Skip to main content

Electrocatalytic Reactions Involving Hydrogen

  • Chapter
  • First Online:
Electrochemical Impedance Spectroscopy and its Applications

Abstract

Many reactions of industrial importance are electrocatalytic, i.e., they involve the specific adsorption of intermediates, for example hydrogen, chlorine, and oxygen evolution, oxygen reduction, and methanol or ethanol oxidation in fuel cells. Many different electrochemical techniques were used to study these reactions, and EIS is one of them, providing interesting kinetic and surface information. Certain model reactions will be presented in what follows with a detailed method of relating impedance parameters with mechanistic and kinetic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.J. Bard, L.R. Faulkner, Electrochemical Methods. Fundamentals and Applications (Wiley, New York, 2001)

    Google Scholar 

  2. A. Lasia, Applications of electrochemical impedance spectroscopy to hydrogen adsorption, evolution and absorption into metals, in Modern Aspects of Electrochemistry, vol. 35, ed. by B.E. Conway, R.E. White (Kluwer/Plenum, New York, 2002), p. 1

    Google Scholar 

  3. L. Birry, A. Lasia, Electrochim. Acta 51, 3356 (2006)

    CAS  Google Scholar 

  4. J. Barber, S. Morin, B.E. Conway, J. Electroanal. Chem. 446, 125 (1998)

    CAS  Google Scholar 

  5. D.A. Harrington, B.E. Conway, Electrochim. Acta 32, 1703 (1987)

    CAS  Google Scholar 

  6. A. Lasia, A. Rami, J. Electroanal. Chem. 294, 123 (1990)

    CAS  Google Scholar 

  7. M.R.G. de Chialvo, A.C. Chialvo, J. Electrochem. Soc. 147, 1619 (2000)

    Google Scholar 

  8. E. Leiva, Electrochim. Acta 41, 2185 (1996)

    CAS  Google Scholar 

  9. A. Lasia, J. Electroanal. Chem. 562, 23 (2004)

    CAS  Google Scholar 

  10. D.A. Harrington, B.E. Conway, J. Electroanal. Chem. 221, 1 (1987)

    CAS  Google Scholar 

  11. M.R. Gennero de Chialvo, A.C. Chialvo, Electrochim. Acta 44, 841 (1998)

    CAS  Google Scholar 

  12. A. Lasia, J. Electroanal. Chem. 562, 23 (2004)

    CAS  Google Scholar 

  13. B. Losiewicz, R. Jurczakowski, A. Lasia, Electrochim. Acta 80, 292 (2012)

    CAS  Google Scholar 

  14. B. Losiewicz, M. Martin, C. Lebouin, A. Lasia, J. Electroanal. Chem. 649, 19 (2010)

    Google Scholar 

  15. C. Gabrielli, P.P. Grand, A. Lasia, H. Perrot, J. Electrochem. Soc. 151, A1943 (2004)

    CAS  Google Scholar 

  16. H. Duncan, A. Lasia, Electrochim. Acta 52, 6195 (2007)

    CAS  Google Scholar 

  17. B. Losiewicz, R. Jurczakowski, A. Lasia, Electrochim. Acta 56, 5746 (2011)

    CAS  Google Scholar 

  18. R. Jurczakowski, B. Losiewicz, A. Lasia, Kinetics and thermodynamics of HUPD on iridium in perchloric and sulfuric acids. 59th Meeting of the International Society for Electrochemistry, Seville, September 2008

    Google Scholar 

  19. F. Dion, A. Lasia, J. Electroanal. Chem. 475, 28 (1999)

    CAS  Google Scholar 

  20. S. Morin, H. Dumont, B.E. Conway, J. Electroanal. Chem. 412(1999), 39 (1996)

    Google Scholar 

  21. A. Lasia, Curr. Top. Electrochem. 2, 239 (1993)

    Google Scholar 

  22. E.R. Gonzalez, G. Tremiliosi-Filho, M.J. de Giz, Curr. Top. Electrochem. 2, 167 (1993)

    Google Scholar 

  23. M.R.G. de Chialvo, A.C. Chialvo, Electrochem. Commun. 1, 379 (1999)

    Google Scholar 

  24. P.M. Quaino, M.R.G. de Chialvo, A.C. Chialvo, Electrochim. Acta 52, 7396 (2007)

    CAS  Google Scholar 

  25. C. Hitz, A. Lasia, J. Electroanal. Chem. 532, 133 (2002)

    CAS  Google Scholar 

  26. L. Bai, D.A. Harrington, B.E. Conway, J. Electroanal. Chem. 32, 1713 (1987)

    CAS  Google Scholar 

  27. J.H. Barber, B.E. Conway, J. Electroanal. Chem. 461, 80 (1999)

    CAS  Google Scholar 

  28. M.J. de Giz, G. Tremiliosi-Filho, E.R. Gonzalez, Electrochim. Acta 39, 1775 (1994)

    Google Scholar 

  29. R.K. Shervedani, A. Lasia, J. Electrochem. Soc. 145, 2219 (1998)

    CAS  Google Scholar 

  30. L.L. Chen, A. Lasia, J. Electrochem. Soc. 138, 3321 (1991)

    CAS  Google Scholar 

  31. N.A. Assungao, M.J. de Giz, G. Tremiliosi-Filho, E.R. Gonzalez, J. Electrochem. Soc. 144, 2794 (1997)

    Google Scholar 

  32. J.-P. Diard, B. Le Gorrec, C. Montella, J. Electroanal. Chem. 466, 122 (1999)

    CAS  Google Scholar 

  33. J. Barber, B.E. Conway, J. Electroanal. Chem. 466, 124 (1999)

    CAS  Google Scholar 

  34. A. Lasia, J. Electroanal. Chem. 593, 159 (2006)

    CAS  Google Scholar 

  35. J.O.’.M. Bockris, J. McBreen, L. Nanis, J. Electrochem. Soc. 112, 1025 (1965)

    CAS  Google Scholar 

  36. S.Y. Qian, B.E. Conway, G. Jerkiewicz, Int. J. Hydrog. Energy 25, 539 (2000)

    CAS  Google Scholar 

  37. A. Lasia, D. Gregoire, J. Electrochem. Soc. 142, 3393 (1995)

    CAS  Google Scholar 

  38. C. Lim, S.-I. Pyun, Electrochim. Acta 38, 2645 (1993)

    CAS  Google Scholar 

  39. C. Lim, S.-I. Pyun, Electrochim. Acta 39, 363 (1994)

    CAS  Google Scholar 

  40. I.A. Bagotskaya, Zh. Fiz. Khim. 36, 2667 (1962)

    CAS  Google Scholar 

  41. J.S. Chen, J.P. Diard, R. Durand, C. Montella, J. Electroanal. Chem. 406, 1 (1996)

    Google Scholar 

  42. M.H. Martin, A. Lasia, Electrochim. Acta 53, 6317 (2008)

    CAS  Google Scholar 

  43. H. Duncan, A. Lasia, Electrochim. Acta 52, 6195 (2007)

    CAS  Google Scholar 

  44. M.H. Martin, A. Lasia, Electrochim. Acta 54, 5292 (2009)

    CAS  Google Scholar 

  45. H. Duncan, A. Lasia, J. Electroanal. Chem. 621, 62 (2008)

    CAS  Google Scholar 

  46. L. Birry, Etude des reactions d’insertion d’hydrogene dans des electrodes de palladium, PhD Thesis, Universite de Sherbrooke, 2005

    Google Scholar 

  47. L.O. Valeen, S. Sunde, R. Tunold, J. Alloy Comp. 253–254, 656 (1997)

    Google Scholar 

  48. B.S. Haran, B.N. Popov, R.E. White, J. Power Sources 75, 56 (1998)

    CAS  Google Scholar 

  49. C. Wang, J. Electrochem. Soc. 145, 1801 (1998)

    CAS  Google Scholar 

  50. L.O. Valeen, A. Lasia, J.O. Jensen, R. Tunold, Electrochim. Acta 47, 2871 (2002)

    Google Scholar 

  51. P. Zoltowski, Electrochim. Acta 44, 4415(1999); 51, 1576 (2006); 55, 6274 (2010)

    Google Scholar 

  52. P. Zoltowski, Acta Mater. 51, 5489 (2003)

    CAS  Google Scholar 

  53. J.S. Chen, R. Durand, C. Montella, J. Chim. Phys. 91, 383 (1994)

    CAS  Google Scholar 

  54. Y.-G. Yoon, S.I. Pyun, Electrochim. Acta 40, 999 (1995)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lasia, A. (2014). Electrocatalytic Reactions Involving Hydrogen. In: Electrochemical Impedance Spectroscopy and its Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8933-7_7

Download citation

Publish with us

Policies and ethics