwade JM et al (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 79:93–100

    Google Scholar 

  • AshaRani PV, Wu YL, Gong Z et al (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102

    PubMed  CAS  Google Scholar 

  • AshaRani PV, Mun GLK, Hande MP et al (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    PubMed  CAS  Google Scholar 

  • AshaRani PV, Lianwu Y, Gong Z et al (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5:43–54

    PubMed  CAS  Google Scholar 

  • Bai H-J, Yang B-S, Chai C-J et al (2011) Green synthesis of silver nanoparticles using Rhodobacter sphaeroides. World J Microbiol Biotechnol 27:2723–2728

    CAS  Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R et al (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92

    PubMed  CAS  Google Scholar 

  • Bansal V, Bharde A, Ramanathan R et al (2012) Inorganic materials using ‘unusual’ microorganisms. Adv Colloid Interface Sci 179:150–168

    PubMed  Google Scholar 

  • Banu A, Rathod V, Ranganath E (2011) Silver nanoparticle production by Rhizopus stolonifer and its antibacterial activity against extended spectrum b-lactamase producing (ESBL) strains of Enterobacteriaceae. Mater Res Bull 46:1417–1423

    CAS  Google Scholar 

  • Barwal I, Ranjan P, Kateriya S et al (2011) Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnology 9:56. doi:10.1186/1477-3155-9-56

    PubMed  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Legashetty A et al (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170

    CAS  Google Scholar 

  • Bawaskar M, Gaikwad S, Ingle A et al (2010) A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci 6:376–380

    CAS  Google Scholar 

  • Bhainsa KC, D’souza SK (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164

    PubMed  CAS  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK et al (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179

    PubMed  CAS  Google Scholar 

  • Brayner R (2008) The toxicological impact of nanoparticles. Nano Today 3:48–55

    Google Scholar 

  • Brown DM, Wilson MR, MacNee W et al (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199

    PubMed  CAS  Google Scholar 

  • Cha K, Hong HW, Choi YG et al (2008) Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett 30:1893–1899

    PubMed  CAS  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37:105–108

    PubMed  CAS  Google Scholar 

  • Chi Z, Li R, Zhao L et al (2009) A new strategy to probe the genotoxicity of silver nanoparticles combined with cetylpyridine bromide. Spectrochim Acta A Mol Biomol Spectrosc 72:577–581

    PubMed  Google Scholar 

  • de Lima R, Seabra AB, Durán N (2012) Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J Appl Toxicol 32:867–879

    PubMed  CAS  Google Scholar 

  • Dipankar C, Murugan S (2012) The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B Biointerfaces 98:112–119

    PubMed  CAS  Google Scholar 

  • Doak SH, Manshian B, Jemkins GJ et al (2012) In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 745:104–111

    PubMed  CAS  Google Scholar 

  • Donaldson K, Stone V, MacNee W (1999) The toxicology of ultrafine particles. In: Maynard LA, Howards CA (eds) Particulate matter properties and effects upon health. Bios Scientific, Oxford, pp 115–127

    Google Scholar 

  • Duffin R, Tran L, Brown D et al (2007) Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 19:849–856

    PubMed  CAS  Google Scholar 

  • Durán N, Marcato PD, Alves OL et al (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8–14

    Google Scholar 

  • Durán N, Marcato PD, de Conti R et al (2010) Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanism of action. J Braz Chem Soc 21:949–959

    Google Scholar 

  • Durán N, Marcato PD, Durán M et al (2011) Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90:1609–1624

    PubMed  Google Scholar 

  • Fayaz AM, Girilal M, Rahman M et al (2011) Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochem 46:1958–1962

    Google Scholar 

  • Foldbjerg R, Dang DA, Autrup H (2011) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 85:743–750

    PubMed  CAS  Google Scholar 

  • Gade A, Ingle A, Whiteley C et al (2010a) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600

    PubMed  CAS  Google Scholar 

  • Gade A, Gaikwad S, Tiwari V et al (2010b) Biofabrication of silver nanoparticles by Opuntia ficus-indica: in vitro antibacterial activity and study of the mechanism involved in the synthesis. Curr Nanosci 6:370–375

    CAS  Google Scholar 

  • Gaiser BK, Fernandes TF, Jepson MA et al (2012) Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31:144–154

    PubMed  CAS  Google Scholar 

  • Gonzalez L, Sanderson BJ, Kirsh-Volders M (2011) Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis 26:185–191

    PubMed  CAS  Google Scholar 

  • Gopinath V, MubarakAli D, Priyadarshini NM et al (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf B Biointerfaces 96:69–74

    PubMed  CAS  Google Scholar 

  • Govindaraju K, Basha SK, Kumar G et al (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122

    CAS  Google Scholar 

  • Griffitt RJ, Luo J, Gao J et al (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    PubMed  CAS  Google Scholar 

  • Gurr JR, Wang AS, Chen CH et al (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73

    PubMed  CAS  Google Scholar 

  • Hackenberg S, Scherzed A, Kessler M et al (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33

    PubMed  CAS  Google Scholar 

  • Hood E (2004) Nanotechnology, diving into the unknown. Environ Health Perspect 112:A747–A749

    Google Scholar 

  • Hussain SM, Hess KL, Gearhart JM et al (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983

    PubMed  CAS  Google Scholar 

  • Hyun JS, Lee BS, Ryu HY et al (2008) Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicol Lett 182:24–28

    PubMed  CAS  Google Scholar 

  • Ingle A, Gade A, Pierrat S et al (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144

    CAS  Google Scholar 

  • Ingle A, Gade A, Bawaskar M et al (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085

    CAS  Google Scholar 

  • Jebali A, Ramezani F, Kazemi B (2011) Biosynthesis of silver nanoparticles by Geotrichum sp. J Cluster Sci 22:225–232

    CAS  Google Scholar 

  • Ji JH, Jung JH, Kim SS et al (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 19:857–871

    PubMed  CAS  Google Scholar 

  • Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver-carbon composite materials for optically functional thin film coatings. Adv Mater 12:l407–l409

    Google Scholar 

  • Johnston HJ, Hutchison G, Christensen FM et al (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346

    PubMed  CAS  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414

    PubMed  CAS  Google Scholar 

  • Kalishwaralal K, Deepaka V, Pandiana SR et al (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77:257–262

    PubMed  CAS  Google Scholar 

  • Kim S, Choi JE, Cho J et al (2009a) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23:1076–1084

    PubMed  CAS  Google Scholar 

  • Kim Y, Suh HS, Cha HJ et al (2009b) A case of generalized argyria after ingestion of colloidal silver solution. Am J Ind Med 52:246–250

    PubMed  CAS  Google Scholar 

  • Kim JS, Sung JH, Ji JH et al (2011) In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure. Saf Health Work 2:34–38

    PubMed  CAS  Google Scholar 

  • Kirthi AV, Rahuman AA, Jayaseelan C et al (2012) Novel approach to synthesis silver nanoparticles using plant pathogenic fungi, Puccinia graminis. Mater Lett 81:69–72

    CAS  Google Scholar 

  • Klaus T, Granqvist CG, Joerger R et al (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci U S A 96:13611–13614

    PubMed  CAS  Google Scholar 

  • Klaus-Joerger T, Joerge R, Olsson E et al (2001) Bacteria as workers in the living factory: metal accumulating bacteria and their potential for material sciences a review. Trends Biotechnol 19:15–20

    PubMed  CAS  Google Scholar 

  • Kora AJ, Sashidhar RB, Arunachalama J (2012) Aqueous extract of gum olibanum (Boswellia serrata): a reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47:1516–1520

    CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S et al (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    CAS  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S et al (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76:50–56

    PubMed  CAS  Google Scholar 

  • Kumar CG, Mamidyala SK (2011) Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 84:462–466

    PubMed  CAS  Google Scholar 

  • Kumar RR, Priyadharsani KP, Thamaraiselvi K (2012a) Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamari. J Nanopart Res 14:860. doi:10.1007/s11051-012-0860-2

    Google Scholar 

  • Kumar KM, Sinha M, Mandal BK et al (2012b) Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochim Acta A Mol Biomol Spectrosc 91:228–233

    Google Scholar 

  • Lewinski N, Colvin V, Drezedk R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    PubMed  CAS  Google Scholar 

  • Li X, Xu H, Chen Z-S et al (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater Article ID 270974. doi:10.1155/2011/270974

  • Lima R, Feitosa L, Pereira AES et al (2010) Evaluation of the genotoxicity of chitosan nanoparticles for use in food packaging films. J Food Sci 75:89–96

    Google Scholar 

  • Lu W, Senapati D, Wang S et al (2010) Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 487:92–96

    CAS  Google Scholar 

  • Marcato PD, Durán N (2011) Biogenic silver nanoparticles: applications in medicines and textiles and their health implications. In: Rai M, Durán N (eds) Metal nanoparticles in microbiology, Springer, Germany, Chap. 11, p 249–267

  • Marcato PD, Durán M, Huber SC et al (2012a) Biogenic silver nanoparticles and its antifungal activity as a new topical transungual drug. J Nano Res 20:99–107

    CAS  Google Scholar 

  • Marcato PD, Nakasato G, Brocchi M et al (2012b) Biogenic silver nanoparticles: antibacterial and cytotoxicity applied to textile fabrics. J Nano Res 20:69–76

    CAS  Google Scholar 

  • Melo PS, Marcato PD, Huber SC, Ferreira IR, de Paula LB, Almeida ABA, Durán N, Torloni S, Seabra AB, Alves OL (2011) Nanoparticles in treatment of thermal injured rats: is it safe? J Phys Conf Ser 304:012027

    Google Scholar 

  • Mohammadian A, Shojaosadati SA, Habibi-Rezaee M (2007) Fusarium oxysporum mediates photogeneration of silver nanoparticles. Scientia Iranica 14:323–326

    CAS  Google Scholar 

  • Mourato A, Gadanho M, Lino AR et al (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl Article ID 546074. doi:10.1155/2011/546074

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13

    PubMed  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 169:59–79

    PubMed  CAS  Google Scholar 

  • Nayak RR, Pradhan N, Behera D et al (2011) Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res 13:3129–3137

    CAS  Google Scholar 

  • Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    PubMed  CAS  Google Scholar 

  • Ng CT, Li JJ, Bay BH et al (2010) Current studies into the genotoxic effects of nanomaterials. J Nucleic Acid Article ID 947859. doi: 10.4061/2010/947859

  • Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    PubMed  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    PubMed  Google Scholar 

  • Ordzhonikidze CG, Ramaiyya LK, Egorova EM et al (2009) Genotoxic effects of silver nanoparticles on mice in vivo. Acta Naturae (Russia) 3:99–101

    Google Scholar 

  • Panda KK, Achary VMM, Krishnaveni R et al (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25:1097–1105

    PubMed  CAS  Google Scholar 

  • Parikh RY, Ramanathan R, Coloe PJ et al (2011) Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS ONE 6:e21401

    PubMed  CAS  Google Scholar 

  • Park BSY, Choi J (2010) Geno- and ecotoxicity evaluation of silver nanoparticles in freshwater crustacean Daphnia magna. Environ Eng Res 15:23–27

    Google Scholar 

  • Park AEJ, Yi J, Kim Y et al (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24:872–878

    PubMed  CAS  Google Scholar 

  • Prakasham RS, Kumar BS, Kumar YS et al (2012) Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22:614–621

    PubMed  CAS  Google Scholar 

  • Pugazhenthiran N, Anandan S, Kathiravan G et al (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815

    CAS  Google Scholar 

  • Rahman MF, Wang J, Patterson TA et al (2009) Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett 187:15–21

    PubMed  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) CRC 675—currents trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28:277–284

    PubMed  CAS  Google Scholar 

  • Rai M, Yadav A, Bridge P et al (2009) Myconanotechnology: a new and emerging science. Appl Mycol 258–267

    Google Scholar 

  • Raja K, Saravanakumar A, Vijayakumar R (2012) Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochim Acta A Mol Biomol Spectrosc 97:490–494

    PubMed  CAS  Google Scholar 

  • Rajasekharreddy P, Rani PU, Sreedhar B (2010) Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach. J Nanopart Res 12:1711–1721

    CAS  Google Scholar 

  • Rao YS, Kotakadi VS, Prasad TNVKV et al (2013) Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochim Acta A Mol Biomol Spectrosc 103:156–159

    Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    PubMed  CAS  Google Scholar 

  • Roopan SM, Madhumitha RG, Rahuman AA et al (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crop Prod 43:631–635

    CAS  Google Scholar 

  • Rossi-Bergmann B, Pacienza-Lima W, Marcato PD et al (2012) In vivo Leishmaniasis Study: biogenic and chemical silver nanoparticles. J Nano Res 20:89–97

    CAS  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD et al (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109:823–831

    PubMed  Google Scholar 

  • Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118:407–413

    PubMed  CAS  Google Scholar 

  • Sarkar J, Chattopadhyay D, Patra S et al (2011) Alternaria alternata mediated synthesis of protein capped silver nanoparticles and their genotoxic activity. Dig J Nanomater Biostruct 6:563–573

    Google Scholar 

  • Shrivastava S, Bera T, Singh SK et al (2009) Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3:1357–1364

    PubMed  CAS  Google Scholar 

  • Shukla MK, Singh RP, Reddy CRK et al (2012) Synthesis and characterization of agar-based silver nanoparticles and nanocomposite film with antibacterial applications. Bioresour Technol 107:295–300

    PubMed  CAS  Google Scholar 

  • Song JY, Kim BS (2008) Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng 25:808–811

    CAS  Google Scholar 

  • Soni N, Prakash S (2012) Fungal-mediated nano silver: an effective adulticide against mosquito. Parasitol Res 111:2091–2098

    PubMed  Google Scholar 

  • Sung JH, Ji JH, Park JD et al (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 108:452–461

    PubMed  CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W et al (2012) Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28:2727–2735

    PubMed  CAS  Google Scholar 

  • Tian J, Wong KK, Ho CM et al (2007) Topical delivery of silver nanoparticles promotes wound healing. ChemMedChem 2:129–136

    PubMed  CAS  Google Scholar 

  • Trop M, Novak M, Rodl S et al (2006) Silver coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma 60:648–665

    PubMed  Google Scholar 

  • Valli JS, Vaseeharan B (2012) Biosynthesis of silver nanoparticles by Cissus quadrangularis extracts. Mater Lett 82:71–173

    Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV et al (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53:55–59

    PubMed  CAS  Google Scholar 

  • Vijayakumar M, Priya K, Nancy FT et al (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crop Prod 41:235–240

    CAS  Google Scholar 

  • Vivek R, Thangam R, Muthuchelian K et al (2012) Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem 47:2405–2410

    CAS  Google Scholar 

  • Vlachou E, Chipp E, Shale E et al (2007) The safety of nanocrystalline silver dressings on burns: a study of systemic silver absorption. Burns 33:979–985

    PubMed  Google Scholar 

  • Wijnhoven SWP, Peijnenburg WJGM, Herberts CA et al (2009) Nano-silver—a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109–138

    CAS  Google Scholar 

  • Wise JP Sr, Goodale BC, Wise SS et al (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97:34–41

    PubMed  CAS  Google Scholar 

  • Xiong D, Fang T, Yu L et al (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebraûsh: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452

    PubMed  CAS  Google Scholar 

  • Yilmaz M, Turkdemir H, Kilic AM et al (2011) Biosynthesis of silver nanoparticles using leaves of Stevia rebaudiana. Mater Chem Phys 130:1195–1202

    CAS  Google Scholar 

  • Zaki S, Kady MFE, Abd-El-Haleem D (2011) Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Mater Res Bull 46:1571–1576

    CAS  Google Scholar 

Download references

Acknowledgement

Support from FAPESP, CNPq and Brazilian Network on Nanotoxicology (MCTI/CNPq), and NanoBioss (MCTI) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Durán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Durán, N., Seabra, A.B., de Lima, R. (2014). Cytotoxicity and Genotoxicity of Biogenically Synthesized Silver Nanoparticles. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_11

Download citation

Publish with us

Policies and ethics