Skip to main content

Nanomaterials

  • Chapter
  • First Online:
Nanotoxicology

Abstract

Much of the extensive development of nanotechnology is related to nanomaterials. In this chapter nanomaterials are presented non-exhaustively, aiming to show that their definitions are still under construction. We present some families of nanomaterials with emphasis on quantum dots, carbon nanotubes, graphene, fullerene, inorganic nanotubes, and metallic nanoparticles due to their importance in both basic and applied sciences. The main applications are introduced in various industrial sectors and also in biology and medicine in order to show that nanomaterials are part of several industrial products. The central question of the characterization of properties by using several physicochemical techniques, many of them ISO (International Organization for Standardization) recommended, and the implications for the emerging field of nanotoxicology are shown. Finally, comments are made about the regulation and we indicate an extensive bibliography based on the main documents that explore this critical issue for the marketing of products containing nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aich N, Flora JRV, Saleh NB (2012) Preparation and characterization of stable aqueous higher-order fullerenes. Nanotechnology 23:1–9

    Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals and quantum dots. Science 271:933–937

    CAS  Google Scholar 

  • Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145

    PubMed  CAS  Google Scholar 

  • Alt V, Bechert T, Steinrücke P et al (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391

    PubMed  CAS  Google Scholar 

  • Armelao L, Barreca D, Bottaro G et al (2007) Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology 18:1–7

    Google Scholar 

  • Avouris P, Xia F (2012) Graphene applications in electronics and photonics. MRS Bull 37:1225–1234

    CAS  Google Scholar 

  • Awasthi K, Singh DP, Singh SK et al (2009) Attachment of biomolecules (protein and DNA) to amino-functionalized carbon nanotubes. New Carbon Mater 24:301–306

    CAS  Google Scholar 

  • Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1239–1267

    PubMed  CAS  Google Scholar 

  • Bera D, Qian L, Tseng T-K et al (2010) Quantum dots and their multimodal applications: a review. Materials 3:2260–2345

    CAS  Google Scholar 

  • Berger C, Song ZM, Li TB et al (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916

    CAS  Google Scholar 

  • Bourzac K (2013) Quantum dots go on display. Nature 493:283

    PubMed  CAS  Google Scholar 

  • Centre for NanoBioSafety and Sustainability—CNBSS (2013) Safety and regulation of Nanotechnology and nanomaterials in 2012: what’s next? http://www.cnbss.eu/index.php/editorial/item/68-safety-and-regulation-of-nanotechnology-and-nanomaterials-in-2012-what%E2%80%99s-next. Accessed 28 Feb 2013

  • Chaudhry Q, Scotter M, Blackburn J et al (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25:241–258

    CAS  Google Scholar 

  • Cheung W, Pontoriero F, Taratula O et al (2010) DNA and carbon nanotubes as medicine. Adv Drug Deliv Rev 62:633–649

    PubMed  CAS  Google Scholar 

  • Cho EC, Zhang Q, Xia Y (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6:385–391

    PubMed  CAS  Google Scholar 

  • Clift MJD, Gehr P, Rothen-Rutishauser B (2011) Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Arch Toxicol 85:723–731

    PubMed  CAS  Google Scholar 

  • Coe S, Woo WK, Bawendi M et al (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420:800–803

    PubMed  CAS  Google Scholar 

  • Cui Y, Zhao Y, Tian Y et al (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333

    PubMed  CAS  Google Scholar 

  • Da Ros T, Prato M (1999) Medicinal chemistry with fullerenes and fullerene derivatives. Chem Commun 8:663–669

    Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis and nanotechnology. Chem Rev 104:293–346

    PubMed  CAS  Google Scholar 

  • Das MR, Sarma RK, Saikia R et al (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B Biointerfaces 1:16–22

    Google Scholar 

  • Deivaraj TC, Lala NL, Lee JY (2005) Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods. J Colloid Interface Sci 289:402–409

    PubMed  CAS  Google Scholar 

  • Desmoulin-Canselier S (2010) La définition des notions fondamentales: mise em perspective juridique. In: Lacour S (ed) La Régulations des Nanotecnologies. Larcier, Brussels

    Google Scholar 

  • Dhawan A, Shanker R, Das M et al (2011) Guidance for safe handling of nanomaterials. J Biomed Nanotechnol 7:218–224

    PubMed  CAS  Google Scholar 

  • Dokoutchaev A, James TJ, Koene SC et al (1999) Colloidal metal deposition onto functionalized polystyrene microspheres. Chem Mater 11:2389–2399

    CAS  Google Scholar 

  • Dos Santos LJ, Rocha GP, Alves RB et al (2010) Fulereno[C60]: Química e aplicações. Quim Nova 33:680–693

    Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883–891

    CAS  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic, New York

    Google Scholar 

  • Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358:220–221

    CAS  Google Scholar 

  • Ekimov AI, Efros AL, Onushchenko AA (1985) Quantum size effect in semiconductor microcrystals. Solid State Commun 56:921–924

    CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:1–10

    Google Scholar 

  • Ellenbogen T, Seo K, Crozier K (2012) Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett 12:1026–1031

    PubMed  CAS  Google Scholar 

  • European Commission (2012) Guidance on the safety assessment of nanomaterials in cosmetics. http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_005.pdf. Accessed 22 Feb 2013

  • European Union (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:EN:PDF. Accessed 22 Feb 2013

  • European Union (2012) Communication from the commission to the European parliament, the council and the European economic and social committee. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2012:0572:FIN:en:PDF. Accessed 22 Feb 2013

  • Faria AF, Martinez DST, Moraes ACM et al (2012) Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles. Chem Mater 24:4080–4087

    CAS  Google Scholar 

  • Farré M, Schrantz KG, Kantiani L et al (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95

    PubMed  Google Scholar 

  • Felder D, Guillon D, Levy R et al (2000) A water soluble methanofullerene derivative: synthesis, micellar aggregation in aqueous solutions, and incorporation in sol-gel glasses for optical limiting applications. J Mater Chem 10:887–892

    CAS  Google Scholar 

  • Fletcher S, Hamilton AD (2005) Protein surface recognition and proteomimetics: mimics of protein surface structure and function. Curr Opin Chem Biol 9:632–638

    PubMed  CAS  Google Scholar 

  • Fogden S, Verdejo R, Cottam B et al (2008) Purification of single walled carbon nanotubes: the problem with oxidation debris. Chem Phys Lett 460:162–167

    CAS  Google Scholar 

  • Frazier RM, Hough WL, Chopra N et al (2012) Advances in graphene-related technologies: synthesis, devices and outlook. Recent Pat Nanotechnol 6:79–98

    PubMed  CAS  Google Scholar 

  • Freestone I, Meeks N, Sax M et al (2007) The Lycurgus cup—a Roman nanotechnology. Gold Bull 40:270–277

    CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    PubMed  CAS  Google Scholar 

  • Ghosh P, Han G, De M et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    PubMed  CAS  Google Scholar 

  • Grasso D, Subramaniam K, Butkus M et al (2002) A review of non-DLVO interactions in environmental colloidal systems. Rev Environ Sci Biotechnol 1:17–38

    CAS  Google Scholar 

  • Gulrajani ML, Gupta D, Periyasamy S et al (2008) Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties. J Appl Polym Sci 108:614–623

    CAS  Google Scholar 

  • Guo SJ, Dong SJ (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644–2672

    PubMed  CAS  Google Scholar 

  • Hao R, Xing R, Xu Z et al (2010) Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater 22:2729–2742

    PubMed  CAS  Google Scholar 

  • Hirsch A, Brettreich M (2005) Fullerenes: chemistry and reactions. Wiley-VCH, Weinheim

    Google Scholar 

  • Holmes JD, Ziegler KJ, Doty RC et al (2011) Highly luminescent silicon nanocrystals with discrete optical transitions. J Am Chem Soc 123:3743–3748

    Google Scholar 

  • Holtz RD, Souza Filho AG, Brocchi M et al (2010) Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnology 21:1–8

    Google Scholar 

  • Holtz RD, Lima BA, Souza Filho AG et al (2012) Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomed Nanotechnol 8:935–940

    CAS  Google Scholar 

  • Huh S, Wiench JW, Yoo JC et al (2003) Organic functionalization and morphology control of mesoporous silica via a co-condensation synthesis method. Chem Mater 15:4247–4256

    CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  • ISO 13322-1:2004, Particle size analysis—image analysis method—Part 1: static image analysis methods

    Google Scholar 

  • ISO 15901-2:2005, Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption—Part 2: analysis of mesopores and macropores by gas adsorption

    Google Scholar 

  • ISO 17560:2002, Surface chemistry analysis—secondary ion mass spectrometry—method for depth profiling of boron in silicon

    Google Scholar 

  • ISO 18114:2003, Surface chemistry analysis—secondary ion mass spectrometry—determination of relative sensitivity factors from ion implanted reference materials

    Google Scholar 

  • ISO 20998-1:2006, Measurement and characterization of particles by acoustic methods—Part 1: concepts and procedures in ultrasonic attenuation spectroscopy

    Google Scholar 

  • ISO 22412:2008, Particle size analysis—dynamic light scattering (DLS)

    Google Scholar 

  • ISO 22489:2006, Microbeam analysis—electron probe microanalysis—quantitative point analysis for bulk specimens using wavelength-dispersive X-ray spectroscopy

    Google Scholar 

  • ISO Microbeam Analysis—guidelines for orientation measurement using electron backscatter diffraction

    Google Scholar 

  • ISO/DIS 12025 Nanotechnologies, developed a general framework for determining the nano-object release from powders

    Google Scholar 

  • ISO/TC 24 New work item on dispersion, ISO/TR 13097, Guidelines for the characterization of dispersion stability

    Google Scholar 

  • ISO/TR 13014, Nanotechnologies—guidance on physico-chemical characterization of engineered nanoscale materials for toxicologic assessment

    Google Scholar 

  • ISO/TR 19319:2003, Surface chemical analysis—Auger electron spectroscopy and X-ray photoelectron spectroscopy—determination of lateral resolution, analysis area and sample area viewed by the analyser

    Google Scholar 

  • ISO/TS 13762:2001, Particle Size analysis–small angle X-ray scattering

    Google Scholar 

  • Jayadevan KP, Liu CY, Tseng TY (2004) Dielectric characteristics of nanocrystalline Ag-Ba0.5Sr0.5TiO3 composite thin films. Appl Phys Lett 85:1211–1213

    CAS  Google Scholar 

  • Jiang GX, Shen ZY, Niu JF et al (2011) Nanotoxicity of engineered nanomaterials in the environment. Prog Chem 23:1769–1781

    CAS  Google Scholar 

  • Jishi RA, Inomata D, Nakao K et al (1994) Electronic and lattice properties of carbon nanotubes. J Phys Soc Jpn 63:2252–2260

    CAS  Google Scholar 

  • Johns JE, Hersam MC (2013) Atomic covalent functionalization of graphene. Acc Chem Res 46:77–86

    PubMed  CAS  Google Scholar 

  • Jost O, Gorbunov AA, Möller J et al (2001) Impact of catalyst coarsening on the formation of single-wall carbon nanotubes. Chem Phys Lett 339:297–304

    CAS  Google Scholar 

  • Kawamura G, Nogami M, Matsuda A (2013) Shape-controlled metal nanoparticles and their assemblies with optical functionalities. J Nanomater 2013:1–17

    Google Scholar 

  • Kovtyukhova NI, Ollivier PJ, Martin BR et al (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778

    CAS  Google Scholar 

  • Krätschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C-60—a new form of carbon. Nature 347:354–358

    Google Scholar 

  • Krishnamoorthy K, Navaneethaiyer U, Mohan R et al (2011) Graphene oxide nanostructures modified multifunctional cotton fabrics. Appl Nanosci 2:119–126

    Google Scholar 

  • Kroto HW, Heath JR, Obrien SC et al (1985) C-60—Buckminsterfullerene. Nature 318:162–163

    CAS  Google Scholar 

  • Kuempel ED, Castranova V, Geraci CL et al (2012) Development of risk-based nanomaterial groups for occupational exposure control. J Nanopart Res 14:1–15

    Google Scholar 

  • Kumar M, Ando Y (2010) Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J Nanosci Nanotechnol 10:3739–3758

    PubMed  CAS  Google Scholar 

  • Kumar A, Menon SK (2009) Fullerene derivatized s-triazine analogues as antimicrobial agents. Eur J Med Chem 44:2178–2183

    PubMed  CAS  Google Scholar 

  • Kumar A, Shanker R, Dhawan A (2011) The need for novel approaches in ecotoxicity of engineered nanomaterials. J Biomed Nanotechnol 7:79–80

    PubMed  CAS  Google Scholar 

  • Lai CY, Trewyn BG, Jeftinija DM et al (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459

    PubMed  CAS  Google Scholar 

  • Lami EB, Lang J (1998) Encapsulation of inorganic particles by dispersion polymerization in polar media. J Colloid Interface Sci 197:293–308

    Google Scholar 

  • Lazzari M, Rodriguez-Abreu C, Rivas J et al (2006) Self-assembly: a minimal route to the fabrication of nanomaterials. J Nanosci Nanotechnol 6:892–905

    PubMed  CAS  Google Scholar 

  • Lee K, Lee H, Lee V et al (2011) Optical imaging of intracellular reactive oxygen species for the assessment of the cytotoxicity of nanoparticles. Biomaterials 32:2556–2565

    PubMed  CAS  Google Scholar 

  • Limbach LK, Li Y, Grass RN et al (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39:9370–9376

    PubMed  CAS  Google Scholar 

  • Lison D, Lardot C, Huax F et al (1997) Influence of particle surface area on the toxicity of insoluble manganese dioxide dusts. Arch Toxicol 6:725–729

    Google Scholar 

  • Liz-Marzán LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    PubMed  Google Scholar 

  • Lopez AM, Mateo-Alonso A, Prato M (2011) Materials chemistry of fullerene C60 derivatives. J Mater Chem 21:1305–1318

    Google Scholar 

  • Lu Y, Chen W (2012) Sub-nanometre sized metal clusters: from synthesis to the unique property discoveries. Chem Soc Rev 41:3594–3623

    PubMed  CAS  Google Scholar 

  • Lu AH, Salabas EL, Schuth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization and application. Angew Chem 46:1222–1244

    CAS  Google Scholar 

  • Machado BF, Marchionni A, Bacsa RR et al (2013) Synergistic effect between few layer graphene and carbon nanotube supports for palladium catalysing electrochemical oxidation of alcohols. J Energy Chem 22:296–304

    CAS  Google Scholar 

  • Maggini M, Scorrano G, Prato M (1993) Addition of azomethine ylides to C-60—synthesis, characterization, and functionalization of fullerene pyrrolidines. J Am Chem Soc 115:9798–9799

    CAS  Google Scholar 

  • Mahtig B, Textor T (2008) Nanosols and textiles. World Scientific Publishing, Singapore

    Google Scholar 

  • Maier-Flaig F, Rinck J, Stephan M et al (2013) Multicolor silicon light-emitting diodes (SiLEDs). Nano Lett 13:475–480

    PubMed  CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    CAS  Google Scholar 

  • Marulanda JM (2011) Carbon nanotubes applications on electron devices. InTech, New York

    Google Scholar 

  • Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J et al (2011) 2D materials: to graphene and beyond. Nanoscale 3:20–30

    PubMed  CAS  Google Scholar 

  • Mewes B, Seitzman JM (1997) Soot volume fraction and particle size measurements with laser-induced incandescence. Appl Opt 36:709–717

    PubMed  CAS  Google Scholar 

  • Morais EC, Correa GG, Brambilla R et al (2012) Silica imprinted materials containing pharmaceuticals as a template: textural aspects. J Sol Gel Sci Technol 64:324–334

    CAS  Google Scholar 

  • Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496

    CAS  Google Scholar 

  • Nadworny PL, Wang JF, Tredget EE et al (2008) Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomed Nanotechnol 4:241–251

    CAS  Google Scholar 

  • National Research Council (1983) Risk assessment in the Federal Government: managing the process. National Academy Press, Washington, DC

    Google Scholar 

  • Nikolaev P, Holmes W, Sosa E et al (2010) Effect of vaporization temperature on the diameter and chiral angle distributions of single-walled carbon nanotubes. J Nanosci Nanotechnol 10:3780–3789

    PubMed  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    PubMed  CAS  Google Scholar 

  • Novoselov KS, Fal’ko VI, Colombo L et al (2012) A roadmap for graphene. Nature 490:192–200

    PubMed  CAS  Google Scholar 

  • Nozik AJ, Beard MC, Luther JM et al (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110:6873–6890

    PubMed  CAS  Google Scholar 

  • O’Connell MJ, Bachilo SM, Huffman CB et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596

    PubMed  Google Scholar 

  • Oberdorster G (2009) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Int Med 267:89–105

    Google Scholar 

  • Panhuis M, Wu J, Ashraf SA et al (2007) Conducting textiles from single-walled carbon nanotubes. Synth Met 157:358–362

    Google Scholar 

  • Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5:1727–1752

    PubMed  CAS  Google Scholar 

  • Paschoalino MP, Marcone GPS, Jardim WF (2010) Nanomaterials and the environment. Quim Nova 33:421–430

    CAS  Google Scholar 

  • Patel BH, Chattopadhyay DP (2007) Nano-particles & their uses in textiles. http://www.indiantextilejournal.com/articles/FAdetails.asp?id=693. Accessed 25 Feb 2013

  • Patzke GR, Krumeich F, Nesper R (2002) Oxidic nanotubes and nanorods—anisotropic modules for a future nanotechnology. Angew Chem Int Edit 41:2446–2461

    CAS  Google Scholar 

  • Paula AJ, Montoro LA, Souza Filho AG et al (2012) Towards long-term colloidal stability of silica-based nanocarriers for hydrophobic molecules: beyond Stober method. Chem Commun 48:591–593

    CAS  Google Scholar 

  • Pedersen JS (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv Colloid Interface Sci 70:171–210

    CAS  Google Scholar 

  • Persson AE, Schoeman BJ, Sterte J et al (1994) The synthesis of discrete colloidal particles of TPA-silicalite-1. Zeolites 14:557–567

    CAS  Google Scholar 

  • Powers KW, Brown SC, Krishna VB et al (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303

    PubMed  CAS  Google Scholar 

  • Powers KW, Palazuelos M, Moudgil BM et al (2007) Characterization of the size shape and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51

    CAS  Google Scholar 

  • Prato M (1997) Fullerene chemistry for materials science applications. J Mater Chem 7:1097–1109

    CAS  Google Scholar 

  • Pumera M (2011) Nanotoxicology: the molecular science point of view. Chem Asian J 6:340–348

    PubMed  CAS  Google Scholar 

  • Quintana M, Grzelczak M, Spyrou K et al (2012) A simple road for the transformation of few-layer graphene into MWNTs. J Am Chem Soc 134:13310–13315

    PubMed  CAS  Google Scholar 

  • Raj S, Jose S, Sumod U et al (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4:186–193

    PubMed  Google Scholar 

  • Ramanathan T, Fisher FT, Ruoff RS et al (2005) Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 17:1290–1295

    CAS  Google Scholar 

  • Rao CNR, Nath M (2003) Inorganic nanotubes. Dalton Trans 1:1–24

    Google Scholar 

  • Ratner M, Ratner D (2003) Nanotechnology. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Rehman MU, Yoshihisa Y, Miyamoto Y, Shimizu T (2012) The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory responde in RAW 264.7 macrophages. Inflammation Res 61:1177–1185

    CAS  Google Scholar 

  • Remskar M (2004) Inorganic nanotubes. Adv Mater 16:1497–1504

    CAS  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592

    PubMed  CAS  Google Scholar 

  • Rourke JP, Pandey PA, Moore JJ et al (2011) The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem 50:3173–3177

    CAS  Google Scholar 

  • Ruoff RS, Tse DS, Malhotra R et al (1993) Solubility of C-60 in a variety of solvents. J Phys Chem 97:3379–3383

    CAS  Google Scholar 

  • Rycenga M, Camargo PHC, Li W et al (2010) Understanding the SERS effects of single silver nanoparticles and their dimers, one at a time. J Phys Chem Lett 1:696–703

    PubMed  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3

    Google Scholar 

  • Samsonidze GG, Saito R, Jorio A et al (2003) The concept of cutting lines in carbon nanotube science. J Nanosci Nanotechnol 3:431–458

    PubMed  CAS  Google Scholar 

  • Scarselli M, Castrucci P, De Crescenzi M (2012) Electronic and optoelectronic nano-devices based on carbon nanotubes. J Phys Condens Matter 24:1–36

    Google Scholar 

  • Schrijver I, Govaert F (2011) Carbon nanotubes in composites and coatings for smart textile applications. http://www.euronanoforum2011.eu/wp-content/uploads/2011/09/enf2011_nanomaterials_govaert_fin.pdf. Accessed 25 Feb 2013

  • Schulz C, Kock BF, Hofmann M et al (2006) Laser-induced incandescence: recent trends and current questions. Appl Phys B 83:333–354

    CAS  Google Scholar 

  • Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) (2010) Scientific basis for the definition of the term “Nanomaterial”. http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_030.pdf. Accessed 22 Feb 2013

  • Sinnott SB, Andrews R, Qian D et al (1999) Model of carbon nanotube growth through chemical vapor deposition. Chem Phys Lett 315:25–30

    CAS  Google Scholar 

  • Slouf M, Hruby M, Bakaeva Z et al (2012) Preparation of stable Pd nanocubes and their use in biological labeling. Colloids Surf B Interfaces 100:205–208

    CAS  Google Scholar 

  • Smith AM, Nie SM (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200

    PubMed  CAS  Google Scholar 

  • Soller-Illia GJAA, Sanchez C, Lebeau B et al (2002) Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem Rev 102:4093–4138

    Google Scholar 

  • Sondi I, Goia DV, Matijevic E (2003) Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J Colloid Interface Sci 260:75–81

    PubMed  CAS  Google Scholar 

  • Souza Filho AG, Terrones M (2008) Properties and applications of doped carbon nanotubes. In: Jorio A, Dresselhaus M, Dresselhaus G (eds) Carbon nanotubes: advanced topics in synthesis, structure, properties and applications. Springer, Berlin

    Google Scholar 

  • Souza Filho AG, Endo M, Muramatsu H et al (2006) Resonance Raman scattering studies in Br2-adsorbed double-wall carbon nanotubes. Phys Rev B 73:235413/1–235413/12

    Google Scholar 

  • Stankovich S, Dikin DA, Dommett JHB et al (2006) Graphene-based composite materials. Nature 442:282–286

    PubMed  CAS  Google Scholar 

  • Stéfani D, Paula AJ, Vaz BG et al (2011) Structural and proactive safety aspects of oxidation debris from multi-walled carbon nanotubes. J Hazard Mater 189:391–396

    PubMed  Google Scholar 

  • Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    PubMed  CAS  Google Scholar 

  • Takhar P, Mahant S (2011) In vitro methods for nanotoxicity assessment: advantages and applications. Arch Appl Sci Res 3:389–403

    CAS  Google Scholar 

  • Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534

    PubMed  CAS  Google Scholar 

  • Tenne R (2002) Fullerene-like materials and nanotubes from inorganic compounds with a layered (2-D) structure. Colloids Surf A 208:83–92

    CAS  Google Scholar 

  • Tenne R, Margulis L, Genut M et al (1992) Polyhedral and cylindrical structures of tungsten disulfide. Nature 360:444–446

    CAS  Google Scholar 

  • The Project on Emerging Nanotechnologies—PEN (2013) Consumer Products Inventory. http://www.nanotechproject.org/inventories/consumer/analysis_draft/. Accessed 22 Feb 2013

  • Thompson K, Booske J, Kelly DJLT (2005) Three-dimensional atom mapping of dopants in Si nanostructures. Appl Phys Lett 87:1–3

    Google Scholar 

  • Tian B, Li C, Gu F et al (2009) Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem Eng J 151:220–227

    CAS  Google Scholar 

  • Tilley RD (2008) Synthesis and applications of nanoparticles and quantum dots. Chem N Z 72:146–150

    CAS  Google Scholar 

  • Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    PubMed  CAS  Google Scholar 

  • Tran CL, Buchanan D, Cullen RT et al (2000) Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 12:1113–1126

    PubMed  CAS  Google Scholar 

  • U.S. Environmental Protection Agency—EPA (2005) Nanotechnology white paper. http://www.epa.gov/osa/pdfs/EPA_nanotechnology_white_paper_external_review_draft_12-02-2005.pdf. Accessed 22 Feb 2013

  • Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46

    PubMed  Google Scholar 

  • Valizadeh A, Mikaeili H, Samiei M et al (2012) Quantum dots: synthesis, bioapplications and toxicity. Nanoscale Res Lett 7:480

    PubMed  CAS  Google Scholar 

  • Verdejo R, Lamorinierea S, Cottam B et al (2007) Removal of oxidation debris from multi-walled carbon nanotubes. Chem Commun 5:513–515

    Google Scholar 

  • Voutilainen MC, Seppala ET, Pasanen P et al (2012) Graphene and carbon nanotube applications in mobile devices. IEEE Trans Electron Dev 59:2876–2887

    CAS  Google Scholar 

  • Wani MY, Hashim MA, Nabi F et al (2011) Nanotoxicity: dimensional and morphological concerns. Adv Phys Org Chem ID 450912:1–15

    Google Scholar 

  • Wepasnick KA, Smith BA, Bitter JL et al (2010) Chemical and structural characterization of carbon nanotube surfaces. Anal Bioanal Chem 396:1003–1014

    PubMed  CAS  Google Scholar 

  • Willets KA (2009) Surface-enhanced Raman scattering (SERS) for probing internal cellular structure and dynamics. Anal Bioanal Chem 394:85–94

    PubMed  CAS  Google Scholar 

  • Wong YWH, Yuen CWM, Leung MYS et al (2006) Selected applications of nanotechnology in textiles. AUTEX Res J 6:1–8

    Google Scholar 

  • Wright JB, Lam K, Buret AG et al (2002) Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis, and healing. Wound Repair Regen 10:141–151

    PubMed  Google Scholar 

  • Xiong YJ, Mayers BT, Xia YN (2005) Some recent developments in the chemical synthesis of inorganic nanotubes. Chem Commun 40:5013–5022

    Google Scholar 

  • Xu X, Ray R, Gu Y et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotubes fragments. J Am Chem Soc 126:12736–12737

    PubMed  CAS  Google Scholar 

  • Xu C, Wang X, Wang J et al (2010) Synthesis and photoelectrical properties of b-cyclodextrin functionalized graphene materials with high bio-recognition capability. Chem Phys Lett 498:162–167

    CAS  Google Scholar 

  • Yan X, Cui Y, Li LS (2010) Synthesis of large, stable colloidal graphene quantum dots with tunable size. J Am Chem Soc 132:5944–5945

    PubMed  CAS  Google Scholar 

  • Zhang B, Chen Q, Tang H et al (2010) Characterization of and biomolecule immobilization on the biocompatible multi-walled carbon nanotubes generated by functionalization with polyamidoamine dendrimers. Colloids Surf B Biointerfaces 80:18–25

    PubMed  CAS  Google Scholar 

  • Zhu YW, Murali S, Cai WW et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    PubMed  CAS  Google Scholar 

  • Zrazhevskiy P, Gao X (2009) Multifunctional quantum dots for personalized medicine. Nano Today 4:414–428

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oswaldo L. Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alves, O.L. et al. (2014). Nanomaterials. In: Durán, N., Guterres, S., Alves, O. (eds) Nanotoxicology. Nanomedicine and Nanotoxicology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8993-1_1

Download citation

Publish with us

Policies and ethics