Skip to main content

Impedance of Porous Electrodes

  • Chapter
  • First Online:
  • 71k Accesses

Abstract

In the industrial applications of electrochemistry, the use of smooth surfaces is impractical and the electrodes must possess a large real surface area in order to increase the total current per unit of geometric surface area. For that reason porous electrodes are usually used, for example, in industrial electrolysis, fuel cells, batteries, and supercapacitors [400]. Porous surfaces are different from rough surfaces in the depth, l, and diameter, r, of pores; for porous electrodes the ratio l/r is important. Characterization of porous electrodes can supply information about their real surface area and utilization. These factors are important in their design, and it makes no sense to design pores that are too long and that are impenetrable by a current. Impedance studies provide simple tools to characterize such materials. Initially, an electrode model was developed by several authors for dc response of porous electrodes [401–406]. Such solutions must be known first to be able to develop the ac response. In what follows, porous electrode response for ideally polarizable electrodes will be presented, followed by a response in the presence of redox processes. Finally, more elaborate models involving pore size distribution and continuous porous models will be presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.J. Bard, L.R. Faulkner, Electrochemical Methods. Fundamentals and Applications (Wiley, New York, 2001)

    Google Scholar 

  2. A. Lasia, Modeling of impedances of porous electrodes, in Modern Aspects of Electrochemistry, ed. by M. Schlesinger, vol. 43 (Springer, New York, 2009), pp. 67–138

    Google Scholar 

  3. R. Jurczakowski, C. Hitz, A. Lasia, J. Electroanal. Chem. 572, 355 (2004)

    CAS  Google Scholar 

  4. I. Rousar, K. Micka, A. Kimla, Electrochemical Engineering II (Elsevier, Amsterdam, 1986)

    Google Scholar 

  5. A.N. Frumkin, Zh. Fiz. Khim. 23, 1477 (1949)

    CAS  Google Scholar 

  6. O.S. Ksenzhek, Russ. J. Phys. Chem. 36, 331 (1962)

    Google Scholar 

  7. F.A. Posey, J. Electrochem. Soc. 111, 1173 (1964)

    CAS  Google Scholar 

  8. J.M. Bisang, K. Juttner, G. Kreysa, Electrochim. Acta 39, 1297 (1994)

    CAS  Google Scholar 

  9. A. Lasia, in Modern Aspects of Electrochemistry, ed. by M. Schlesinger, vol. 43 (Springer, New York, 2009), p. 67

    Google Scholar 

  10. R. de Levie, in Advances in Electrochemistry and Electrochemical Engineering, ed. by P. Delahay, vol. 6 (Interscience, New York, 1967), p. 329

    Google Scholar 

  11. L.M. Gassa, J.R. Vilche, M. Ebert, K. Juttner, W.J. Lorenz, J. Appl. Electrochem. 20, 677 (1990)

    CAS  Google Scholar 

  12. R. de Levie, Electrochim. Acta 8, 751 (1963)

    Google Scholar 

  13. I.D. Raistrick, Electrochim. Acta 35, 1579 (1990)

    CAS  Google Scholar 

  14. R. Jurczakowski, C. Hitz, A. Lasia, J. Electroanal. Chem. 582, 85 (2005)

    CAS  Google Scholar 

  15. R. de Levie, Electrochim. Acta 10, 113 (1965)

    Google Scholar 

  16. J. Gunning, J. Electroanal. Chem. 392, 1 (1995)

    Google Scholar 

  17. H. Keiser, K.D. Beccu, M.A. Gutjahr, Electrochim. Acta 21, 539 (1976)

    CAS  Google Scholar 

  18. C. Hitz, A. Lasia, J. Electroanal. Chem. 500, 213 (2001)

    CAS  Google Scholar 

  19. K. Eloot, F. Debuyck, M. Moors, A.P. Peteghem, J. Appl. Electrochem. 25, 326 (1995)

    CAS  Google Scholar 

  20. K. Eloot, F. Debuyck, M. Moors, A.P. Peteghem, J. Appl. Electrochem. 25, 334 (1995)

    CAS  Google Scholar 

  21. L. Chen, A. Lasia, J. Electrochem. Soc. 139, 3214 (1992)

    CAS  Google Scholar 

  22. L. Chen, A. Lasia, J. Electrochem. Soc. 140, 2464 (1993)

    CAS  Google Scholar 

  23. L. Birry, A. Lasia, J. Appl. Electrochem. 34, 735 (2004)

    CAS  Google Scholar 

  24. Y. Gourbeyre, B. Tribollet, C. Dagbert, L. Hyspecka, J. Electrochem. Soc. 153, B162 (2006)

    CAS  Google Scholar 

  25. M. Itagaki, S. Suzuki, I. Shitanda, K. Watanabe, H. Nakazawa, J. Power Sources 164, 415 (2007)

    CAS  Google Scholar 

  26. M. Itagaki, Y. Hatada, I. Shitanda, K. Watanabe, Electrochim. Acta 55, 6255 (2010)

    CAS  Google Scholar 

  27. G. Paasch, K. Micka, P. Gersdorf, Electrochim. Acta 38, 2653 (1993)

    CAS  Google Scholar 

  28. J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago, A. Compte, Electrochem. Commun. 1, 429 (1999)

    CAS  Google Scholar 

  29. J. Bisquert, Phys. Chem. Chem. Phys. 2, 4185 (2000)

    CAS  Google Scholar 

  30. G. Lang, M. Ujvari, G. Inzelt, Electrochim. Acta 46, 4159 (2001)

    CAS  Google Scholar 

  31. P. Los, A. Lasia, H. Menard, L. Brossard, J. Electroanal. Chem. 360, 101 (1993)

    Google Scholar 

  32. I. Rousar, K. Micka, A. Kimla, Electrochemical Engineering, vol. II (Elsevier, Amsterdam, 1986), p. 133

    Google Scholar 

  33. K. Scott, J. Appl. Electrochem. 13, 709 (1983)

    CAS  Google Scholar 

  34. S.I. Marshall, J. Electrochem. Soc. 138, 1040 (1991)

    CAS  Google Scholar 

  35. A. Lasia, J. Electroanal. Chem. 397, 27 (1995)

    Google Scholar 

  36. J.S. Newman, C.W. Tobias, J. Electrochem. Soc. 109, 1183 (1962)

    CAS  Google Scholar 

  37. A. Lasia, J. Electroanal. Chem. 428, 155 (1997)

    CAS  Google Scholar 

  38. A. Lasia, J. Electroanal. Chem. 500, 30 (2001)

    CAS  Google Scholar 

  39. H. Wendt, S. Rausch, T. Borucinski, in Advances in Catalysis, vol. 40 (Academic, New York, 1994), p. 87

    Google Scholar 

  40. S. Rausch, H. Wendt, J. Appl. Electrochem. 22, 1025 (1992)

    CAS  Google Scholar 

  41. D.D. Macdonald, M. Urquidi-Macdonald, S.D. Bhaktam, B.G. Pound, J. Electrochem. Soc. 138, 1359 (1991)

    CAS  Google Scholar 

  42. D.D. Macdonald, Electrochim. Acta 51, 1376 (2006)

    CAS  Google Scholar 

  43. S.-I. Pyun, C.-H. Kim, S.-W. Kim, J.-H. Kim, J. New Mat. Electrochem. Syst. 5, 289 (2002)

    CAS  Google Scholar 

  44. H.K. Song, Y.H. Jung, K.H. Lee, L.H. Dao, Electrochim. Acta 44, 3513 (1999)

    CAS  Google Scholar 

  45. H.K. Song, J.H. Sung, Y.H. Jung, K.H. Lee, L.H. Dao, M.H. Kim, H.N. Kim, J. Electrochem. Soc. 151, E102 (2004)

    CAS  Google Scholar 

  46. H.K. Song, J.H. Jang, J.J. Kim, S.M. Oh, Electrochem. Commun. 8, 1191 (2006)

    CAS  Google Scholar 

  47. M. Musiani, M. Orazem, B. Tribollet, V. Vivier, Electrochim. Acta 56, 8014 (2011)

    CAS  Google Scholar 

  48. J.S. Newman, Electrochemical Systems, 2nd edn. (Prentice Hall, Englewood Cliffs, 1991)

    Google Scholar 

  49. S. Devan, V.R. Subramanian, R.E. White, J. Electrochem. Soc. 151, A905 (2004)

    CAS  Google Scholar 

  50. M. Doyle, J.P. Meyers, J. Newman, J. Electrochem. Soc. 147, 99 (2000)

    CAS  Google Scholar 

  51. J.P. Meyers, M. Doyle, R.M. Darling, J. Newman, J. Electrochem. Soc. 147, 2930 (2000)

    CAS  Google Scholar 

  52. A.M. Svensson, L.O. Valeen, R. Tunold, Electrochim. Acta 50, 2647 (2005)

    CAS  Google Scholar 

  53. T.E. Springer, T.A. Zawodzinski, M.S. Wilson, S. Gottesfeld, J. Electrochem. Soc. 143, 587 (1996)

    CAS  Google Scholar 

  54. A.M. Svensson, H. Weydahl, S. Sunde, Electrochim. Acta 53, 7483 (2008)

    CAS  Google Scholar 

  55. S. Sunde, I.A. Lervik, L.E. Owe, M. Tsypkin, J. Electrochem. Soc. 156, B927 (2009)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lasia, A. (2014). Impedance of Porous Electrodes. In: Electrochemical Impedance Spectroscopy and its Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8933-7_9

Download citation

Publish with us

Policies and ethics