Skip to main content

Evaluating Incremental Values from New Predictors with Net Reclassification Improvement in Survival Analysis

  • Conference paper
  • First Online:
Risk Assessment and Evaluation of Predictions

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 215))

  • 1929 Accesses

Abstract

Developing individualized prediction rules for disease risk and prognosis has played a key role in modern medicine. When new genomic or biological markers become available to assist in risk prediction, it is essential to assess the improvement in clinical usefulness of the new markers over existing routine variables. Net Reclassification Improvement (NRI) has been proposed to assess improvement in risk reclassification in the context of comparing two risk models and the concept has been quickly adopted in medical journals (Pencina et al., Stat Med 27:157–172, 2008). We propose both nonparametric and semiparametric procedures for calculating NRI as a function of a future prediction time t with a censored failure time outcome. The proposed methods accommodate covariate-dependent censoring, therefore providing more robust and sometimes more efficient procedures compared with the existing nonparametric-based estimators (Pencina et al., Stat Med 30: 11–21, 2011; Uno et al., Stat Med 32:2430–42, 2013). Simulation results indicate that the proposed procedures perform well in finite samples. We illustrate these procedures by evaluating a new risk model for predicting the onset of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, P., Gill, R.: Cox’s regression model for counting processes: a large sample study. Ann. Stat. 10, 1100–1120 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bilias, Y., Gu, M., Ying, Z.: Towards a general asymptotic theory for cox model with staggered entry. Ann. Stat. 25, 662–682 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, T., Tian, L., Uno, H., Solomon, S., Wei, L.: Calibrating parametric subject-specific risk estimation. Biometrika 97, 389–404 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cook, N.: Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation 115, 928 (2007)

    Article  Google Scholar 

  5. Cook, N., Buring, J., Ridker, P.: The effect of including c-reactive protein in cardiovascular risk prediction models for women. Ann. Intern. Med. 145, 21 (2006)

    Article  Google Scholar 

  6. Cui, J.: Overview of risk prediction models in cardiovascular disease research. Ann. Epidemiol. 19, 711–717 (2009)

    Article  Google Scholar 

  7. Dabrowska, D.: Smoothed cox regression. Ann. Stat. 25, 1510–1540 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Du, Y., Akritas, M.: Uniform strong representation of the conditional kaplan-meier process. Math. Methods Stat. 11, 152–182 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Efron, B., Tibshirani, R.: Improvements on cross-validation: the.632+ bootstrap method. J. Am. Stat. Assoc. 92, 548–560 (1997)

    Google Scholar 

  10. Gail, M., Brinton, L., Byar, D., Corle, D., Green, S., Schairer, C., Mulvihill, J.: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. JNCI J. Natl. Cancer Inst. 81, 1879 (1989)

    Article  Google Scholar 

  11. Gu, W., Pepe, M.: Measures to summarize and compare the predictive capacity of markers. Int. J. Biostat. 5, 27 (2009)

    Google Scholar 

  12. Hemann, B., Bimson, W., Taylor, A.: The framingham risk score: an appraisal of its benefits and limitations. Am. Heart Hosp. J. 5, 91–96 (2007)

    Article  Google Scholar 

  13. Hjort, N.: On inference in parametric survival data models. Int. Stat. Rev. (Revue Internationale de Statistique) 60, 355–387 (1992)

    Google Scholar 

  14. Kannel, W., Feinleib, M., McNamara, P., Garrison, R., Castelli, W.: An investigation of coronary heart disease in families. Am. J. Epidemiol. 110, 281 (1979)

    Google Scholar 

  15. Khot, U., Khot, M., Bajzer, C., Sapp, S., Ohman, E., Brener, S., Ellis, S., Lincoff, A., Topol, E.: Prevalence of conventional risk factors in patients with coronary heart disease. JAMA J. Am. Med. Assoc. 290, 898–904 (2003)

    Google Scholar 

  16. Lin, D., Wei, L.: The robust inference for the cox proportional hazards model. J. Am. Stat. Assoc. 84, 1074–1078 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lloyd-Jones, D.: Cardiovascular risk prediction. Circulation 121, 1768–1777 (2010)

    Article  Google Scholar 

  18. Pencina, M., D’Agostino Sr, R., D’Agostino Jr, R., Vasan, R.: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat. Med. 27, 157–172 (2008)

    Google Scholar 

  19. Pencina, M., D’Agostino Sr, R., Steyerberg, E.: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat. Med. 30, 11–21 (2011)

    Google Scholar 

  20. Pollard, D.: Empirical Processes: Theory and Applications. Institute of Mathematical Statistics, Hayward (1990)

    MATH  Google Scholar 

  21. Satten, G., Datta, S.: The kaplan-meier estimator as an inverse-probability-of-censoring weighted average. Am. Stat. 55, 207–210 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tian, L., Cai, T., Goetghebeur, E., Wei, L.: Model evaluation based on the sampling distribution of estimated absolute prediction error. Biometrika 94, 297–311 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Uno, H., Cai, T., Tian, L., Wei, L.: Evaluating prediction rules for t-year survivors with censored regression models. J. Am. Stat. Assoc. 102, 527–537 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Uno, H., Tian, L., Cai, T., Kohane, I., Wei, L.: A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data. Statistics in Medicine 32, 2430–42 (2013)

    Article  MathSciNet  Google Scholar 

  25. Wilson, P., D’Agostino, R., Levy, D., Belanger, A., Silbershatz, H., Kannel, W.: Prediction of coronary heart disease using risk factor categories. Circulation 97, 1837 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The Framingham Heart Study and the Framingham SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University. The Framingham SHARe data used for the analyses described in this manuscript were obtained through dbGaP (access number: phs000007.v3.p2). This manuscript was not prepared in collaboration with investigators of the Framingham Heart Study and does not necessarily reflect the opinions or views of the Framingham Heart Study, Boston University, or the NHLBI. The work is supported by grants U01-CA86368, P01-CA053996, R01- GM085047, R01-GM079330 awarded by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingye Zheng .

Editor information

Editors and Affiliations

Appendix

Appendix

Throughout, we assume that the joint density of (T, C, Y) is twice continuously differentiable, Y are bounded, and 1 > P(T > t) > 0, 1 > P(C > t) > 0. The kernel function K is a symmetric probability density function with compact support and bounded second derivative. The bandwidth h → 0 such that nh 4 → 0. In addition, the estimator \(\hat{\boldsymbol{\theta }}_{k}\) converges to \(\boldsymbol{\theta }_{0k}\) for k = 1, 2 as n →  [13], where \(\boldsymbol{\beta }_{k0}\) is the unique maximizer of the expected value of the corresponding partial likelihood and Λ k0 is the baseline cumulative hazard for k = 1, 2. We denote the parameter space for \(\boldsymbol{\theta }_{k}\) by Ω k and assume that Ω k is a compact set containing \(\boldsymbol{\theta }_{0k}\). Furthermore, we assume that \(\boldsymbol{\beta }_{2}\neq 0\) and note that \(Q(\boldsymbol{\theta }_{2}) = 1 -\exp \{\varLambda _{02}(t){e}^{\boldsymbol{\beta }_{2}^{\mathsf{T}}\mathbf{Y}_{ (2)}}\}\) and \(P(\boldsymbol{\theta }_{1}) = 1 -\exp \{\varLambda _{01}(t){e}^{\boldsymbol{\beta }_{1}^{\mathsf{T}}\mathbf{Y}_{ (1)}}\}\) are the respective limits of \(Q(\hat{\boldsymbol{\theta }}_{2})\) and \(P(\hat{\boldsymbol{\theta }}_{1})\), for any given Y (2) and Y (1). The in-probability convergence of \(Q(\hat{\boldsymbol{\theta }}_{2}) \rightarrow Q(\boldsymbol{\theta }_{02})\) and \(P(\hat{\boldsymbol{\theta }}_{1})\) and \(P(\boldsymbol{\theta }_{01})\) are uniform in Y (2) and Y (1) due to the convergence of \(\hat{\boldsymbol{\theta }} \rightarrow \boldsymbol{\theta }_{0} = {(\boldsymbol{\theta }_{01}^{\mathsf{T}},\boldsymbol{\theta }_{02}^{\mathsf{T}})}^{\mathsf{T}}\).

Asymptotic Properties of \(\widetilde{\mathrm{NRI}}(\hat{\boldsymbol{\theta }},t)\)

From the same arguments as given in [3] and [7], it follows that we have the uniform consistency of \(\tilde{H}_{q}^{(\iota )}(t)\) to \(H_{q}^{(\iota )}(t) = P\{C \geq t\mid Q(\boldsymbol{\theta }_{2}) = q,\varDelta (\boldsymbol{\theta }) \in \mho _{\iota }\}\), where 1 = 1 and  = { 0, 1}, for ι = 1 and •. It follows, using the uniform law of large numbers [20], that

$$\displaystyle{\sup _{\boldsymbol{\theta }}\vert \widetilde{\mbox{ NRI}}(\boldsymbol{\theta },t) -\mbox{ NRI}(\boldsymbol{\theta },t)\vert \rightarrow 0.}$$

This along with the convergence of \(\hat{\boldsymbol{\theta }}\) to \(\boldsymbol{\theta }_{0}\) implies that \(\widetilde{\mbox{ NRI}}(\hat{\boldsymbol{\theta }},t)\) is uniformly consistent for \(\mbox{ NRI}(\boldsymbol{\theta }_{0},t)\).

Throughout, we will use the fact that \(E\{\varDelta _{i}(\boldsymbol{\theta })I(X_{i} \leq t)\delta _{i}H_{Q_{i}(\boldsymbol{\theta }_{2})}^{(1)}{(X_{i})}^{-1}\mid Q_{i}(\boldsymbol{\theta }_{2}) = q\} = P(\varDelta _{i}(\boldsymbol{\theta }) = 1,T_{i} \leq t\mid Q_{i}(\boldsymbol{\theta }_{2}) = q)\) if either C ⊥ T, Y (2) (model may be misspecified) or \(Q(\boldsymbol{\theta }_{2}) = \mbox{ Pr}(T \leq t\vert Y _{(2)})\) i.e. the Cox model is correctly specified though censoring may be such that C ⊥ TY (2) (double robustness). We first write the i.i.d representation of \(\sqrt{n}[\widetilde{\mbox{ NRI}}(\boldsymbol{\theta },t) -\mbox{ NRI}(\boldsymbol{\theta },t)]\) for any \(\boldsymbol{\theta }\). Note that \(\sqrt{n}\{\widetilde{\mbox{ NRI}}(\boldsymbol{\theta },t)-\mbox{ NRI}(\boldsymbol{\theta },t)\} = 2\sqrt{n}\{\widetilde{\mbox{ Pr}}(\varDelta (\boldsymbol{\theta }) = 1\vert T \leq t)-\mbox{ Pr}(\varDelta (\boldsymbol{\theta }) = 1\vert T \leq t)\}-2\sqrt{n}\{\widetilde{\mbox{ Pr}}(\varDelta (\boldsymbol{\theta }) = 1\vert T > t)-\mbox{ Pr}(\varDelta (\boldsymbol{\theta }) = 1\vert T > t)\}\). We first examine the initial component,

$$\displaystyle\begin{array}{rcl} \widetilde{\mbox{ Pr}}(\varDelta (\hat{\boldsymbol{\theta }}) = 1\vert T \leq t)& =& \frac{\sum _{i}\varDelta (\hat{\boldsymbol{\theta }})I(X_{i} \leq t)\delta _{i}/\tilde{H}_{Q_{i}(\hat{\boldsymbol{\theta }}_{2})}^{(1)}(X_{i})} {\sum _{i}I(X_{i} \leq t)\delta _{i}/\tilde{H}_{Q_{i}(\hat{\boldsymbol{\theta }}_{2})}^{(\bullet )}(X_{i})} \equiv \frac{\hat{N}(t,\hat{\boldsymbol{\theta }},\tilde{H})} {\hat{D}(t,\hat{\boldsymbol{\theta }},\tilde{H})} {}\\ \end{array}$$

where \(\hat{N}(t,\boldsymbol{\theta },H) = {n}^{-1}\sum _{i}\varDelta _{i}(\boldsymbol{\theta })I(X_{i} \leq t)\delta _{i}/H_{Q_{i}(\boldsymbol{\theta }_{2})}^{(1)}(X_{i})\) and \(\hat{D}(t,\boldsymbol{\theta },H) = {n}^{-1}\sum _{i}I(X_{i} \leq t)\delta _{i}/H_{Q_{i}(\boldsymbol{\theta }_{2})}^{(\bullet )}(X_{i})\). Let \(N(t,\boldsymbol{\theta }) = \mbox{ Pr}(\varDelta (\boldsymbol{\theta }) = 1,T \leq t)\) and D(t) = Pr(T ≤ t). Then by the uniform consistency of the IPW weights, we have

$$\displaystyle{\sqrt{ n}\{\widetilde{\mbox{ Pr}}(\varDelta (\boldsymbol{\theta }) = 1\vert T \leq t)-\mbox{ Pr}(\varDelta (\boldsymbol{\theta }) = 1\vert T \leq t)\} \approx \sqrt{n}\{\hat{N}(t,\boldsymbol{\theta },\tilde{H})D(t)-N(t,\boldsymbol{\theta })\hat{D}(t,\boldsymbol{\theta },\tilde{H})\}/D{(t)}^{2}.}$$

Examining the numerator, \(\sqrt{n}\{\hat{N}(t,\boldsymbol{\theta },\tilde{H})D(t) - N(t,\boldsymbol{\theta })\hat{D}(t,\boldsymbol{\theta },\tilde{H})\} = \sqrt{n}\{(1) + (2) - (3)\}\) where \((1) =\hat{ N}(t,\boldsymbol{\theta },H)D(t) -\hat{ D}(t,\boldsymbol{\theta },H)N(t,\boldsymbol{\theta }),\quad (2) =\hat{ N}(t,\boldsymbol{\theta },\tilde{H})D(t) -\hat{ N}(t,\boldsymbol{\theta },H)D(t),\) and \((3) = [N(t,\boldsymbol{\theta })\hat{D}(t,\boldsymbol{\theta },\tilde{H}) -\hat{ D}(t,\boldsymbol{\theta },H)N(t,\boldsymbol{\theta })].\) Note that

$$\displaystyle\begin{array}{rcl} (1)& =& \sqrt{n}(\hat{N}(t,\boldsymbol{\theta },H)D(t) -\hat{ D}(t,\boldsymbol{\theta },H)N(t,\boldsymbol{\theta })) = {n}^{-\frac{1} {2} }\sum U_{1i}(t),\quad \mbox{ where} {}\\ U_{1i}(t)& =& \frac{I(X_{i} \leq t)\delta _{i}} {H_{Q_{i}(\boldsymbol{\theta }_{2})}^{(1)}(X_{i})}\varDelta _{i}(\boldsymbol{\theta })D(t) - \frac{I(X_{i} \leq t)\delta _{i}} {H_{Q_{i}(\boldsymbol{\theta }_{2})}^{(\bullet )}(X_{i})}N(t,\boldsymbol{\theta }) {}\\ \end{array}$$

Using a Taylor series expansion, Lemma A.3 of [2] and the asymptotic expansion for \(\hat{\varLambda }_{q}(t)\) given in [8],

$$\displaystyle\begin{array}{rcl} (2)& =& D(t)\sqrt{n}\{\hat{N}(t,\boldsymbol{\theta },\tilde{H}) -\hat{ N}(t,\boldsymbol{\theta },H)\} {}\\ & =& D(t){n}^{-1/2}\sum _{ i} \frac{\varDelta _{i}(\boldsymbol{\theta })I(X_{i} \leq t)\delta _{i}} {H_{Q_{i}(\boldsymbol{\theta }_{2})}^{(1)}(X_{i})}\left [\frac{H_{Q_{i}(\boldsymbol{\theta }_{2})}^{(1)}(X_{i})} {\tilde{H}_{Q_{i}(\boldsymbol{\theta }_{2})}^{(1)}(X_{i})} - 1\right ] {}\\ & =& D(t){n}^{-1/2}\int \int _{ 0}^{t}\left [\frac{H_{q}^{(1)}(s)} {\tilde{H}_{q}^{(1)}(s)} - 1\right ]d\sum _{i}\frac{\varDelta _{i}(\boldsymbol{\theta })\delta _{i}I(X_{i} \leq s,Q_{i}(\boldsymbol{\theta }_{2}) \leq q)} {H_{Q_{i}(\boldsymbol{\theta }_{2})}^{(1)}(X_{i})} {}\\ & \approx & D(t)\int \int _{0}^{t}\sqrt{n}\left [\hat{\varLambda }_{ q}^{(1)}(s) -\varLambda _{ q}^{(1)}(s)\right ]d\left \{\frac{1} {n}\sum _{i}\frac{\varDelta _{i}(\boldsymbol{\theta })\delta _{i}I(X_{i} \leq s,Q_{i}(\boldsymbol{\theta }_{2}) \leq q)} {H_{Q_{i}(\boldsymbol{\theta }_{2}),}^{(1)}(X_{i})} \right \} {}\\ & \approx & D(t)\int \int _{0}^{t}\left [{n}^{-\frac{1} {2} }\sum K_{h}\left \{q-Q_{i}(\boldsymbol{\theta }_{2})\right \}M_{Cq}^{(1)}(s,X_{i},\delta _{i})\right ]dP(\varDelta (\boldsymbol{\theta })=1,T \leq t,Q(\boldsymbol{\theta }_{2}) \leq q) {}\\ \end{array}$$

where

$$\displaystyle{M_{Cq}^{(1)}(t,X_{ i},\delta _{i}) =\int _{ 0}^{t}\frac{dN_{Ci}(s) - I(X_{i} \geq s)d\varLambda _{q}^{(1)}(s)} {\pi _{s}^{(1)}(q)}.}$$

Now by a change of variable, \(\psi = \frac{q-Q_{i}(\boldsymbol{\theta }_{2})} {h}\) and \(f(t,q) \equiv {\partial }^{2}P(\varDelta (\boldsymbol{\theta }) = 1,\) \(T \leq t,Q(\boldsymbol{\theta }_{2}) \leq q)/\partial t\partial q\),

$$\displaystyle\begin{array}{rcl} (2)& \approx & D(t)\int \int _{0}^{t}\sqrt{n}\left [ \frac{1} {n}\sum K\left (\psi \right )M_{C(\psi h+Q_{i}(\boldsymbol{\theta }_{2}))}(s,X_{i},\delta _{i})\right ]f(t,\psi h + Q_{i})dsd\psi {}\\ & =& D(t){n}^{-1/2}\sum \int \int _{ 0}^{t}K\left (\psi \right )a\{s,h\psi + Q_{ i}(\boldsymbol{\theta }_{2}),X_{i}\}dsd\psi = {n}^{-\frac{1} {2} }\sum U_{2i}(t), {}\\ \end{array}$$

where \(U_{2i}(t) = D(t)\int _{0}^{t}a(s,{q}^{{\ast}},X_{i})ds\) and \(a(t,q,X_{i}) = M_{C{q}^{{\ast}}}(t,X_{i},\delta _{i})f(t,{q}^{{\ast}})\). Similar arguments can be used to obtain an asymptotic expansion for (3) as \((3) \approx {n}^{-\frac{1} {2} }\sum U_{3i}(t)\) and therefore, the numerator, \(\sqrt{n}\left [\hat{N}(t,\boldsymbol{\theta },\tilde{H})D(t) - N(t,\boldsymbol{\theta })\hat{D}(t,\boldsymbol{\theta },\tilde{H})\right ] \approx {n}^{-\frac{1} {2} }\sum \{U_{1i}(t) + U_{2i}(t) + U_{3i}(t)\}.\) The same arguments as given above can be used to obtain an asymptotic expansion for \(\sqrt{n}\{\widetilde{\mbox{ Pr}}(\varDelta (\boldsymbol{\theta }) = 1\vert T > t) -\mbox{ Pr}(\varDelta (\boldsymbol{\theta }) = 1\vert T > t)\}\) as \({n}^{-\frac{1} {2} }\sum _{i=1}^{n}D(t)_{-}^{-2}\{U_{-1i}(t) + U_{-2i}(t) + U_{-3i}(t)\}\) where D(t), \(U_{-1i}(t),U_{-2i}(t),\) and U −3i (t) are defined similarly to D(t), \(U_{1i}(t),U_{2i}(t),\) and U 3i (t) with T ≤ t replaced with T > t. Therefore, \(\sqrt{n}\{\widetilde{\mbox{ NRI}}(\boldsymbol{\theta },t)-\mbox{ NRI}(\boldsymbol{\theta },t)\} \approx {n}^{-\frac{1} {2} }\sum _{i=1}^{n}2[D{(t)}^{-2}\{U_{1i}(t)+U_{2i}(t)+U_{3i}(t)\}-D(t)_{-}^{-2}\{U_{-1i}(t)+U_{-2i}(t)+U_{-3i}(t)\}] = {n}^{-\frac{1} {2} }\sum _{i=1}^{n}\eta _{i}(t)\).

Note that regardless of correct model specification, \(\sqrt{n}(\hat{\boldsymbol{\theta }} -\boldsymbol{\theta }_{ 0}) = {n}^{-1/2}\sum \psi _{ i} + o_{p}(1)\) where ψ i are i.i.d mean zero random variables by Lin and Wei [16] and Uno et al. [24]. Using a Taylor series approximation and the i.i.d representation of \(\sqrt{n}[\widetilde{\mbox{ NRI}}(\boldsymbol{\theta },t) -\mbox{ NRI}(\boldsymbol{\theta },t)]\) for any \(\boldsymbol{\theta }\), we can write \(\widetilde{\mathcal{W}}(t) = \sqrt{n}[\widetilde{\mbox{ NRI}}(\hat{\boldsymbol{\theta }},t) -\mbox{ NRI}(\boldsymbol{\theta }_{0},t)]\) as a sum of i.i.d terms, \({n}^{-1/2}\sum _{i=1}^{n}\epsilon _{i}(t)\) defined below.

$$\displaystyle\begin{array}{rcl} & & \sqrt{n}[\widetilde{\mbox{ NRI}}(\hat{\boldsymbol{\theta }},t) -\mbox{ NRI}(\boldsymbol{\theta }_{0},t)] {}\\ & & \quad = \sqrt{n}[\widetilde{\mbox{ NRI}}(\hat{\boldsymbol{\theta }},t) -\mbox{ NRI}(\hat{\boldsymbol{\theta }},t) + \mbox{ NRI}(\hat{\boldsymbol{\theta }},t) -\mbox{ NRI}(\boldsymbol{\theta }_{0},t)] {}\\ & & \quad \approx \sqrt{n}[\widetilde{\mbox{ NRI}}(\hat{\boldsymbol{\theta }},t) -\mbox{ NRI}(\hat{\boldsymbol{\theta }},t) + \frac{\partial \mbox{ NRI}(t)} {\partial \boldsymbol{\theta }} \vert _{\boldsymbol{\theta }_{0}}(\hat{\boldsymbol{\theta }} -\boldsymbol{\theta }_{0}) {}\\ & & \quad = \sqrt{n}[\widetilde{\mbox{ NRI}}(\hat{\boldsymbol{\theta }},t) -\mbox{ NRI}(\hat{\boldsymbol{\theta }},t)] + \sqrt{n}(\hat{\boldsymbol{\theta }} -\boldsymbol{\theta }_{0})\frac{\partial \mbox{ NRI}(t)} {\partial \boldsymbol{\theta }} \vert _{\boldsymbol{\theta }_{0}} {}\\ & & \quad \approx \sqrt{n}[\widetilde{\mbox{ NRI}}(\hat{\boldsymbol{\theta }},t)-\mbox{ NRI}(\hat{\boldsymbol{\theta }},t)]+{n}^{-1/2}\sum \psi _{ i}\frac{\partial \mbox{ NRI}(t)} {\partial \boldsymbol{\theta }} \vert _{\boldsymbol{\theta }_{0}} {}\\ & & \quad \approx {n}^{-1/2}\sum _{ i=1}^{n}\eta _{ i}(t) + {n}^{-1/2}\sum \psi _{ i}\frac{\partial \mbox{ NRI}(t)} {\partial \boldsymbol{\theta }} \vert _{\boldsymbol{\theta }_{0}} {}\\ & & \quad = {n}^{-1/2}\sum _{ i=1}^{n}\epsilon _{ i}(t) {}\\ \end{array}$$

where \(\epsilon _{i}(u,v,t) =\eta _{i}(u,v,t) +\psi _{i}\frac{\partial \mbox{ NRI}(t)} {\partial \boldsymbol{\theta }} \vert _{\boldsymbol{\theta }_{0}}\). By a functional central limit theorem of [20], the process \(\widetilde{\mathcal{W}}(t)\) converges weakly to a mean zero Gaussian process in t.

Asymptotic Properties of \(\widehat{\mathrm{NRI}}(\hat{\boldsymbol{\theta }},t)\)

Recall that we assume the Cox model is correctly specified and thus, \(Q(\boldsymbol{\theta }_{2})\) \(= Q(\boldsymbol{\theta }_{2},t,\mathbf{Y}_{(2)}) = \mbox{ Pr}(T \leq t\vert Y _{(2)}) = 1 -\exp \{\varLambda _{02}(t){e}^{\boldsymbol{\beta }_{2}^{\mathsf{T}}Y _{ (2)}}\}\) and \(S_{Q_{i}(\boldsymbol{\theta }_{2})}(t) = \mbox{ Pr}(T > t\vert Y _{(2)}) =\exp \{\varLambda _{02}(t){e}^{\boldsymbol{\beta }_{2}Y _{(2)}}\}\). To derive asymptotic properties of \(\widehat{\mbox{ NRI}}(\hat{\boldsymbol{\theta }},t)\) we assume the same regularity conditions as in [1]. The uniform consistency of \(Q(\hat{\boldsymbol{\theta }}_{2},t,\mathbf{Y}_{(2)})\) for \(Q(\boldsymbol{\theta }_{2},t,\mathbf{Y}_{(2)})\) in t and Y (2) follows directly from the uniform consistency of \(\hat{\varLambda }_{02}(t)\) and \(\hat{\boldsymbol{\beta }}_{2}\). It follows from the uniform law of large numbers [20] that \(\widehat{\mbox{ NRI}}(\hat{\boldsymbol{\theta }},t)\) is uniformly consistent for \(\mbox{ NRI}(\boldsymbol{\theta }_{0},t)\). Andersen and Gill [1] show that \(\sqrt{n}(\hat{\beta }_{2} -\beta _{02})\) is a normal random variable and \(\sqrt{n}(\hat{\varLambda }_{02}(t) -\varLambda _{02}(t))\) converges to a Gaussian process. By the functional delta method it can be shown that \(\sqrt{n}\{Q(\hat{\boldsymbol{\theta }}_{2},t,\mathbf{Y}_{(2)}) - Q(\boldsymbol{\theta }_{2},t,\mathbf{Y}_{(2)})\}\) converges to a zero mean Gaussian process in t and Y (2). Similar to the derivation for \(\widetilde{\mbox{ NRI}}(\hat{\boldsymbol{\theta }},t)\), it can be shown that the process \(\widetilde{\mathcal{N}}(t) = \sqrt{n}[\widehat{\mbox{ NRI}}(\hat{\boldsymbol{\theta }},t) -\mbox{ NRI}(\boldsymbol{\theta }_{0},t)]\) is asymptotically equivalent to \({n}^{-1/2}\sum _{i=1}^{n}\zeta _{i}(u,v,t).\) In particular, for a fixed \(\boldsymbol{\theta }\), \(\sqrt{n}\{\widehat{\mbox{ NRI}}(\boldsymbol{\theta },t) -\mbox{ NRI}(\boldsymbol{\theta },t)\} \approx {n}^{-1/2 }\sum _{i=1}^{n}\eta _{i}^{{\ast}}(t)\) where \(\eta _{i}^{{\ast}}(t) = 2[D{(t)}^{-2}\{\varDelta _{i}(\boldsymbol{\theta })Q_{i}(\boldsymbol{\theta }_{2})-\mbox{ Pr}(\varDelta _{i}(\boldsymbol{\theta }) = 1\vert T_{i} \leq t)Q_{i}(\boldsymbol{\theta }_{2})\}-D(t)_{-}^{-2}\{\varDelta _{i}(\boldsymbol{\theta })[1-Q_{i}(\boldsymbol{\theta }_{2})]-\mbox{ Pr}(\varDelta _{i}(\boldsymbol{\theta }) = 1\vert T_{i} > t)[1-Q_{i}(\boldsymbol{\theta }_{2})]\}]\). Thus, \(\widetilde{\mathcal{N}}(t) \approx {n}^{-1/2}\sum _{i=1}^{n}\zeta _{i}(t)\) where \(\zeta _{i}(u,v,t) =\eta _{ i}^{{\ast}}(t) +\psi _{i}\frac{\partial \mbox{ NRI}(t)} {\partial \boldsymbol{\theta }} \vert _{\boldsymbol{\theta }_{0}}\). Once again, using a functional central limit theorem, this implies that \(\widetilde{\mathcal{N}}(t)\) converges to a Gaussian process with mean zero.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Zheng, Y., Parast, L., Cai, T., Brown, M. (2013). Evaluating Incremental Values from New Predictors with Net Reclassification Improvement in Survival Analysis. In: Lee, ML., Gail, M., Pfeiffer, R., Satten, G., Cai, T., Gandy, A. (eds) Risk Assessment and Evaluation of Predictions. Lecture Notes in Statistics, vol 215. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8981-8_21

Download citation

Publish with us

Policies and ethics